blob: bb59638159bbd1086537eb73f09455450c3a9d15 [file] [log] [blame]
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001/*
Paul Bartell08dc6f62021-05-25 21:44:10 -07002 * FreeRTOS Kernel <DEVELOPMENT BRANCH>
Paul Bartelladfc5332021-05-25 21:46:15 -07003 * Copyright (C) 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07004 *
Paul Bartell3a413d12021-05-26 16:16:27 -07005 * SPDX-License-Identifier: MIT
6 *
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07007 * Permission is hereby granted, free of charge, to any person obtaining a copy of
8 * this software and associated documentation files (the "Software"), to deal in
9 * the Software without restriction, including without limitation the rights to
10 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
11 * the Software, and to permit persons to whom the Software is furnished to do so,
12 * subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in all
15 * copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
19 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
20 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
21 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 *
alfred gedeon0b0a2062020-08-20 14:59:28 -070024 * https://www.FreeRTOS.org
25 * https://github.com/FreeRTOS
alfred gedeon9a1ebfe2020-08-17 16:16:11 -070026 *
27 */
28
29
30#ifndef QUEUE_H
31#define QUEUE_H
32
33#ifndef INC_FREERTOS_H
34 #error "include FreeRTOS.h" must appear in source files before "include queue.h"
35#endif
36
37/* *INDENT-OFF* */
38#ifdef __cplusplus
39 extern "C" {
40#endif
41/* *INDENT-ON* */
42
43#include "task.h"
44
45/**
46 * Type by which queues are referenced. For example, a call to xQueueCreate()
47 * returns an QueueHandle_t variable that can then be used as a parameter to
48 * xQueueSend(), xQueueReceive(), etc.
49 */
50struct QueueDefinition; /* Using old naming convention so as not to break kernel aware debuggers. */
51typedef struct QueueDefinition * QueueHandle_t;
52
53/**
54 * Type by which queue sets are referenced. For example, a call to
55 * xQueueCreateSet() returns an xQueueSet variable that can then be used as a
56 * parameter to xQueueSelectFromSet(), xQueueAddToSet(), etc.
57 */
58typedef struct QueueDefinition * QueueSetHandle_t;
59
60/**
61 * Queue sets can contain both queues and semaphores, so the
62 * QueueSetMemberHandle_t is defined as a type to be used where a parameter or
63 * return value can be either an QueueHandle_t or an SemaphoreHandle_t.
64 */
65typedef struct QueueDefinition * QueueSetMemberHandle_t;
66
67/* For internal use only. */
68#define queueSEND_TO_BACK ( ( BaseType_t ) 0 )
69#define queueSEND_TO_FRONT ( ( BaseType_t ) 1 )
70#define queueOVERWRITE ( ( BaseType_t ) 2 )
71
72/* For internal use only. These definitions *must* match those in queue.c. */
73#define queueQUEUE_TYPE_BASE ( ( uint8_t ) 0U )
74#define queueQUEUE_TYPE_SET ( ( uint8_t ) 0U )
75#define queueQUEUE_TYPE_MUTEX ( ( uint8_t ) 1U )
76#define queueQUEUE_TYPE_COUNTING_SEMAPHORE ( ( uint8_t ) 2U )
77#define queueQUEUE_TYPE_BINARY_SEMAPHORE ( ( uint8_t ) 3U )
78#define queueQUEUE_TYPE_RECURSIVE_MUTEX ( ( uint8_t ) 4U )
79
80/**
81 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +080082 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -070083 * QueueHandle_t xQueueCreate(
84 * UBaseType_t uxQueueLength,
85 * UBaseType_t uxItemSize
86 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +080087 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -070088 *
89 * Creates a new queue instance, and returns a handle by which the new queue
90 * can be referenced.
91 *
92 * Internally, within the FreeRTOS implementation, queues use two blocks of
93 * memory. The first block is used to hold the queue's data structures. The
94 * second block is used to hold items placed into the queue. If a queue is
95 * created using xQueueCreate() then both blocks of memory are automatically
96 * dynamically allocated inside the xQueueCreate() function. (see
alfred gedeona0381462020-08-21 11:30:39 -070097 * https://www.FreeRTOS.org/a00111.html). If a queue is created using
alfred gedeon9a1ebfe2020-08-17 16:16:11 -070098 * xQueueCreateStatic() then the application writer must provide the memory that
99 * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
100 * be created without using any dynamic memory allocation.
101 *
alfred gedeon0b0a2062020-08-20 14:59:28 -0700102 * https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700103 *
104 * @param uxQueueLength The maximum number of items that the queue can contain.
105 *
106 * @param uxItemSize The number of bytes each item in the queue will require.
107 * Items are queued by copy, not by reference, so this is the number of bytes
108 * that will be copied for each posted item. Each item on the queue must be
109 * the same size.
110 *
111 * @return If the queue is successfully create then a handle to the newly
112 * created queue is returned. If the queue cannot be created then 0 is
113 * returned.
114 *
115 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800116 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700117 * struct AMessage
118 * {
119 * char ucMessageID;
120 * char ucData[ 20 ];
121 * };
122 *
123 * void vATask( void *pvParameters )
124 * {
125 * QueueHandle_t xQueue1, xQueue2;
126 *
127 * // Create a queue capable of containing 10 uint32_t values.
128 * xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
129 * if( xQueue1 == 0 )
130 * {
131 * // Queue was not created and must not be used.
132 * }
133 *
134 * // Create a queue capable of containing 10 pointers to AMessage structures.
135 * // These should be passed by pointer as they contain a lot of data.
136 * xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
137 * if( xQueue2 == 0 )
138 * {
139 * // Queue was not created and must not be used.
140 * }
141 *
142 * // ... Rest of task code.
143 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800144 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700145 * \defgroup xQueueCreate xQueueCreate
146 * \ingroup QueueManagement
147 */
148#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
149 #define xQueueCreate( uxQueueLength, uxItemSize ) xQueueGenericCreate( ( uxQueueLength ), ( uxItemSize ), ( queueQUEUE_TYPE_BASE ) )
150#endif
151
152/**
153 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800154 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700155 * QueueHandle_t xQueueCreateStatic(
156 * UBaseType_t uxQueueLength,
157 * UBaseType_t uxItemSize,
Zim Kalinowski0b1e9d72021-08-13 09:15:57 +0800158 * uint8_t *pucQueueStorage,
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700159 * StaticQueue_t *pxQueueBuffer
160 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800161 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700162 *
163 * Creates a new queue instance, and returns a handle by which the new queue
164 * can be referenced.
165 *
166 * Internally, within the FreeRTOS implementation, queues use two blocks of
167 * memory. The first block is used to hold the queue's data structures. The
168 * second block is used to hold items placed into the queue. If a queue is
169 * created using xQueueCreate() then both blocks of memory are automatically
170 * dynamically allocated inside the xQueueCreate() function. (see
alfred gedeona0381462020-08-21 11:30:39 -0700171 * https://www.FreeRTOS.org/a00111.html). If a queue is created using
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700172 * xQueueCreateStatic() then the application writer must provide the memory that
173 * will get used by the queue. xQueueCreateStatic() therefore allows a queue to
174 * be created without using any dynamic memory allocation.
175 *
alfred gedeon0b0a2062020-08-20 14:59:28 -0700176 * https://www.FreeRTOS.org/Embedded-RTOS-Queues.html
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700177 *
178 * @param uxQueueLength The maximum number of items that the queue can contain.
179 *
180 * @param uxItemSize The number of bytes each item in the queue will require.
181 * Items are queued by copy, not by reference, so this is the number of bytes
182 * that will be copied for each posted item. Each item on the queue must be
183 * the same size.
184 *
Zim Kalinowski0b1e9d72021-08-13 09:15:57 +0800185 * @param pucQueueStorage If uxItemSize is not zero then
186 * pucQueueStorage must point to a uint8_t array that is at least large
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700187 * enough to hold the maximum number of items that can be in the queue at any
188 * one time - which is ( uxQueueLength * uxItemsSize ) bytes. If uxItemSize is
Zim Kalinowski0b1e9d72021-08-13 09:15:57 +0800189 * zero then pucQueueStorage can be NULL.
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700190 *
191 * @param pxQueueBuffer Must point to a variable of type StaticQueue_t, which
192 * will be used to hold the queue's data structure.
193 *
194 * @return If the queue is created then a handle to the created queue is
195 * returned. If pxQueueBuffer is NULL then NULL is returned.
196 *
197 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800198 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700199 * struct AMessage
200 * {
201 * char ucMessageID;
202 * char ucData[ 20 ];
203 * };
204 *
205 #define QUEUE_LENGTH 10
206 #define ITEM_SIZE sizeof( uint32_t )
207 *
208 * // xQueueBuffer will hold the queue structure.
209 * StaticQueue_t xQueueBuffer;
210 *
211 * // ucQueueStorage will hold the items posted to the queue. Must be at least
212 * // [(queue length) * ( queue item size)] bytes long.
213 * uint8_t ucQueueStorage[ QUEUE_LENGTH * ITEM_SIZE ];
214 *
215 * void vATask( void *pvParameters )
216 * {
Zim Kalinowski0b1e9d72021-08-13 09:15:57 +0800217 * QueueHandle_t xQueue1;
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700218 *
219 * // Create a queue capable of containing 10 uint32_t values.
220 * xQueue1 = xQueueCreate( QUEUE_LENGTH, // The number of items the queue can hold.
221 * ITEM_SIZE // The size of each item in the queue
222 * &( ucQueueStorage[ 0 ] ), // The buffer that will hold the items in the queue.
223 * &xQueueBuffer ); // The buffer that will hold the queue structure.
224 *
225 * // The queue is guaranteed to be created successfully as no dynamic memory
226 * // allocation is used. Therefore xQueue1 is now a handle to a valid queue.
227 *
228 * // ... Rest of task code.
229 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800230 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700231 * \defgroup xQueueCreateStatic xQueueCreateStatic
232 * \ingroup QueueManagement
233 */
234#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
235 #define xQueueCreateStatic( uxQueueLength, uxItemSize, pucQueueStorage, pxQueueBuffer ) xQueueGenericCreateStatic( ( uxQueueLength ), ( uxItemSize ), ( pucQueueStorage ), ( pxQueueBuffer ), ( queueQUEUE_TYPE_BASE ) )
236#endif /* configSUPPORT_STATIC_ALLOCATION */
237
238/**
239 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800240 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700241 * BaseType_t xQueueSendToToFront(
242 * QueueHandle_t xQueue,
243 * const void *pvItemToQueue,
244 * TickType_t xTicksToWait
245 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800246 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700247 *
248 * Post an item to the front of a queue. The item is queued by copy, not by
249 * reference. This function must not be called from an interrupt service
250 * routine. See xQueueSendFromISR () for an alternative which may be used
251 * in an ISR.
252 *
253 * @param xQueue The handle to the queue on which the item is to be posted.
254 *
255 * @param pvItemToQueue A pointer to the item that is to be placed on the
256 * queue. The size of the items the queue will hold was defined when the
257 * queue was created, so this many bytes will be copied from pvItemToQueue
258 * into the queue storage area.
259 *
260 * @param xTicksToWait The maximum amount of time the task should block
261 * waiting for space to become available on the queue, should it already
262 * be full. The call will return immediately if this is set to 0 and the
263 * queue is full. The time is defined in tick periods so the constant
264 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
265 *
266 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
267 *
268 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800269 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700270 * struct AMessage
271 * {
272 * char ucMessageID;
273 * char ucData[ 20 ];
274 * } xMessage;
275 *
276 * uint32_t ulVar = 10UL;
277 *
278 * void vATask( void *pvParameters )
279 * {
280 * QueueHandle_t xQueue1, xQueue2;
281 * struct AMessage *pxMessage;
282 *
283 * // Create a queue capable of containing 10 uint32_t values.
284 * xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
285 *
286 * // Create a queue capable of containing 10 pointers to AMessage structures.
287 * // These should be passed by pointer as they contain a lot of data.
288 * xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
289 *
290 * // ...
291 *
292 * if( xQueue1 != 0 )
293 * {
294 * // Send an uint32_t. Wait for 10 ticks for space to become
295 * // available if necessary.
296 * if( xQueueSendToFront( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
297 * {
298 * // Failed to post the message, even after 10 ticks.
299 * }
300 * }
301 *
302 * if( xQueue2 != 0 )
303 * {
304 * // Send a pointer to a struct AMessage object. Don't block if the
305 * // queue is already full.
306 * pxMessage = & xMessage;
307 * xQueueSendToFront( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
308 * }
309 *
310 * // ... Rest of task code.
311 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800312 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700313 * \defgroup xQueueSend xQueueSend
314 * \ingroup QueueManagement
315 */
316#define xQueueSendToFront( xQueue, pvItemToQueue, xTicksToWait ) \
317 xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_FRONT )
318
319/**
320 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800321 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700322 * BaseType_t xQueueSendToBack(
323 * QueueHandle_t xQueue,
324 * const void *pvItemToQueue,
325 * TickType_t xTicksToWait
326 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800327 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700328 *
329 * This is a macro that calls xQueueGenericSend().
330 *
331 * Post an item to the back of a queue. The item is queued by copy, not by
332 * reference. This function must not be called from an interrupt service
333 * routine. See xQueueSendFromISR () for an alternative which may be used
334 * in an ISR.
335 *
336 * @param xQueue The handle to the queue on which the item is to be posted.
337 *
338 * @param pvItemToQueue A pointer to the item that is to be placed on the
339 * queue. The size of the items the queue will hold was defined when the
340 * queue was created, so this many bytes will be copied from pvItemToQueue
341 * into the queue storage area.
342 *
343 * @param xTicksToWait The maximum amount of time the task should block
344 * waiting for space to become available on the queue, should it already
345 * be full. The call will return immediately if this is set to 0 and the queue
346 * is full. The time is defined in tick periods so the constant
347 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
348 *
349 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
350 *
351 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800352 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700353 * struct AMessage
354 * {
355 * char ucMessageID;
356 * char ucData[ 20 ];
357 * } xMessage;
358 *
359 * uint32_t ulVar = 10UL;
360 *
361 * void vATask( void *pvParameters )
362 * {
363 * QueueHandle_t xQueue1, xQueue2;
364 * struct AMessage *pxMessage;
365 *
366 * // Create a queue capable of containing 10 uint32_t values.
367 * xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
368 *
369 * // Create a queue capable of containing 10 pointers to AMessage structures.
370 * // These should be passed by pointer as they contain a lot of data.
371 * xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
372 *
373 * // ...
374 *
375 * if( xQueue1 != 0 )
376 * {
377 * // Send an uint32_t. Wait for 10 ticks for space to become
378 * // available if necessary.
379 * if( xQueueSendToBack( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
380 * {
381 * // Failed to post the message, even after 10 ticks.
382 * }
383 * }
384 *
385 * if( xQueue2 != 0 )
386 * {
387 * // Send a pointer to a struct AMessage object. Don't block if the
388 * // queue is already full.
389 * pxMessage = & xMessage;
390 * xQueueSendToBack( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
391 * }
392 *
393 * // ... Rest of task code.
394 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800395 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700396 * \defgroup xQueueSend xQueueSend
397 * \ingroup QueueManagement
398 */
399#define xQueueSendToBack( xQueue, pvItemToQueue, xTicksToWait ) \
400 xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
401
402/**
403 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800404 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700405 * BaseType_t xQueueSend(
406 * QueueHandle_t xQueue,
407 * const void * pvItemToQueue,
408 * TickType_t xTicksToWait
409 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800410 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700411 *
412 * This is a macro that calls xQueueGenericSend(). It is included for
413 * backward compatibility with versions of FreeRTOS.org that did not
414 * include the xQueueSendToFront() and xQueueSendToBack() macros. It is
415 * equivalent to xQueueSendToBack().
416 *
417 * Post an item on a queue. The item is queued by copy, not by reference.
418 * This function must not be called from an interrupt service routine.
419 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
420 *
421 * @param xQueue The handle to the queue on which the item is to be posted.
422 *
423 * @param pvItemToQueue A pointer to the item that is to be placed on the
424 * queue. The size of the items the queue will hold was defined when the
425 * queue was created, so this many bytes will be copied from pvItemToQueue
426 * into the queue storage area.
427 *
428 * @param xTicksToWait The maximum amount of time the task should block
429 * waiting for space to become available on the queue, should it already
430 * be full. The call will return immediately if this is set to 0 and the
431 * queue is full. The time is defined in tick periods so the constant
432 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
433 *
434 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
435 *
436 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800437 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700438 * struct AMessage
439 * {
440 * char ucMessageID;
441 * char ucData[ 20 ];
442 * } xMessage;
443 *
444 * uint32_t ulVar = 10UL;
445 *
446 * void vATask( void *pvParameters )
447 * {
448 * QueueHandle_t xQueue1, xQueue2;
449 * struct AMessage *pxMessage;
450 *
451 * // Create a queue capable of containing 10 uint32_t values.
452 * xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
453 *
454 * // Create a queue capable of containing 10 pointers to AMessage structures.
455 * // These should be passed by pointer as they contain a lot of data.
456 * xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
457 *
458 * // ...
459 *
460 * if( xQueue1 != 0 )
461 * {
462 * // Send an uint32_t. Wait for 10 ticks for space to become
463 * // available if necessary.
464 * if( xQueueSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10 ) != pdPASS )
465 * {
466 * // Failed to post the message, even after 10 ticks.
467 * }
468 * }
469 *
470 * if( xQueue2 != 0 )
471 * {
472 * // Send a pointer to a struct AMessage object. Don't block if the
473 * // queue is already full.
474 * pxMessage = & xMessage;
475 * xQueueSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0 );
476 * }
477 *
478 * // ... Rest of task code.
479 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800480 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700481 * \defgroup xQueueSend xQueueSend
482 * \ingroup QueueManagement
483 */
484#define xQueueSend( xQueue, pvItemToQueue, xTicksToWait ) \
485 xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), ( xTicksToWait ), queueSEND_TO_BACK )
486
487/**
488 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800489 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700490 * BaseType_t xQueueOverwrite(
491 * QueueHandle_t xQueue,
492 * const void * pvItemToQueue
493 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800494 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700495 *
496 * Only for use with queues that have a length of one - so the queue is either
497 * empty or full.
498 *
499 * Post an item on a queue. If the queue is already full then overwrite the
500 * value held in the queue. The item is queued by copy, not by reference.
501 *
502 * This function must not be called from an interrupt service routine.
503 * See xQueueOverwriteFromISR () for an alternative which may be used in an ISR.
504 *
505 * @param xQueue The handle of the queue to which the data is being sent.
506 *
507 * @param pvItemToQueue A pointer to the item that is to be placed on the
508 * queue. The size of the items the queue will hold was defined when the
509 * queue was created, so this many bytes will be copied from pvItemToQueue
510 * into the queue storage area.
511 *
512 * @return xQueueOverwrite() is a macro that calls xQueueGenericSend(), and
513 * therefore has the same return values as xQueueSendToFront(). However, pdPASS
514 * is the only value that can be returned because xQueueOverwrite() will write
515 * to the queue even when the queue is already full.
516 *
517 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800518 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700519 *
520 * void vFunction( void *pvParameters )
521 * {
522 * QueueHandle_t xQueue;
523 * uint32_t ulVarToSend, ulValReceived;
524 *
525 * // Create a queue to hold one uint32_t value. It is strongly
526 * // recommended *not* to use xQueueOverwrite() on queues that can
527 * // contain more than one value, and doing so will trigger an assertion
528 * // if configASSERT() is defined.
529 * xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
530 *
531 * // Write the value 10 to the queue using xQueueOverwrite().
532 * ulVarToSend = 10;
533 * xQueueOverwrite( xQueue, &ulVarToSend );
534 *
535 * // Peeking the queue should now return 10, but leave the value 10 in
536 * // the queue. A block time of zero is used as it is known that the
537 * // queue holds a value.
538 * ulValReceived = 0;
539 * xQueuePeek( xQueue, &ulValReceived, 0 );
540 *
541 * if( ulValReceived != 10 )
542 * {
543 * // Error unless the item was removed by a different task.
544 * }
545 *
546 * // The queue is still full. Use xQueueOverwrite() to overwrite the
547 * // value held in the queue with 100.
548 * ulVarToSend = 100;
549 * xQueueOverwrite( xQueue, &ulVarToSend );
550 *
551 * // This time read from the queue, leaving the queue empty once more.
552 * // A block time of 0 is used again.
553 * xQueueReceive( xQueue, &ulValReceived, 0 );
554 *
555 * // The value read should be the last value written, even though the
556 * // queue was already full when the value was written.
557 * if( ulValReceived != 100 )
558 * {
559 * // Error!
560 * }
561 *
562 * // ...
563 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800564 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700565 * \defgroup xQueueOverwrite xQueueOverwrite
566 * \ingroup QueueManagement
567 */
568#define xQueueOverwrite( xQueue, pvItemToQueue ) \
569 xQueueGenericSend( ( xQueue ), ( pvItemToQueue ), 0, queueOVERWRITE )
570
571
572/**
573 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800574 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700575 * BaseType_t xQueueGenericSend(
576 * QueueHandle_t xQueue,
577 * const void * pvItemToQueue,
578 * TickType_t xTicksToWait
579 * BaseType_t xCopyPosition
580 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800581 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700582 *
583 * It is preferred that the macros xQueueSend(), xQueueSendToFront() and
584 * xQueueSendToBack() are used in place of calling this function directly.
585 *
586 * Post an item on a queue. The item is queued by copy, not by reference.
587 * This function must not be called from an interrupt service routine.
588 * See xQueueSendFromISR () for an alternative which may be used in an ISR.
589 *
590 * @param xQueue The handle to the queue on which the item is to be posted.
591 *
592 * @param pvItemToQueue A pointer to the item that is to be placed on the
593 * queue. The size of the items the queue will hold was defined when the
594 * queue was created, so this many bytes will be copied from pvItemToQueue
595 * into the queue storage area.
596 *
597 * @param xTicksToWait The maximum amount of time the task should block
598 * waiting for space to become available on the queue, should it already
599 * be full. The call will return immediately if this is set to 0 and the
600 * queue is full. The time is defined in tick periods so the constant
601 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
602 *
603 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
604 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
605 * at the front of the queue (for high priority messages).
606 *
607 * @return pdTRUE if the item was successfully posted, otherwise errQUEUE_FULL.
608 *
609 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800610 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700611 * struct AMessage
612 * {
613 * char ucMessageID;
614 * char ucData[ 20 ];
615 * } xMessage;
616 *
617 * uint32_t ulVar = 10UL;
618 *
619 * void vATask( void *pvParameters )
620 * {
621 * QueueHandle_t xQueue1, xQueue2;
622 * struct AMessage *pxMessage;
623 *
624 * // Create a queue capable of containing 10 uint32_t values.
625 * xQueue1 = xQueueCreate( 10, sizeof( uint32_t ) );
626 *
627 * // Create a queue capable of containing 10 pointers to AMessage structures.
628 * // These should be passed by pointer as they contain a lot of data.
629 * xQueue2 = xQueueCreate( 10, sizeof( struct AMessage * ) );
630 *
631 * // ...
632 *
633 * if( xQueue1 != 0 )
634 * {
635 * // Send an uint32_t. Wait for 10 ticks for space to become
636 * // available if necessary.
637 * if( xQueueGenericSend( xQueue1, ( void * ) &ulVar, ( TickType_t ) 10, queueSEND_TO_BACK ) != pdPASS )
638 * {
639 * // Failed to post the message, even after 10 ticks.
640 * }
641 * }
642 *
643 * if( xQueue2 != 0 )
644 * {
645 * // Send a pointer to a struct AMessage object. Don't block if the
646 * // queue is already full.
647 * pxMessage = & xMessage;
648 * xQueueGenericSend( xQueue2, ( void * ) &pxMessage, ( TickType_t ) 0, queueSEND_TO_BACK );
649 * }
650 *
651 * // ... Rest of task code.
652 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800653 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700654 * \defgroup xQueueSend xQueueSend
655 * \ingroup QueueManagement
656 */
657BaseType_t xQueueGenericSend( QueueHandle_t xQueue,
658 const void * const pvItemToQueue,
659 TickType_t xTicksToWait,
660 const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
661
662/**
663 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800664 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700665 * BaseType_t xQueuePeek(
666 * QueueHandle_t xQueue,
667 * void * const pvBuffer,
668 * TickType_t xTicksToWait
David Chalcoebda4932020-08-18 16:28:02 -0700669 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800670 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700671 *
672 * Receive an item from a queue without removing the item from the queue.
673 * The item is received by copy so a buffer of adequate size must be
674 * provided. The number of bytes copied into the buffer was defined when
675 * the queue was created.
676 *
677 * Successfully received items remain on the queue so will be returned again
678 * by the next call, or a call to xQueueReceive().
679 *
680 * This macro must not be used in an interrupt service routine. See
681 * xQueuePeekFromISR() for an alternative that can be called from an interrupt
682 * service routine.
683 *
684 * @param xQueue The handle to the queue from which the item is to be
685 * received.
686 *
687 * @param pvBuffer Pointer to the buffer into which the received item will
688 * be copied.
689 *
690 * @param xTicksToWait The maximum amount of time the task should block
691 * waiting for an item to receive should the queue be empty at the time
692 * of the call. The time is defined in tick periods so the constant
693 * portTICK_PERIOD_MS should be used to convert to real time if this is required.
694 * xQueuePeek() will return immediately if xTicksToWait is 0 and the queue
695 * is empty.
696 *
697 * @return pdTRUE if an item was successfully received from the queue,
698 * otherwise pdFALSE.
699 *
700 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800701 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700702 * struct AMessage
703 * {
704 * char ucMessageID;
705 * char ucData[ 20 ];
706 * } xMessage;
707 *
708 * QueueHandle_t xQueue;
709 *
710 * // Task to create a queue and post a value.
711 * void vATask( void *pvParameters )
712 * {
713 * struct AMessage *pxMessage;
714 *
715 * // Create a queue capable of containing 10 pointers to AMessage structures.
716 * // These should be passed by pointer as they contain a lot of data.
717 * xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
718 * if( xQueue == 0 )
719 * {
720 * // Failed to create the queue.
721 * }
722 *
723 * // ...
724 *
725 * // Send a pointer to a struct AMessage object. Don't block if the
726 * // queue is already full.
727 * pxMessage = & xMessage;
728 * xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
729 *
730 * // ... Rest of task code.
731 * }
732 *
733 * // Task to peek the data from the queue.
734 * void vADifferentTask( void *pvParameters )
735 * {
736 * struct AMessage *pxRxedMessage;
737 *
738 * if( xQueue != 0 )
739 * {
740 * // Peek a message on the created queue. Block for 10 ticks if a
741 * // message is not immediately available.
742 * if( xQueuePeek( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
743 * {
744 * // pcRxedMessage now points to the struct AMessage variable posted
745 * // by vATask, but the item still remains on the queue.
746 * }
747 * }
748 *
749 * // ... Rest of task code.
750 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800751 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700752 * \defgroup xQueuePeek xQueuePeek
753 * \ingroup QueueManagement
754 */
755BaseType_t xQueuePeek( QueueHandle_t xQueue,
756 void * const pvBuffer,
757 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
758
759/**
760 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800761 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700762 * BaseType_t xQueuePeekFromISR(
763 * QueueHandle_t xQueue,
764 * void *pvBuffer,
David Chalcoebda4932020-08-18 16:28:02 -0700765 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800766 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700767 *
768 * A version of xQueuePeek() that can be called from an interrupt service
769 * routine (ISR).
770 *
771 * Receive an item from a queue without removing the item from the queue.
772 * The item is received by copy so a buffer of adequate size must be
773 * provided. The number of bytes copied into the buffer was defined when
774 * the queue was created.
775 *
776 * Successfully received items remain on the queue so will be returned again
777 * by the next call, or a call to xQueueReceive().
778 *
779 * @param xQueue The handle to the queue from which the item is to be
780 * received.
781 *
782 * @param pvBuffer Pointer to the buffer into which the received item will
783 * be copied.
784 *
785 * @return pdTRUE if an item was successfully received from the queue,
786 * otherwise pdFALSE.
787 *
788 * \defgroup xQueuePeekFromISR xQueuePeekFromISR
789 * \ingroup QueueManagement
790 */
791BaseType_t xQueuePeekFromISR( QueueHandle_t xQueue,
792 void * const pvBuffer ) PRIVILEGED_FUNCTION;
793
794/**
795 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800796 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700797 * BaseType_t xQueueReceive(
798 * QueueHandle_t xQueue,
799 * void *pvBuffer,
800 * TickType_t xTicksToWait
David Chalcoebda4932020-08-18 16:28:02 -0700801 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800802 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700803 *
804 * Receive an item from a queue. The item is received by copy so a buffer of
805 * adequate size must be provided. The number of bytes copied into the buffer
806 * was defined when the queue was created.
807 *
808 * Successfully received items are removed from the queue.
809 *
810 * This function must not be used in an interrupt service routine. See
811 * xQueueReceiveFromISR for an alternative that can.
812 *
813 * @param xQueue The handle to the queue from which the item is to be
814 * received.
815 *
816 * @param pvBuffer Pointer to the buffer into which the received item will
817 * be copied.
818 *
819 * @param xTicksToWait The maximum amount of time the task should block
820 * waiting for an item to receive should the queue be empty at the time
821 * of the call. xQueueReceive() will return immediately if xTicksToWait
822 * is zero and the queue is empty. The time is defined in tick periods so the
823 * constant portTICK_PERIOD_MS should be used to convert to real time if this is
824 * required.
825 *
826 * @return pdTRUE if an item was successfully received from the queue,
827 * otherwise pdFALSE.
828 *
829 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800830 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700831 * struct AMessage
832 * {
833 * char ucMessageID;
834 * char ucData[ 20 ];
835 * } xMessage;
836 *
837 * QueueHandle_t xQueue;
838 *
839 * // Task to create a queue and post a value.
840 * void vATask( void *pvParameters )
841 * {
842 * struct AMessage *pxMessage;
843 *
844 * // Create a queue capable of containing 10 pointers to AMessage structures.
845 * // These should be passed by pointer as they contain a lot of data.
846 * xQueue = xQueueCreate( 10, sizeof( struct AMessage * ) );
847 * if( xQueue == 0 )
848 * {
849 * // Failed to create the queue.
850 * }
851 *
852 * // ...
853 *
854 * // Send a pointer to a struct AMessage object. Don't block if the
855 * // queue is already full.
856 * pxMessage = & xMessage;
857 * xQueueSend( xQueue, ( void * ) &pxMessage, ( TickType_t ) 0 );
858 *
859 * // ... Rest of task code.
860 * }
861 *
862 * // Task to receive from the queue.
863 * void vADifferentTask( void *pvParameters )
864 * {
865 * struct AMessage *pxRxedMessage;
866 *
867 * if( xQueue != 0 )
868 * {
869 * // Receive a message on the created queue. Block for 10 ticks if a
870 * // message is not immediately available.
871 * if( xQueueReceive( xQueue, &( pxRxedMessage ), ( TickType_t ) 10 ) )
872 * {
873 * // pcRxedMessage now points to the struct AMessage variable posted
874 * // by vATask.
875 * }
876 * }
877 *
878 * // ... Rest of task code.
879 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800880 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700881 * \defgroup xQueueReceive xQueueReceive
882 * \ingroup QueueManagement
883 */
884BaseType_t xQueueReceive( QueueHandle_t xQueue,
885 void * const pvBuffer,
886 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
887
888/**
889 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800890 * @code{c}
David Chalcoebda4932020-08-18 16:28:02 -0700891 * UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800892 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700893 *
894 * Return the number of messages stored in a queue.
895 *
896 * @param xQueue A handle to the queue being queried.
897 *
898 * @return The number of messages available in the queue.
899 *
900 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
901 * \ingroup QueueManagement
902 */
903UBaseType_t uxQueueMessagesWaiting( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
904
905/**
906 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800907 * @code{c}
David Chalcoebda4932020-08-18 16:28:02 -0700908 * UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800909 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700910 *
911 * Return the number of free spaces available in a queue. This is equal to the
912 * number of items that can be sent to the queue before the queue becomes full
913 * if no items are removed.
914 *
915 * @param xQueue A handle to the queue being queried.
916 *
917 * @return The number of spaces available in the queue.
918 *
919 * \defgroup uxQueueMessagesWaiting uxQueueMessagesWaiting
920 * \ingroup QueueManagement
921 */
922UBaseType_t uxQueueSpacesAvailable( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
923
924/**
925 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800926 * @code{c}
David Chalcoebda4932020-08-18 16:28:02 -0700927 * void vQueueDelete( QueueHandle_t xQueue );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800928 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700929 *
930 * Delete a queue - freeing all the memory allocated for storing of items
931 * placed on the queue.
932 *
933 * @param xQueue A handle to the queue to be deleted.
934 *
935 * \defgroup vQueueDelete vQueueDelete
936 * \ingroup QueueManagement
937 */
938void vQueueDelete( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
939
940/**
941 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800942 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700943 * BaseType_t xQueueSendToFrontFromISR(
944 * QueueHandle_t xQueue,
945 * const void *pvItemToQueue,
946 * BaseType_t *pxHigherPriorityTaskWoken
947 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800948 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700949 *
950 * This is a macro that calls xQueueGenericSendFromISR().
951 *
952 * Post an item to the front of a queue. It is safe to use this macro from
953 * within an interrupt service routine.
954 *
955 * Items are queued by copy not reference so it is preferable to only
956 * queue small items, especially when called from an ISR. In most cases
957 * it would be preferable to store a pointer to the item being queued.
958 *
959 * @param xQueue The handle to the queue on which the item is to be posted.
960 *
961 * @param pvItemToQueue A pointer to the item that is to be placed on the
962 * queue. The size of the items the queue will hold was defined when the
963 * queue was created, so this many bytes will be copied from pvItemToQueue
964 * into the queue storage area.
965 *
966 * @param pxHigherPriorityTaskWoken xQueueSendToFrontFromISR() will set
967 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
968 * to unblock, and the unblocked task has a priority higher than the currently
969 * running task. If xQueueSendToFromFromISR() sets this value to pdTRUE then
970 * a context switch should be requested before the interrupt is exited.
971 *
972 * @return pdTRUE if the data was successfully sent to the queue, otherwise
973 * errQUEUE_FULL.
974 *
975 * Example usage for buffered IO (where the ISR can obtain more than one value
976 * per call):
Zim Kalinowskif8ada392021-09-08 03:03:12 +0800977 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700978 * void vBufferISR( void )
979 * {
980 * char cIn;
mikisamad5b24132022-02-14 07:47:52 +0800981 * BaseType_t xHigherPriorityTaskWoken;
alfred gedeon9a1ebfe2020-08-17 16:16:11 -0700982 *
983 * // We have not woken a task at the start of the ISR.
984 * xHigherPriorityTaskWoken = pdFALSE;
985 *
986 * // Loop until the buffer is empty.
987 * do
988 * {
989 * // Obtain a byte from the buffer.
990 * cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
991 *
992 * // Post the byte.
993 * xQueueSendToFrontFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
994 *
995 * } while( portINPUT_BYTE( BUFFER_COUNT ) );
996 *
997 * // Now the buffer is empty we can switch context if necessary.
998 * if( xHigherPriorityTaskWoken )
999 * {
1000 * taskYIELD ();
1001 * }
1002 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001003 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001004 *
1005 * \defgroup xQueueSendFromISR xQueueSendFromISR
1006 * \ingroup QueueManagement
1007 */
1008#define xQueueSendToFrontFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) \
1009 xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_FRONT )
1010
1011
1012/**
1013 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001014 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001015 * BaseType_t xQueueSendToBackFromISR(
1016 * QueueHandle_t xQueue,
1017 * const void *pvItemToQueue,
1018 * BaseType_t *pxHigherPriorityTaskWoken
1019 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001020 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001021 *
1022 * This is a macro that calls xQueueGenericSendFromISR().
1023 *
1024 * Post an item to the back of a queue. It is safe to use this macro from
1025 * within an interrupt service routine.
1026 *
1027 * Items are queued by copy not reference so it is preferable to only
1028 * queue small items, especially when called from an ISR. In most cases
1029 * it would be preferable to store a pointer to the item being queued.
1030 *
1031 * @param xQueue The handle to the queue on which the item is to be posted.
1032 *
1033 * @param pvItemToQueue A pointer to the item that is to be placed on the
1034 * queue. The size of the items the queue will hold was defined when the
1035 * queue was created, so this many bytes will be copied from pvItemToQueue
1036 * into the queue storage area.
1037 *
1038 * @param pxHigherPriorityTaskWoken xQueueSendToBackFromISR() will set
1039 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1040 * to unblock, and the unblocked task has a priority higher than the currently
1041 * running task. If xQueueSendToBackFromISR() sets this value to pdTRUE then
1042 * a context switch should be requested before the interrupt is exited.
1043 *
1044 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1045 * errQUEUE_FULL.
1046 *
1047 * Example usage for buffered IO (where the ISR can obtain more than one value
1048 * per call):
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001049 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001050 * void vBufferISR( void )
1051 * {
1052 * char cIn;
1053 * BaseType_t xHigherPriorityTaskWoken;
1054 *
1055 * // We have not woken a task at the start of the ISR.
1056 * xHigherPriorityTaskWoken = pdFALSE;
1057 *
1058 * // Loop until the buffer is empty.
1059 * do
1060 * {
1061 * // Obtain a byte from the buffer.
1062 * cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1063 *
1064 * // Post the byte.
1065 * xQueueSendToBackFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
1066 *
1067 * } while( portINPUT_BYTE( BUFFER_COUNT ) );
1068 *
1069 * // Now the buffer is empty we can switch context if necessary.
1070 * if( xHigherPriorityTaskWoken )
1071 * {
1072 * taskYIELD ();
1073 * }
1074 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001075 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001076 *
1077 * \defgroup xQueueSendFromISR xQueueSendFromISR
1078 * \ingroup QueueManagement
1079 */
1080#define xQueueSendToBackFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) \
1081 xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
1082
1083/**
1084 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001085 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001086 * BaseType_t xQueueOverwriteFromISR(
1087 * QueueHandle_t xQueue,
1088 * const void * pvItemToQueue,
1089 * BaseType_t *pxHigherPriorityTaskWoken
1090 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001091 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001092 *
1093 * A version of xQueueOverwrite() that can be used in an interrupt service
1094 * routine (ISR).
1095 *
1096 * Only for use with queues that can hold a single item - so the queue is either
1097 * empty or full.
1098 *
1099 * Post an item on a queue. If the queue is already full then overwrite the
1100 * value held in the queue. The item is queued by copy, not by reference.
1101 *
1102 * @param xQueue The handle to the queue on which the item is to be posted.
1103 *
1104 * @param pvItemToQueue A pointer to the item that is to be placed on the
1105 * queue. The size of the items the queue will hold was defined when the
1106 * queue was created, so this many bytes will be copied from pvItemToQueue
1107 * into the queue storage area.
1108 *
1109 * @param pxHigherPriorityTaskWoken xQueueOverwriteFromISR() will set
1110 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1111 * to unblock, and the unblocked task has a priority higher than the currently
1112 * running task. If xQueueOverwriteFromISR() sets this value to pdTRUE then
1113 * a context switch should be requested before the interrupt is exited.
1114 *
1115 * @return xQueueOverwriteFromISR() is a macro that calls
1116 * xQueueGenericSendFromISR(), and therefore has the same return values as
1117 * xQueueSendToFrontFromISR(). However, pdPASS is the only value that can be
1118 * returned because xQueueOverwriteFromISR() will write to the queue even when
1119 * the queue is already full.
1120 *
1121 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001122 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001123 *
1124 * QueueHandle_t xQueue;
1125 *
1126 * void vFunction( void *pvParameters )
1127 * {
1128 * // Create a queue to hold one uint32_t value. It is strongly
1129 * // recommended *not* to use xQueueOverwriteFromISR() on queues that can
1130 * // contain more than one value, and doing so will trigger an assertion
1131 * // if configASSERT() is defined.
1132 * xQueue = xQueueCreate( 1, sizeof( uint32_t ) );
1133 * }
1134 *
1135 * void vAnInterruptHandler( void )
1136 * {
1137 * // xHigherPriorityTaskWoken must be set to pdFALSE before it is used.
1138 * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
1139 * uint32_t ulVarToSend, ulValReceived;
1140 *
1141 * // Write the value 10 to the queue using xQueueOverwriteFromISR().
1142 * ulVarToSend = 10;
1143 * xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
1144 *
1145 * // The queue is full, but calling xQueueOverwriteFromISR() again will still
1146 * // pass because the value held in the queue will be overwritten with the
1147 * // new value.
1148 * ulVarToSend = 100;
1149 * xQueueOverwriteFromISR( xQueue, &ulVarToSend, &xHigherPriorityTaskWoken );
1150 *
1151 * // Reading from the queue will now return 100.
1152 *
1153 * // ...
1154 *
1155 * if( xHigherPrioritytaskWoken == pdTRUE )
1156 * {
1157 * // Writing to the queue caused a task to unblock and the unblocked task
1158 * // has a priority higher than or equal to the priority of the currently
1159 * // executing task (the task this interrupt interrupted). Perform a context
1160 * // switch so this interrupt returns directly to the unblocked task.
1161 * portYIELD_FROM_ISR(); // or portEND_SWITCHING_ISR() depending on the port.
1162 * }
1163 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001164 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001165 * \defgroup xQueueOverwriteFromISR xQueueOverwriteFromISR
1166 * \ingroup QueueManagement
1167 */
1168#define xQueueOverwriteFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) \
1169 xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueOVERWRITE )
1170
1171/**
1172 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001173 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001174 * BaseType_t xQueueSendFromISR(
1175 * QueueHandle_t xQueue,
1176 * const void *pvItemToQueue,
1177 * BaseType_t *pxHigherPriorityTaskWoken
1178 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001179 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001180 *
1181 * This is a macro that calls xQueueGenericSendFromISR(). It is included
1182 * for backward compatibility with versions of FreeRTOS.org that did not
1183 * include the xQueueSendToBackFromISR() and xQueueSendToFrontFromISR()
1184 * macros.
1185 *
1186 * Post an item to the back of a queue. It is safe to use this function from
1187 * within an interrupt service routine.
1188 *
1189 * Items are queued by copy not reference so it is preferable to only
1190 * queue small items, especially when called from an ISR. In most cases
1191 * it would be preferable to store a pointer to the item being queued.
1192 *
1193 * @param xQueue The handle to the queue on which the item is to be posted.
1194 *
1195 * @param pvItemToQueue A pointer to the item that is to be placed on the
1196 * queue. The size of the items the queue will hold was defined when the
1197 * queue was created, so this many bytes will be copied from pvItemToQueue
1198 * into the queue storage area.
1199 *
1200 * @param pxHigherPriorityTaskWoken xQueueSendFromISR() will set
1201 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1202 * to unblock, and the unblocked task has a priority higher than the currently
1203 * running task. If xQueueSendFromISR() sets this value to pdTRUE then
1204 * a context switch should be requested before the interrupt is exited.
1205 *
1206 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1207 * errQUEUE_FULL.
1208 *
1209 * Example usage for buffered IO (where the ISR can obtain more than one value
1210 * per call):
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001211 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001212 * void vBufferISR( void )
1213 * {
1214 * char cIn;
1215 * BaseType_t xHigherPriorityTaskWoken;
1216 *
1217 * // We have not woken a task at the start of the ISR.
1218 * xHigherPriorityTaskWoken = pdFALSE;
1219 *
1220 * // Loop until the buffer is empty.
1221 * do
1222 * {
1223 * // Obtain a byte from the buffer.
1224 * cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1225 *
1226 * // Post the byte.
1227 * xQueueSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWoken );
1228 *
1229 * } while( portINPUT_BYTE( BUFFER_COUNT ) );
1230 *
1231 * // Now the buffer is empty we can switch context if necessary.
1232 * if( xHigherPriorityTaskWoken )
1233 * {
1234 * // Actual macro used here is port specific.
1235 * portYIELD_FROM_ISR ();
1236 * }
1237 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001238 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001239 *
1240 * \defgroup xQueueSendFromISR xQueueSendFromISR
1241 * \ingroup QueueManagement
1242 */
1243#define xQueueSendFromISR( xQueue, pvItemToQueue, pxHigherPriorityTaskWoken ) \
1244 xQueueGenericSendFromISR( ( xQueue ), ( pvItemToQueue ), ( pxHigherPriorityTaskWoken ), queueSEND_TO_BACK )
1245
1246/**
1247 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001248 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001249 * BaseType_t xQueueGenericSendFromISR(
1250 * QueueHandle_t xQueue,
1251 * const void *pvItemToQueue,
1252 * BaseType_t *pxHigherPriorityTaskWoken,
1253 * BaseType_t xCopyPosition
1254 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001255 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001256 *
1257 * It is preferred that the macros xQueueSendFromISR(),
1258 * xQueueSendToFrontFromISR() and xQueueSendToBackFromISR() be used in place
1259 * of calling this function directly. xQueueGiveFromISR() is an
1260 * equivalent for use by semaphores that don't actually copy any data.
1261 *
1262 * Post an item on a queue. It is safe to use this function from within an
1263 * interrupt service routine.
1264 *
1265 * Items are queued by copy not reference so it is preferable to only
1266 * queue small items, especially when called from an ISR. In most cases
1267 * it would be preferable to store a pointer to the item being queued.
1268 *
1269 * @param xQueue The handle to the queue on which the item is to be posted.
1270 *
1271 * @param pvItemToQueue A pointer to the item that is to be placed on the
1272 * queue. The size of the items the queue will hold was defined when the
1273 * queue was created, so this many bytes will be copied from pvItemToQueue
1274 * into the queue storage area.
1275 *
1276 * @param pxHigherPriorityTaskWoken xQueueGenericSendFromISR() will set
1277 * *pxHigherPriorityTaskWoken to pdTRUE if sending to the queue caused a task
1278 * to unblock, and the unblocked task has a priority higher than the currently
1279 * running task. If xQueueGenericSendFromISR() sets this value to pdTRUE then
1280 * a context switch should be requested before the interrupt is exited.
1281 *
1282 * @param xCopyPosition Can take the value queueSEND_TO_BACK to place the
1283 * item at the back of the queue, or queueSEND_TO_FRONT to place the item
1284 * at the front of the queue (for high priority messages).
1285 *
1286 * @return pdTRUE if the data was successfully sent to the queue, otherwise
1287 * errQUEUE_FULL.
1288 *
1289 * Example usage for buffered IO (where the ISR can obtain more than one value
1290 * per call):
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001291 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001292 * void vBufferISR( void )
1293 * {
1294 * char cIn;
1295 * BaseType_t xHigherPriorityTaskWokenByPost;
1296 *
1297 * // We have not woken a task at the start of the ISR.
1298 * xHigherPriorityTaskWokenByPost = pdFALSE;
1299 *
1300 * // Loop until the buffer is empty.
1301 * do
1302 * {
1303 * // Obtain a byte from the buffer.
1304 * cIn = portINPUT_BYTE( RX_REGISTER_ADDRESS );
1305 *
1306 * // Post each byte.
1307 * xQueueGenericSendFromISR( xRxQueue, &cIn, &xHigherPriorityTaskWokenByPost, queueSEND_TO_BACK );
1308 *
1309 * } while( portINPUT_BYTE( BUFFER_COUNT ) );
1310 *
1311 * // Now the buffer is empty we can switch context if necessary. Note that the
1312 * // name of the yield function required is port specific.
1313 * if( xHigherPriorityTaskWokenByPost )
1314 * {
1315 * portYIELD_FROM_ISR();
1316 * }
1317 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001318 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001319 *
1320 * \defgroup xQueueSendFromISR xQueueSendFromISR
1321 * \ingroup QueueManagement
1322 */
1323BaseType_t xQueueGenericSendFromISR( QueueHandle_t xQueue,
1324 const void * const pvItemToQueue,
1325 BaseType_t * const pxHigherPriorityTaskWoken,
1326 const BaseType_t xCopyPosition ) PRIVILEGED_FUNCTION;
1327BaseType_t xQueueGiveFromISR( QueueHandle_t xQueue,
1328 BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
1329
1330/**
1331 * queue. h
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001332 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001333 * BaseType_t xQueueReceiveFromISR(
1334 * QueueHandle_t xQueue,
1335 * void *pvBuffer,
1336 * BaseType_t *pxTaskWoken
1337 * );
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001338 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001339 *
1340 * Receive an item from a queue. It is safe to use this function from within an
1341 * interrupt service routine.
1342 *
1343 * @param xQueue The handle to the queue from which the item is to be
1344 * received.
1345 *
1346 * @param pvBuffer Pointer to the buffer into which the received item will
1347 * be copied.
1348 *
1349 * @param pxTaskWoken A task may be blocked waiting for space to become
1350 * available on the queue. If xQueueReceiveFromISR causes such a task to
1351 * unblock *pxTaskWoken will get set to pdTRUE, otherwise *pxTaskWoken will
1352 * remain unchanged.
1353 *
1354 * @return pdTRUE if an item was successfully received from the queue,
1355 * otherwise pdFALSE.
1356 *
1357 * Example usage:
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001358 * @code{c}
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001359 *
1360 * QueueHandle_t xQueue;
1361 *
1362 * // Function to create a queue and post some values.
1363 * void vAFunction( void *pvParameters )
1364 * {
1365 * char cValueToPost;
1366 * const TickType_t xTicksToWait = ( TickType_t )0xff;
1367 *
1368 * // Create a queue capable of containing 10 characters.
1369 * xQueue = xQueueCreate( 10, sizeof( char ) );
1370 * if( xQueue == 0 )
1371 * {
1372 * // Failed to create the queue.
1373 * }
1374 *
1375 * // ...
1376 *
1377 * // Post some characters that will be used within an ISR. If the queue
1378 * // is full then this task will block for xTicksToWait ticks.
1379 * cValueToPost = 'a';
1380 * xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1381 * cValueToPost = 'b';
1382 * xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1383 *
1384 * // ... keep posting characters ... this task may block when the queue
1385 * // becomes full.
1386 *
1387 * cValueToPost = 'c';
1388 * xQueueSend( xQueue, ( void * ) &cValueToPost, xTicksToWait );
1389 * }
1390 *
1391 * // ISR that outputs all the characters received on the queue.
1392 * void vISR_Routine( void )
1393 * {
1394 * BaseType_t xTaskWokenByReceive = pdFALSE;
1395 * char cRxedChar;
1396 *
1397 * while( xQueueReceiveFromISR( xQueue, ( void * ) &cRxedChar, &xTaskWokenByReceive) )
1398 * {
1399 * // A character was received. Output the character now.
1400 * vOutputCharacter( cRxedChar );
1401 *
1402 * // If removing the character from the queue woke the task that was
Robert Bergercf685052022-04-26 00:11:51 +03001403 * // posting onto the queue xTaskWokenByReceive will have been set to
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001404 * // pdTRUE. No matter how many times this loop iterates only one
1405 * // task will be woken.
1406 * }
1407 *
Robert Bergercf685052022-04-26 00:11:51 +03001408 * if( xTaskWokenByReceive != ( char ) pdFALSE;
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001409 * {
1410 * taskYIELD ();
1411 * }
1412 * }
Zim Kalinowskif8ada392021-09-08 03:03:12 +08001413 * @endcode
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001414 * \defgroup xQueueReceiveFromISR xQueueReceiveFromISR
1415 * \ingroup QueueManagement
1416 */
1417BaseType_t xQueueReceiveFromISR( QueueHandle_t xQueue,
1418 void * const pvBuffer,
1419 BaseType_t * const pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
1420
1421/*
1422 * Utilities to query queues that are safe to use from an ISR. These utilities
Jon Enzabd887c2022-01-07 10:45:58 -08001423 * should be used only from within an ISR, or within a critical section.
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001424 */
1425BaseType_t xQueueIsQueueEmptyFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1426BaseType_t xQueueIsQueueFullFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1427UBaseType_t uxQueueMessagesWaitingFromISR( const QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1428
1429/*
1430 * The functions defined above are for passing data to and from tasks. The
1431 * functions below are the equivalents for passing data to and from
1432 * co-routines.
1433 *
1434 * These functions are called from the co-routine macro implementation and
1435 * should not be called directly from application code. Instead use the macro
1436 * wrappers defined within croutine.h.
1437 */
1438BaseType_t xQueueCRSendFromISR( QueueHandle_t xQueue,
1439 const void * pvItemToQueue,
1440 BaseType_t xCoRoutinePreviouslyWoken );
1441BaseType_t xQueueCRReceiveFromISR( QueueHandle_t xQueue,
1442 void * pvBuffer,
1443 BaseType_t * pxTaskWoken );
1444BaseType_t xQueueCRSend( QueueHandle_t xQueue,
1445 const void * pvItemToQueue,
1446 TickType_t xTicksToWait );
1447BaseType_t xQueueCRReceive( QueueHandle_t xQueue,
1448 void * pvBuffer,
1449 TickType_t xTicksToWait );
1450
1451/*
1452 * For internal use only. Use xSemaphoreCreateMutex(),
1453 * xSemaphoreCreateCounting() or xSemaphoreGetMutexHolder() instead of calling
1454 * these functions directly.
1455 */
1456QueueHandle_t xQueueCreateMutex( const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1457QueueHandle_t xQueueCreateMutexStatic( const uint8_t ucQueueType,
1458 StaticQueue_t * pxStaticQueue ) PRIVILEGED_FUNCTION;
1459QueueHandle_t xQueueCreateCountingSemaphore( const UBaseType_t uxMaxCount,
1460 const UBaseType_t uxInitialCount ) PRIVILEGED_FUNCTION;
1461QueueHandle_t xQueueCreateCountingSemaphoreStatic( const UBaseType_t uxMaxCount,
1462 const UBaseType_t uxInitialCount,
1463 StaticQueue_t * pxStaticQueue ) PRIVILEGED_FUNCTION;
1464BaseType_t xQueueSemaphoreTake( QueueHandle_t xQueue,
1465 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1466TaskHandle_t xQueueGetMutexHolder( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
1467TaskHandle_t xQueueGetMutexHolderFromISR( QueueHandle_t xSemaphore ) PRIVILEGED_FUNCTION;
1468
1469/*
1470 * For internal use only. Use xSemaphoreTakeMutexRecursive() or
1471 * xSemaphoreGiveMutexRecursive() instead of calling these functions directly.
1472 */
1473BaseType_t xQueueTakeMutexRecursive( QueueHandle_t xMutex,
1474 TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1475BaseType_t xQueueGiveMutexRecursive( QueueHandle_t xMutex ) PRIVILEGED_FUNCTION;
1476
1477/*
1478 * Reset a queue back to its original empty state. The return value is now
1479 * obsolete and is always set to pdPASS.
1480 */
1481#define xQueueReset( xQueue ) xQueueGenericReset( xQueue, pdFALSE )
1482
1483/*
1484 * The registry is provided as a means for kernel aware debuggers to
1485 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
1486 * a queue, semaphore or mutex handle to the registry if you want the handle
1487 * to be available to a kernel aware debugger. If you are not using a kernel
1488 * aware debugger then this function can be ignored.
1489 *
1490 * configQUEUE_REGISTRY_SIZE defines the maximum number of handles the
1491 * registry can hold. configQUEUE_REGISTRY_SIZE must be greater than 0
1492 * within FreeRTOSConfig.h for the registry to be available. Its value
Tobias Nießen364f0e52022-01-31 20:12:47 +01001493 * does not affect the number of queues, semaphores and mutexes that can be
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001494 * created - just the number that the registry can hold.
1495 *
Paul Bartella22b4382021-04-09 17:06:58 -07001496 * If vQueueAddToRegistry is called more than once with the same xQueue
1497 * parameter, the registry will store the pcQueueName parameter from the
1498 * most recent call to vQueueAddToRegistry.
1499 *
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001500 * @param xQueue The handle of the queue being added to the registry. This
1501 * is the handle returned by a call to xQueueCreate(). Semaphore and mutex
1502 * handles can also be passed in here.
1503 *
Zim Kalinowski0b1e9d72021-08-13 09:15:57 +08001504 * @param pcQueueName The name to be associated with the handle. This is the
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001505 * name that the kernel aware debugger will display. The queue registry only
1506 * stores a pointer to the string - so the string must be persistent (global or
1507 * preferably in ROM/Flash), not on the stack.
1508 */
1509#if ( configQUEUE_REGISTRY_SIZE > 0 )
1510 void vQueueAddToRegistry( QueueHandle_t xQueue,
1511 const char * pcQueueName ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
1512#endif
1513
1514/*
1515 * The registry is provided as a means for kernel aware debuggers to
1516 * locate queues, semaphores and mutexes. Call vQueueAddToRegistry() add
1517 * a queue, semaphore or mutex handle to the registry if you want the handle
1518 * to be available to a kernel aware debugger, and vQueueUnregisterQueue() to
1519 * remove the queue, semaphore or mutex from the register. If you are not using
1520 * a kernel aware debugger then this function can be ignored.
1521 *
1522 * @param xQueue The handle of the queue being removed from the registry.
1523 */
1524#if ( configQUEUE_REGISTRY_SIZE > 0 )
1525 void vQueueUnregisterQueue( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1526#endif
1527
1528/*
1529 * The queue registry is provided as a means for kernel aware debuggers to
1530 * locate queues, semaphores and mutexes. Call pcQueueGetName() to look
1531 * up and return the name of a queue in the queue registry from the queue's
1532 * handle.
1533 *
1534 * @param xQueue The handle of the queue the name of which will be returned.
1535 * @return If the queue is in the registry then a pointer to the name of the
1536 * queue is returned. If the queue is not in the registry then NULL is
1537 * returned.
1538 */
1539#if ( configQUEUE_REGISTRY_SIZE > 0 )
1540 const char * pcQueueGetName( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
1541#endif
1542
1543/*
Carl Lundinacee77b2020-09-16 11:17:39 -07001544 * Generic version of the function used to create a queue using dynamic memory
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001545 * allocation. This is called by other functions and macros that create other
1546 * RTOS objects that use the queue structure as their base.
1547 */
1548#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
1549 QueueHandle_t xQueueGenericCreate( const UBaseType_t uxQueueLength,
1550 const UBaseType_t uxItemSize,
1551 const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1552#endif
1553
1554/*
Carl Lundinacee77b2020-09-16 11:17:39 -07001555 * Generic version of the function used to create a queue using dynamic memory
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001556 * allocation. This is called by other functions and macros that create other
1557 * RTOS objects that use the queue structure as their base.
1558 */
1559#if ( configSUPPORT_STATIC_ALLOCATION == 1 )
1560 QueueHandle_t xQueueGenericCreateStatic( const UBaseType_t uxQueueLength,
1561 const UBaseType_t uxItemSize,
1562 uint8_t * pucQueueStorage,
1563 StaticQueue_t * pxStaticQueue,
1564 const uint8_t ucQueueType ) PRIVILEGED_FUNCTION;
1565#endif
1566
1567/*
1568 * Queue sets provide a mechanism to allow a task to block (pend) on a read
1569 * operation from multiple queues or semaphores simultaneously.
1570 *
1571 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1572 * function.
1573 *
1574 * A queue set must be explicitly created using a call to xQueueCreateSet()
1575 * before it can be used. Once created, standard FreeRTOS queues and semaphores
1576 * can be added to the set using calls to xQueueAddToSet().
1577 * xQueueSelectFromSet() is then used to determine which, if any, of the queues
1578 * or semaphores contained in the set is in a state where a queue read or
1579 * semaphore take operation would be successful.
1580 *
alfred gedeond4282092020-09-21 15:49:55 -07001581 * Note 1: See the documentation on https://www.FreeRTOS.org/RTOS-queue-sets.html
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001582 * for reasons why queue sets are very rarely needed in practice as there are
1583 * simpler methods of blocking on multiple objects.
1584 *
1585 * Note 2: Blocking on a queue set that contains a mutex will not cause the
1586 * mutex holder to inherit the priority of the blocked task.
1587 *
1588 * Note 3: An additional 4 bytes of RAM is required for each space in a every
1589 * queue added to a queue set. Therefore counting semaphores that have a high
1590 * maximum count value should not be added to a queue set.
1591 *
1592 * Note 4: A receive (in the case of a queue) or take (in the case of a
1593 * semaphore) operation must not be performed on a member of a queue set unless
1594 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1595 *
1596 * @param uxEventQueueLength Queue sets store events that occur on
1597 * the queues and semaphores contained in the set. uxEventQueueLength specifies
1598 * the maximum number of events that can be queued at once. To be absolutely
1599 * certain that events are not lost uxEventQueueLength should be set to the
1600 * total sum of the length of the queues added to the set, where binary
1601 * semaphores and mutexes have a length of 1, and counting semaphores have a
1602 * length set by their maximum count value. Examples:
1603 * + If a queue set is to hold a queue of length 5, another queue of length 12,
1604 * and a binary semaphore, then uxEventQueueLength should be set to
1605 * (5 + 12 + 1), or 18.
1606 * + If a queue set is to hold three binary semaphores then uxEventQueueLength
1607 * should be set to (1 + 1 + 1 ), or 3.
1608 * + If a queue set is to hold a counting semaphore that has a maximum count of
1609 * 5, and a counting semaphore that has a maximum count of 3, then
1610 * uxEventQueueLength should be set to (5 + 3), or 8.
1611 *
1612 * @return If the queue set is created successfully then a handle to the created
1613 * queue set is returned. Otherwise NULL is returned.
1614 */
1615QueueSetHandle_t xQueueCreateSet( const UBaseType_t uxEventQueueLength ) PRIVILEGED_FUNCTION;
1616
1617/*
1618 * Adds a queue or semaphore to a queue set that was previously created by a
1619 * call to xQueueCreateSet().
1620 *
1621 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1622 * function.
1623 *
1624 * Note 1: A receive (in the case of a queue) or take (in the case of a
1625 * semaphore) operation must not be performed on a member of a queue set unless
1626 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1627 *
1628 * @param xQueueOrSemaphore The handle of the queue or semaphore being added to
1629 * the queue set (cast to an QueueSetMemberHandle_t type).
1630 *
1631 * @param xQueueSet The handle of the queue set to which the queue or semaphore
1632 * is being added.
1633 *
1634 * @return If the queue or semaphore was successfully added to the queue set
1635 * then pdPASS is returned. If the queue could not be successfully added to the
1636 * queue set because it is already a member of a different queue set then pdFAIL
1637 * is returned.
1638 */
1639BaseType_t xQueueAddToSet( QueueSetMemberHandle_t xQueueOrSemaphore,
1640 QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1641
1642/*
1643 * Removes a queue or semaphore from a queue set. A queue or semaphore can only
1644 * be removed from a set if the queue or semaphore is empty.
1645 *
1646 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1647 * function.
1648 *
1649 * @param xQueueOrSemaphore The handle of the queue or semaphore being removed
1650 * from the queue set (cast to an QueueSetMemberHandle_t type).
1651 *
1652 * @param xQueueSet The handle of the queue set in which the queue or semaphore
1653 * is included.
1654 *
1655 * @return If the queue or semaphore was successfully removed from the queue set
1656 * then pdPASS is returned. If the queue was not in the queue set, or the
1657 * queue (or semaphore) was not empty, then pdFAIL is returned.
1658 */
1659BaseType_t xQueueRemoveFromSet( QueueSetMemberHandle_t xQueueOrSemaphore,
1660 QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1661
1662/*
1663 * xQueueSelectFromSet() selects from the members of a queue set a queue or
1664 * semaphore that either contains data (in the case of a queue) or is available
1665 * to take (in the case of a semaphore). xQueueSelectFromSet() effectively
1666 * allows a task to block (pend) on a read operation on all the queues and
1667 * semaphores in a queue set simultaneously.
1668 *
1669 * See FreeRTOS/Source/Demo/Common/Minimal/QueueSet.c for an example using this
1670 * function.
1671 *
alfred gedeond4282092020-09-21 15:49:55 -07001672 * Note 1: See the documentation on https://www.FreeRTOS.org/RTOS-queue-sets.html
alfred gedeon9a1ebfe2020-08-17 16:16:11 -07001673 * for reasons why queue sets are very rarely needed in practice as there are
1674 * simpler methods of blocking on multiple objects.
1675 *
1676 * Note 2: Blocking on a queue set that contains a mutex will not cause the
1677 * mutex holder to inherit the priority of the blocked task.
1678 *
1679 * Note 3: A receive (in the case of a queue) or take (in the case of a
1680 * semaphore) operation must not be performed on a member of a queue set unless
1681 * a call to xQueueSelectFromSet() has first returned a handle to that set member.
1682 *
1683 * @param xQueueSet The queue set on which the task will (potentially) block.
1684 *
1685 * @param xTicksToWait The maximum time, in ticks, that the calling task will
1686 * remain in the Blocked state (with other tasks executing) to wait for a member
1687 * of the queue set to be ready for a successful queue read or semaphore take
1688 * operation.
1689 *
1690 * @return xQueueSelectFromSet() will return the handle of a queue (cast to
1691 * a QueueSetMemberHandle_t type) contained in the queue set that contains data,
1692 * or the handle of a semaphore (cast to a QueueSetMemberHandle_t type) contained
1693 * in the queue set that is available, or NULL if no such queue or semaphore
1694 * exists before before the specified block time expires.
1695 */
1696QueueSetMemberHandle_t xQueueSelectFromSet( QueueSetHandle_t xQueueSet,
1697 const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
1698
1699/*
1700 * A version of xQueueSelectFromSet() that can be used from an ISR.
1701 */
1702QueueSetMemberHandle_t xQueueSelectFromSetFromISR( QueueSetHandle_t xQueueSet ) PRIVILEGED_FUNCTION;
1703
1704/* Not public API functions. */
1705void vQueueWaitForMessageRestricted( QueueHandle_t xQueue,
1706 TickType_t xTicksToWait,
1707 const BaseType_t xWaitIndefinitely ) PRIVILEGED_FUNCTION;
1708BaseType_t xQueueGenericReset( QueueHandle_t xQueue,
1709 BaseType_t xNewQueue ) PRIVILEGED_FUNCTION;
1710void vQueueSetQueueNumber( QueueHandle_t xQueue,
1711 UBaseType_t uxQueueNumber ) PRIVILEGED_FUNCTION;
1712UBaseType_t uxQueueGetQueueNumber( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1713uint8_t ucQueueGetQueueType( QueueHandle_t xQueue ) PRIVILEGED_FUNCTION;
1714
1715
1716/* *INDENT-OFF* */
1717#ifdef __cplusplus
1718 }
1719#endif
1720/* *INDENT-ON* */
1721
1722#endif /* QUEUE_H */