| /* -------------------------------------------------------------------------- |
| * Copyright (c) 2013-2022 Arm Limited. All rights reserved. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| * |
| * Licensed under the Apache License, Version 2.0 (the License); you may |
| * not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an AS IS BASIS, WITHOUT |
| * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| * |
| * Name: cmsis_os2.c |
| * Purpose: CMSIS RTOS2 wrapper for FreeRTOS |
| * |
| *---------------------------------------------------------------------------*/ |
| |
| #include <string.h> |
| |
| #include "cmsis_os2.h" // ::CMSIS:RTOS2 |
| #include "cmsis_compiler.h" // Compiler agnostic definitions |
| |
| #include "FreeRTOS.h" // ARM.FreeRTOS::RTOS:Core |
| #include "task.h" // ARM.FreeRTOS::RTOS:Core |
| #include "event_groups.h" // ARM.FreeRTOS::RTOS:Event Groups |
| #include "semphr.h" // ARM.FreeRTOS::RTOS:Core |
| #include "timers.h" // ARM.FreeRTOS::RTOS:Timers |
| |
| #include "freertos_mpool.h" // osMemoryPool definitions |
| #include "freertos_os2.h" // Configuration check and setup |
| |
| /*---------------------------------------------------------------------------*/ |
| #ifndef __ARM_ARCH_6M__ |
| #define __ARM_ARCH_6M__ 0 |
| #endif |
| #ifndef __ARM_ARCH_7M__ |
| #define __ARM_ARCH_7M__ 0 |
| #endif |
| #ifndef __ARM_ARCH_7EM__ |
| #define __ARM_ARCH_7EM__ 0 |
| #endif |
| #ifndef __ARM_ARCH_8M_MAIN__ |
| #define __ARM_ARCH_8M_MAIN__ 0 |
| #endif |
| #ifndef __ARM_ARCH_7A__ |
| #define __ARM_ARCH_7A__ 0 |
| #endif |
| |
| #if ((__ARM_ARCH_7M__ == 1U) || \ |
| (__ARM_ARCH_7EM__ == 1U) || \ |
| (__ARM_ARCH_8M_MAIN__ == 1U)) |
| #define IS_IRQ_MASKED() ((__get_PRIMASK() != 0U) || (__get_BASEPRI() != 0U)) |
| #elif (__ARM_ARCH_6M__ == 1U) |
| #define IS_IRQ_MASKED() (__get_PRIMASK() != 0U) |
| #elif (__ARM_ARCH_7A__ == 1U) |
| /* CPSR mask bits */ |
| #define CPSR_MASKBIT_I 0x80U |
| |
| #define IS_IRQ_MASKED() ((__get_CPSR() & CPSR_MASKBIT_I) != 0U) |
| #else |
| #define IS_IRQ_MASKED() (__get_PRIMASK() != 0U) |
| #endif |
| |
| #if (__ARM_ARCH_7A__ == 1U) |
| /* CPSR mode bitmasks */ |
| #define CPSR_MODE_USER 0x10U |
| #define CPSR_MODE_SYSTEM 0x1FU |
| |
| #define IS_IRQ_MODE() ((__get_mode() != CPSR_MODE_USER) && (__get_mode() != CPSR_MODE_SYSTEM)) |
| #else |
| #define IS_IRQ_MODE() (__get_IPSR() != 0U) |
| #endif |
| |
| /* Limits */ |
| #define MAX_BITS_TASK_NOTIFY 31U |
| #define MAX_BITS_EVENT_GROUPS 24U |
| |
| #define THREAD_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_TASK_NOTIFY) - 1U)) |
| #define EVENT_FLAGS_INVALID_BITS (~((1UL << MAX_BITS_EVENT_GROUPS) - 1U)) |
| |
| /* Kernel version and identification string definition (major.minor.rev: mmnnnrrrr dec) */ |
| #define KERNEL_VERSION (((uint32_t)tskKERNEL_VERSION_MAJOR * 10000000UL) | \ |
| ((uint32_t)tskKERNEL_VERSION_MINOR * 10000UL) | \ |
| ((uint32_t)tskKERNEL_VERSION_BUILD * 1UL)) |
| |
| #define KERNEL_ID ("FreeRTOS " tskKERNEL_VERSION_NUMBER) |
| |
| /* Timer callback information structure definition */ |
| typedef struct { |
| osTimerFunc_t func; |
| void *arg; |
| } TimerCallback_t; |
| |
| /* Kernel initialization state */ |
| static osKernelState_t KernelState = osKernelInactive; |
| |
| /* Get OS Tick count value */ |
| static uint32_t OS_Tick_GetCount (void); |
| #if (configUSE_TICKLESS_IDLE == 0) |
| /* Get OS Tick overflow status */ |
| static uint32_t OS_Tick_GetOverflow (void); |
| #endif |
| /* Get OS Tick interval */ |
| static uint32_t OS_Tick_GetInterval (void); |
| |
| /* |
| Heap region definition used by heap_5 variant |
| |
| Define configAPPLICATION_ALLOCATED_HEAP as nonzero value in FreeRTOSConfig.h if |
| heap regions are already defined and vPortDefineHeapRegions is called in application. |
| |
| Otherwise vPortDefineHeapRegions will be called by osKernelInitialize using |
| definition configHEAP_5_REGIONS as parameter. Overriding configHEAP_5_REGIONS |
| is possible by defining it globally or in FreeRTOSConfig.h. |
| */ |
| #if defined(USE_FreeRTOS_HEAP_5) |
| #if (configAPPLICATION_ALLOCATED_HEAP == 0) |
| /* |
| FreeRTOS heap is not defined by the application. |
| Single region of size configTOTAL_HEAP_SIZE (defined in FreeRTOSConfig.h) |
| is provided by default. Define configHEAP_5_REGIONS to provide custom |
| HeapRegion_t array. |
| */ |
| #define HEAP_5_REGION_SETUP 1 |
| |
| #ifndef configHEAP_5_REGIONS |
| #define configHEAP_5_REGIONS xHeapRegions |
| |
| static uint8_t ucHeap[configTOTAL_HEAP_SIZE]; |
| |
| static HeapRegion_t xHeapRegions[] = { |
| { ucHeap, configTOTAL_HEAP_SIZE }, |
| { NULL, 0 } |
| }; |
| #else |
| /* Global definition is provided to override default heap array */ |
| extern HeapRegion_t configHEAP_5_REGIONS[]; |
| #endif |
| #else |
| /* |
| The application already defined the array used for the FreeRTOS heap and |
| called vPortDefineHeapRegions to initialize heap. |
| */ |
| #define HEAP_5_REGION_SETUP 0 |
| #endif /* configAPPLICATION_ALLOCATED_HEAP */ |
| #endif /* USE_FreeRTOS_HEAP_5 */ |
| |
| #if defined(SysTick) |
| #undef SysTick_Handler |
| |
| /* CMSIS SysTick interrupt handler prototype */ |
| extern void SysTick_Handler (void); |
| /* FreeRTOS tick timer interrupt handler prototype */ |
| extern void xPortSysTickHandler (void); |
| |
| /* |
| SysTick handler implementation that also clears overflow flag. |
| */ |
| #if (USE_CUSTOM_SYSTICK_HANDLER_IMPLEMENTATION == 0) |
| void SysTick_Handler (void) { |
| #if (configUSE_TICKLESS_IDLE == 0) |
| /* Clear overflow flag */ |
| SysTick->CTRL; |
| #endif |
| |
| if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { |
| /* Call tick handler */ |
| xPortSysTickHandler(); |
| } |
| } |
| #endif |
| #endif /* SysTick */ |
| |
| /* |
| Setup SVC to reset value. |
| */ |
| __STATIC_INLINE void SVC_Setup (void) { |
| #if (__ARM_ARCH_7A__ == 0U) |
| /* Service Call interrupt might be configured before kernel start */ |
| /* and when its priority is lower or equal to BASEPRI, svc instruction */ |
| /* causes a Hard Fault. */ |
| NVIC_SetPriority (SVCall_IRQn, 0U); |
| #endif |
| } |
| |
| /* |
| Function macro used to retrieve semaphore count from ISR |
| */ |
| #ifndef uxSemaphoreGetCountFromISR |
| #define uxSemaphoreGetCountFromISR( xSemaphore ) uxQueueMessagesWaitingFromISR( ( QueueHandle_t ) ( xSemaphore ) ) |
| #endif |
| |
| /* |
| Determine if CPU executes from interrupt context or if interrupts are masked. |
| */ |
| __STATIC_INLINE uint32_t IRQ_Context (void) { |
| uint32_t irq; |
| BaseType_t state; |
| |
| irq = 0U; |
| |
| if (IS_IRQ_MODE()) { |
| /* Called from interrupt context */ |
| irq = 1U; |
| } |
| else { |
| /* Get FreeRTOS scheduler state */ |
| state = xTaskGetSchedulerState(); |
| |
| if (state != taskSCHEDULER_NOT_STARTED) { |
| /* Scheduler was started */ |
| if (IS_IRQ_MASKED()) { |
| /* Interrupts are masked */ |
| irq = 1U; |
| } |
| } |
| } |
| |
| /* Return context, 0: thread context, 1: IRQ context */ |
| return (irq); |
| } |
| |
| /* Get OS Tick count value */ |
| static uint32_t OS_Tick_GetCount (void) { |
| uint32_t load = SysTick->LOAD; |
| return (load - SysTick->VAL); |
| } |
| |
| #if (configUSE_TICKLESS_IDLE == 0) |
| /* Get OS Tick overflow status */ |
| static uint32_t OS_Tick_GetOverflow (void) { |
| return ((SysTick->CTRL >> 16) & 1U); |
| } |
| #endif |
| |
| /* Get OS Tick interval */ |
| static uint32_t OS_Tick_GetInterval (void) { |
| return (SysTick->LOAD + 1U); |
| } |
| |
| /* ==== Kernel Management Functions ==== */ |
| |
| /* |
| Initialize the RTOS Kernel. |
| */ |
| osStatus_t osKernelInitialize (void) { |
| osStatus_t stat; |
| BaseType_t state; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else { |
| state = xTaskGetSchedulerState(); |
| |
| /* Initialize if scheduler not started and not initialized before */ |
| if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelInactive)) { |
| #if defined(USE_TRACE_EVENT_RECORDER) |
| /* Initialize the trace macro debugging output channel */ |
| EvrFreeRTOSSetup(0U); |
| #endif |
| #if defined(USE_FreeRTOS_HEAP_5) && (HEAP_5_REGION_SETUP == 1) |
| /* Initialize the memory regions when using heap_5 variant */ |
| vPortDefineHeapRegions (configHEAP_5_REGIONS); |
| #endif |
| KernelState = osKernelReady; |
| stat = osOK; |
| } else { |
| stat = osError; |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get RTOS Kernel Information. |
| */ |
| osStatus_t osKernelGetInfo (osVersion_t *version, char *id_buf, uint32_t id_size) { |
| |
| if (version != NULL) { |
| /* Version encoding is major.minor.rev: mmnnnrrrr dec */ |
| version->api = KERNEL_VERSION; |
| version->kernel = KERNEL_VERSION; |
| } |
| |
| if ((id_buf != NULL) && (id_size != 0U)) { |
| /* Buffer for retrieving identification string is provided */ |
| if (id_size > sizeof(KERNEL_ID)) { |
| id_size = sizeof(KERNEL_ID); |
| } |
| /* Copy kernel identification string into provided buffer */ |
| memcpy(id_buf, KERNEL_ID, id_size); |
| } |
| |
| /* Return execution status */ |
| return (osOK); |
| } |
| |
| /* |
| Get the current RTOS Kernel state. |
| */ |
| osKernelState_t osKernelGetState (void) { |
| osKernelState_t state; |
| |
| switch (xTaskGetSchedulerState()) { |
| case taskSCHEDULER_RUNNING: |
| state = osKernelRunning; |
| break; |
| |
| case taskSCHEDULER_SUSPENDED: |
| state = osKernelLocked; |
| break; |
| |
| case taskSCHEDULER_NOT_STARTED: |
| default: |
| if (KernelState == osKernelReady) { |
| /* Ready, osKernelInitialize was already called */ |
| state = osKernelReady; |
| } else { |
| /* Not initialized */ |
| state = osKernelInactive; |
| } |
| break; |
| } |
| |
| /* Return current state */ |
| return (state); |
| } |
| |
| /* |
| Start the RTOS Kernel scheduler. |
| */ |
| osStatus_t osKernelStart (void) { |
| osStatus_t stat; |
| BaseType_t state; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else { |
| state = xTaskGetSchedulerState(); |
| |
| /* Start scheduler if initialized and not started before */ |
| if ((state == taskSCHEDULER_NOT_STARTED) && (KernelState == osKernelReady)) { |
| /* Ensure SVC priority is at the reset value */ |
| SVC_Setup(); |
| /* Change state to ensure correct API flow */ |
| KernelState = osKernelRunning; |
| /* Start the kernel scheduler */ |
| vTaskStartScheduler(); |
| stat = osOK; |
| } else { |
| stat = osError; |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Lock the RTOS Kernel scheduler. |
| */ |
| int32_t osKernelLock (void) { |
| int32_t lock; |
| |
| if (IRQ_Context() != 0U) { |
| lock = (int32_t)osErrorISR; |
| } |
| else { |
| switch (xTaskGetSchedulerState()) { |
| case taskSCHEDULER_SUSPENDED: |
| lock = 1; |
| break; |
| |
| case taskSCHEDULER_RUNNING: |
| vTaskSuspendAll(); |
| lock = 0; |
| break; |
| |
| case taskSCHEDULER_NOT_STARTED: |
| default: |
| lock = (int32_t)osError; |
| break; |
| } |
| } |
| |
| /* Return previous lock state */ |
| return (lock); |
| } |
| |
| /* |
| Unlock the RTOS Kernel scheduler. |
| */ |
| int32_t osKernelUnlock (void) { |
| int32_t lock; |
| |
| if (IRQ_Context() != 0U) { |
| lock = (int32_t)osErrorISR; |
| } |
| else { |
| switch (xTaskGetSchedulerState()) { |
| case taskSCHEDULER_SUSPENDED: |
| lock = 1; |
| |
| if (xTaskResumeAll() != pdTRUE) { |
| if (xTaskGetSchedulerState() == taskSCHEDULER_SUSPENDED) { |
| lock = (int32_t)osError; |
| } |
| } |
| break; |
| |
| case taskSCHEDULER_RUNNING: |
| lock = 0; |
| break; |
| |
| case taskSCHEDULER_NOT_STARTED: |
| default: |
| lock = (int32_t)osError; |
| break; |
| } |
| } |
| |
| /* Return previous lock state */ |
| return (lock); |
| } |
| |
| /* |
| Restore the RTOS Kernel scheduler lock state. |
| */ |
| int32_t osKernelRestoreLock (int32_t lock) { |
| |
| if (IRQ_Context() != 0U) { |
| lock = (int32_t)osErrorISR; |
| } |
| else { |
| switch (xTaskGetSchedulerState()) { |
| case taskSCHEDULER_SUSPENDED: |
| case taskSCHEDULER_RUNNING: |
| if (lock == 1) { |
| vTaskSuspendAll(); |
| } |
| else { |
| if (lock != 0) { |
| lock = (int32_t)osError; |
| } |
| else { |
| if (xTaskResumeAll() != pdTRUE) { |
| if (xTaskGetSchedulerState() != taskSCHEDULER_RUNNING) { |
| lock = (int32_t)osError; |
| } |
| } |
| } |
| } |
| break; |
| |
| case taskSCHEDULER_NOT_STARTED: |
| default: |
| lock = (int32_t)osError; |
| break; |
| } |
| } |
| |
| /* Return new lock state */ |
| return (lock); |
| } |
| |
| /* |
| Get the RTOS kernel tick count. |
| */ |
| uint32_t osKernelGetTickCount (void) { |
| TickType_t ticks; |
| |
| if (IRQ_Context() != 0U) { |
| ticks = xTaskGetTickCountFromISR(); |
| } else { |
| ticks = xTaskGetTickCount(); |
| } |
| |
| /* Return kernel tick count */ |
| return (ticks); |
| } |
| |
| /* |
| Get the RTOS kernel tick frequency. |
| */ |
| uint32_t osKernelGetTickFreq (void) { |
| /* Return frequency in hertz */ |
| return (configTICK_RATE_HZ); |
| } |
| |
| /* |
| Get the RTOS kernel system timer count. |
| */ |
| uint32_t osKernelGetSysTimerCount (void) { |
| uint32_t irqmask = IS_IRQ_MASKED(); |
| TickType_t ticks; |
| uint32_t val; |
| #if (configUSE_TICKLESS_IDLE != 0) |
| uint32_t val0; |
| |
| /* Low Power Tickless Idle controls timer overflow flag and therefore */ |
| /* OS_Tick_GetOverflow may be non-functional. As a workaround a reference */ |
| /* time is measured here before disabling interrupts. Timer value overflow */ |
| /* is then checked by comparing reference against latest time measurement. */ |
| /* Timer count value returned by this method is less accurate but if an */ |
| /* overflow is missed, an invalid timer count would be returned. */ |
| val0 = OS_Tick_GetCount(); |
| #endif |
| |
| __disable_irq(); |
| |
| ticks = xTaskGetTickCount(); |
| val = OS_Tick_GetCount(); |
| |
| /* Update tick count and timer value when timer overflows */ |
| #if (configUSE_TICKLESS_IDLE != 0) |
| if (val < val0) { |
| ticks++; |
| } |
| #else |
| if (OS_Tick_GetOverflow() != 0U) { |
| val = OS_Tick_GetCount(); |
| ticks++; |
| } |
| #endif |
| |
| val += ticks * OS_Tick_GetInterval(); |
| |
| if (irqmask == 0U) { |
| __enable_irq(); |
| } |
| |
| /* Return system timer count */ |
| return (val); |
| } |
| |
| /* |
| Get the RTOS kernel system timer frequency. |
| */ |
| uint32_t osKernelGetSysTimerFreq (void) { |
| /* Return frequency in hertz */ |
| return (configCPU_CLOCK_HZ); |
| } |
| |
| |
| /* ==== Thread Management Functions ==== */ |
| |
| /* |
| Create a thread and add it to Active Threads. |
| |
| Limitations: |
| - The memory for control block and stack must be provided in the osThreadAttr_t |
| structure in order to allocate object statically. |
| - Attribute osThreadJoinable is not supported, NULL is returned if used. |
| */ |
| osThreadId_t osThreadNew (osThreadFunc_t func, void *argument, const osThreadAttr_t *attr) { |
| const char *name; |
| uint32_t stack; |
| TaskHandle_t hTask; |
| UBaseType_t prio; |
| int32_t mem; |
| |
| hTask = NULL; |
| |
| if ((IRQ_Context() == 0U) && (func != NULL)) { |
| stack = configMINIMAL_STACK_SIZE; |
| prio = (UBaseType_t)osPriorityNormal; |
| |
| name = NULL; |
| mem = -1; |
| |
| if (attr != NULL) { |
| if (attr->name != NULL) { |
| name = attr->name; |
| } |
| if (attr->priority != osPriorityNone) { |
| prio = (UBaseType_t)attr->priority; |
| } |
| |
| if ((prio < osPriorityIdle) || (prio > osPriorityISR) || ((attr->attr_bits & osThreadJoinable) == osThreadJoinable)) { |
| /* Invalid priority or unsupported osThreadJoinable attribute used */ |
| return (NULL); |
| } |
| |
| if (attr->stack_size > 0U) { |
| /* In FreeRTOS stack is not in bytes, but in sizeof(StackType_t) which is 4 on ARM ports. */ |
| /* Stack size should be therefore 4 byte aligned in order to avoid division caused side effects */ |
| stack = attr->stack_size / sizeof(StackType_t); |
| } |
| |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTask_t)) && |
| (attr->stack_mem != NULL) && (attr->stack_size > 0U)) { |
| /* The memory for control block and stack is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) && (attr->stack_mem == NULL)) { |
| /* Control block and stack memory will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hTask = xTaskCreateStatic ((TaskFunction_t)func, name, stack, argument, prio, (StackType_t *)attr->stack_mem, |
| (StaticTask_t *)attr->cb_mem); |
| #endif |
| } |
| else { |
| if (mem == 0) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| if (xTaskCreate ((TaskFunction_t)func, name, (configSTACK_DEPTH_TYPE)stack, argument, prio, &hTask) != pdPASS) { |
| hTask = NULL; |
| } |
| #endif |
| } |
| } |
| } |
| |
| /* Return thread ID */ |
| return ((osThreadId_t)hTask); |
| } |
| |
| /* |
| Get name of a thread. |
| */ |
| const char *osThreadGetName (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| const char *name; |
| |
| if ((IRQ_Context() != 0U) || (hTask == NULL)) { |
| name = NULL; |
| } else { |
| name = pcTaskGetName (hTask); |
| } |
| |
| /* Return name as null-terminated string */ |
| return (name); |
| } |
| |
| /* |
| Return the thread ID of the current running thread. |
| */ |
| osThreadId_t osThreadGetId (void) { |
| osThreadId_t id; |
| |
| id = (osThreadId_t)xTaskGetCurrentTaskHandle(); |
| |
| /* Return thread ID */ |
| return (id); |
| } |
| |
| /* |
| Get current thread state of a thread. |
| */ |
| osThreadState_t osThreadGetState (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osThreadState_t state; |
| |
| if ((IRQ_Context() != 0U) || (hTask == NULL)) { |
| state = osThreadError; |
| } |
| else { |
| switch (eTaskGetState (hTask)) { |
| case eRunning: state = osThreadRunning; break; |
| case eReady: state = osThreadReady; break; |
| case eBlocked: |
| case eSuspended: state = osThreadBlocked; break; |
| case eDeleted: |
| case eInvalid: |
| default: state = osThreadError; break; |
| } |
| } |
| |
| /* Return current thread state */ |
| return (state); |
| } |
| |
| /* |
| Get available stack space of a thread based on stack watermark recording during execution. |
| */ |
| uint32_t osThreadGetStackSpace (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| uint32_t sz; |
| |
| if ((IRQ_Context() != 0U) || (hTask == NULL)) { |
| sz = 0U; |
| } else { |
| sz = (uint32_t)(uxTaskGetStackHighWaterMark(hTask) * sizeof(StackType_t)); |
| } |
| |
| /* Return remaining stack space in bytes */ |
| return (sz); |
| } |
| |
| /* |
| Change priority of a thread. |
| */ |
| osStatus_t osThreadSetPriority (osThreadId_t thread_id, osPriority_t priority) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if ((hTask == NULL) || (priority < osPriorityIdle) || (priority > osPriorityISR)) { |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| vTaskPrioritySet (hTask, (UBaseType_t)priority); |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get current priority of a thread. |
| */ |
| osPriority_t osThreadGetPriority (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osPriority_t prio; |
| |
| if ((IRQ_Context() != 0U) || (hTask == NULL)) { |
| prio = osPriorityError; |
| } else { |
| prio = (osPriority_t)((int32_t)uxTaskPriorityGet (hTask)); |
| } |
| |
| /* Return current thread priority */ |
| return (prio); |
| } |
| |
| /* |
| Pass control to next thread that is in state READY. |
| */ |
| osStatus_t osThreadYield (void) { |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } else { |
| stat = osOK; |
| taskYIELD(); |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| #if (configUSE_OS2_THREAD_SUSPEND_RESUME == 1) |
| /* |
| Suspend execution of a thread. |
| */ |
| osStatus_t osThreadSuspend (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hTask == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| vTaskSuspend (hTask); |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Resume execution of a thread. |
| */ |
| osStatus_t osThreadResume (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hTask == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| vTaskResume (hTask); |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| #endif /* (configUSE_OS2_THREAD_SUSPEND_RESUME == 1) */ |
| |
| /* |
| Terminate execution of current running thread. |
| */ |
| __NO_RETURN void osThreadExit (void) { |
| #ifndef USE_FreeRTOS_HEAP_1 |
| vTaskDelete (NULL); |
| #endif |
| for (;;); |
| } |
| |
| /* |
| Terminate execution of a thread. |
| */ |
| osStatus_t osThreadTerminate (osThreadId_t thread_id) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| osStatus_t stat; |
| #ifndef USE_FreeRTOS_HEAP_1 |
| eTaskState tstate; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hTask == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| tstate = eTaskGetState (hTask); |
| |
| if (tstate != eDeleted) { |
| stat = osOK; |
| vTaskDelete (hTask); |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get number of active threads. |
| */ |
| uint32_t osThreadGetCount (void) { |
| uint32_t count; |
| |
| if (IRQ_Context() != 0U) { |
| count = 0U; |
| } else { |
| count = uxTaskGetNumberOfTasks(); |
| } |
| |
| /* Return number of active threads */ |
| return (count); |
| } |
| |
| #if (configUSE_OS2_THREAD_ENUMERATE == 1) |
| /* |
| Enumerate active threads. |
| */ |
| uint32_t osThreadEnumerate (osThreadId_t *thread_array, uint32_t array_items) { |
| uint32_t i, count; |
| TaskStatus_t *task; |
| |
| if ((IRQ_Context() != 0U) || (thread_array == NULL) || (array_items == 0U)) { |
| count = 0U; |
| } else { |
| vTaskSuspendAll(); |
| |
| /* Allocate memory on heap to temporarily store TaskStatus_t information */ |
| count = uxTaskGetNumberOfTasks(); |
| task = pvPortMalloc (count * sizeof(TaskStatus_t)); |
| |
| if (task != NULL) { |
| /* Retrieve task status information */ |
| count = uxTaskGetSystemState (task, count, NULL); |
| |
| /* Copy handles from task status array into provided thread array */ |
| for (i = 0U; (i < count) && (i < array_items); i++) { |
| thread_array[i] = (osThreadId_t)task[i].xHandle; |
| } |
| count = i; |
| } |
| (void)xTaskResumeAll(); |
| |
| vPortFree (task); |
| } |
| |
| /* Return number of enumerated threads */ |
| return (count); |
| } |
| #endif /* (configUSE_OS2_THREAD_ENUMERATE == 1) */ |
| |
| |
| /* ==== Thread Flags Functions ==== */ |
| |
| #if (configUSE_OS2_THREAD_FLAGS == 1) |
| /* |
| Set the specified Thread Flags of a thread. |
| */ |
| uint32_t osThreadFlagsSet (osThreadId_t thread_id, uint32_t flags) { |
| TaskHandle_t hTask = (TaskHandle_t)thread_id; |
| uint32_t rflags; |
| BaseType_t yield; |
| |
| if ((hTask == NULL) || ((flags & THREAD_FLAGS_INVALID_BITS) != 0U)) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else { |
| rflags = (uint32_t)osError; |
| |
| if (IRQ_Context() != 0U) { |
| yield = pdFALSE; |
| |
| (void)xTaskNotifyFromISR (hTask, flags, eSetBits, &yield); |
| (void)xTaskNotifyAndQueryFromISR (hTask, 0, eNoAction, &rflags, NULL); |
| |
| portYIELD_FROM_ISR (yield); |
| } |
| else { |
| (void)xTaskNotify (hTask, flags, eSetBits); |
| (void)xTaskNotifyAndQuery (hTask, 0, eNoAction, &rflags); |
| } |
| } |
| /* Return flags after setting */ |
| return (rflags); |
| } |
| |
| /* |
| Clear the specified Thread Flags of current running thread. |
| */ |
| uint32_t osThreadFlagsClear (uint32_t flags) { |
| TaskHandle_t hTask; |
| uint32_t rflags, cflags; |
| |
| if (IRQ_Context() != 0U) { |
| rflags = (uint32_t)osErrorISR; |
| } |
| else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else { |
| hTask = xTaskGetCurrentTaskHandle(); |
| |
| if (xTaskNotifyAndQuery (hTask, 0, eNoAction, &cflags) == pdPASS) { |
| rflags = cflags; |
| cflags &= ~flags; |
| |
| if (xTaskNotify (hTask, cflags, eSetValueWithOverwrite) != pdPASS) { |
| rflags = (uint32_t)osError; |
| } |
| } |
| else { |
| rflags = (uint32_t)osError; |
| } |
| } |
| |
| /* Return flags before clearing */ |
| return (rflags); |
| } |
| |
| /* |
| Get the current Thread Flags of current running thread. |
| */ |
| uint32_t osThreadFlagsGet (void) { |
| TaskHandle_t hTask; |
| uint32_t rflags; |
| |
| if (IRQ_Context() != 0U) { |
| rflags = (uint32_t)osErrorISR; |
| } |
| else { |
| hTask = xTaskGetCurrentTaskHandle(); |
| |
| if (xTaskNotifyAndQuery (hTask, 0, eNoAction, &rflags) != pdPASS) { |
| rflags = (uint32_t)osError; |
| } |
| } |
| |
| /* Return current flags */ |
| return (rflags); |
| } |
| |
| /* |
| Wait for one or more Thread Flags of the current running thread to become signaled. |
| */ |
| uint32_t osThreadFlagsWait (uint32_t flags, uint32_t options, uint32_t timeout) { |
| uint32_t rflags, nval; |
| uint32_t clear; |
| TickType_t t0, td, tout; |
| BaseType_t rval; |
| |
| if (IRQ_Context() != 0U) { |
| rflags = (uint32_t)osErrorISR; |
| } |
| else if ((flags & THREAD_FLAGS_INVALID_BITS) != 0U) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else { |
| if ((options & osFlagsNoClear) == osFlagsNoClear) { |
| clear = 0U; |
| } else { |
| clear = flags; |
| } |
| |
| rflags = 0U; |
| tout = timeout; |
| |
| t0 = xTaskGetTickCount(); |
| do { |
| rval = xTaskNotifyWait (0, clear, &nval, tout); |
| |
| if (rval == pdPASS) { |
| rflags &= flags; |
| rflags |= nval; |
| |
| if ((options & osFlagsWaitAll) == osFlagsWaitAll) { |
| if ((flags & rflags) == flags) { |
| break; |
| } else { |
| if (timeout == 0U) { |
| rflags = (uint32_t)osErrorResource; |
| break; |
| } |
| } |
| } |
| else { |
| if ((flags & rflags) != 0) { |
| break; |
| } else { |
| if (timeout == 0U) { |
| rflags = (uint32_t)osErrorResource; |
| break; |
| } |
| } |
| } |
| |
| /* Update timeout */ |
| td = xTaskGetTickCount() - t0; |
| |
| if (td > timeout) { |
| tout = 0; |
| } else { |
| tout = timeout - td; |
| } |
| } |
| else { |
| if (timeout == 0) { |
| rflags = (uint32_t)osErrorResource; |
| } else { |
| rflags = (uint32_t)osErrorTimeout; |
| } |
| } |
| } |
| while (rval != pdFAIL); |
| } |
| |
| /* Return flags before clearing */ |
| return (rflags); |
| } |
| #endif /* (configUSE_OS2_THREAD_FLAGS == 1) */ |
| |
| |
| /* ==== Generic Wait Functions ==== */ |
| |
| /* |
| Wait for Timeout (Time Delay). |
| */ |
| osStatus_t osDelay (uint32_t ticks) { |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else { |
| stat = osOK; |
| |
| if (ticks != 0U) { |
| vTaskDelay(ticks); |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Wait until specified time. |
| */ |
| osStatus_t osDelayUntil (uint32_t ticks) { |
| TickType_t tcnt, delay; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else { |
| stat = osOK; |
| tcnt = xTaskGetTickCount(); |
| |
| /* Determine remaining number of ticks to delay */ |
| delay = (TickType_t)ticks - tcnt; |
| |
| /* Check if target tick has not expired */ |
| if((delay != 0U) && (0 == (delay >> (8 * sizeof(TickType_t) - 1)))) { |
| if (xTaskDelayUntil (&tcnt, delay) == pdFALSE) { |
| /* Did not delay */ |
| stat = osError; |
| } |
| } |
| else |
| { |
| /* No delay or already expired */ |
| stat = osErrorParameter; |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| |
| /* ==== Timer Management Functions ==== */ |
| |
| #if (configUSE_OS2_TIMER == 1) |
| |
| static void TimerCallback (TimerHandle_t hTimer) { |
| TimerCallback_t *callb; |
| |
| /* Retrieve pointer to callback function and argument */ |
| callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer); |
| |
| /* Remove dynamic allocation flag */ |
| callb = (TimerCallback_t *)((uint32_t)callb & ~1U); |
| |
| if (callb != NULL) { |
| callb->func (callb->arg); |
| } |
| } |
| |
| /* |
| Create and Initialize a timer. |
| */ |
| osTimerId_t osTimerNew (osTimerFunc_t func, osTimerType_t type, void *argument, const osTimerAttr_t *attr) { |
| const char *name; |
| TimerHandle_t hTimer; |
| TimerCallback_t *callb; |
| UBaseType_t reload; |
| int32_t mem; |
| uint32_t callb_dyn; |
| |
| hTimer = NULL; |
| |
| if ((IRQ_Context() == 0U) && (func != NULL)) { |
| callb = NULL; |
| callb_dyn = 0U; |
| |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| /* Static memory allocation is available: check if memory for control block */ |
| /* is provided and if it also contains space for callback and its argument */ |
| if ((attr != NULL) && (attr->cb_mem != NULL)) { |
| if (attr->cb_size >= (sizeof(StaticTimer_t) + sizeof(TimerCallback_t))) { |
| callb = (TimerCallback_t *)((uint32_t)attr->cb_mem + sizeof(StaticTimer_t)); |
| } |
| } |
| #endif |
| |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| /* Dynamic memory allocation is available: if memory for callback and */ |
| /* its argument is not provided, allocate it from dynamic memory pool */ |
| if (callb == NULL) { |
| callb = (TimerCallback_t *)pvPortMalloc (sizeof(TimerCallback_t)); |
| |
| if (callb != NULL) { |
| /* Callback memory was allocated from dynamic pool, set flag */ |
| callb_dyn = 1U; |
| } |
| } |
| #endif |
| |
| if (callb != NULL) { |
| callb->func = func; |
| callb->arg = argument; |
| |
| if (type == osTimerOnce) { |
| reload = pdFALSE; |
| } else { |
| reload = pdTRUE; |
| } |
| |
| mem = -1; |
| name = NULL; |
| |
| if (attr != NULL) { |
| if (attr->name != NULL) { |
| name = attr->name; |
| } |
| |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticTimer_t))) { |
| /* The memory for control block is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { |
| /* Control block will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| /* Store callback memory dynamic allocation flag */ |
| callb = (TimerCallback_t *)((uint32_t)callb | callb_dyn); |
| /* |
| TimerCallback function is always provided as a callback and is used to call application |
| specified function with its argument both stored in structure callb. |
| */ |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hTimer = xTimerCreateStatic (name, 1, reload, callb, TimerCallback, (StaticTimer_t *)attr->cb_mem); |
| #endif |
| } |
| else { |
| if (mem == 0) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| hTimer = xTimerCreate (name, 1, reload, callb, TimerCallback); |
| #endif |
| } |
| } |
| |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| if ((hTimer == NULL) && (callb != NULL) && (callb_dyn == 1U)) { |
| /* Failed to create a timer, release allocated resources */ |
| callb = (TimerCallback_t *)((uint32_t)callb & ~1U); |
| |
| vPortFree (callb); |
| } |
| #endif |
| } |
| } |
| |
| /* Return timer ID */ |
| return ((osTimerId_t)hTimer); |
| } |
| |
| /* |
| Get name of a timer. |
| */ |
| const char *osTimerGetName (osTimerId_t timer_id) { |
| TimerHandle_t hTimer = (TimerHandle_t)timer_id; |
| const char *p; |
| |
| if ((IRQ_Context() != 0U) || (hTimer == NULL)) { |
| p = NULL; |
| } else { |
| p = pcTimerGetName (hTimer); |
| } |
| |
| /* Return name as null-terminated string */ |
| return (p); |
| } |
| |
| /* |
| Start or restart a timer. |
| */ |
| osStatus_t osTimerStart (osTimerId_t timer_id, uint32_t ticks) { |
| TimerHandle_t hTimer = (TimerHandle_t)timer_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if ((hTimer == NULL) || (ticks == 0U)) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (xTimerChangePeriod (hTimer, ticks, 0) == pdPASS) { |
| stat = osOK; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Stop a timer. |
| */ |
| osStatus_t osTimerStop (osTimerId_t timer_id) { |
| TimerHandle_t hTimer = (TimerHandle_t)timer_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hTimer == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (xTimerIsTimerActive (hTimer) == pdFALSE) { |
| stat = osErrorResource; |
| } |
| else { |
| if (xTimerStop (hTimer, 0) == pdPASS) { |
| stat = osOK; |
| } else { |
| stat = osError; |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Check if a timer is running. |
| */ |
| uint32_t osTimerIsRunning (osTimerId_t timer_id) { |
| TimerHandle_t hTimer = (TimerHandle_t)timer_id; |
| uint32_t running; |
| |
| if ((IRQ_Context() != 0U) || (hTimer == NULL)) { |
| running = 0U; |
| } else { |
| running = (uint32_t)xTimerIsTimerActive (hTimer); |
| } |
| |
| /* Return 0: not running, 1: running */ |
| return (running); |
| } |
| |
| /* |
| Delete a timer. |
| */ |
| osStatus_t osTimerDelete (osTimerId_t timer_id) { |
| TimerHandle_t hTimer = (TimerHandle_t)timer_id; |
| osStatus_t stat; |
| #ifndef USE_FreeRTOS_HEAP_1 |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| TimerCallback_t *callb; |
| #endif |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hTimer == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| callb = (TimerCallback_t *)pvTimerGetTimerID (hTimer); |
| #endif |
| |
| if (xTimerDelete (hTimer, 0) == pdPASS) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| if ((uint32_t)callb & 1U) { |
| /* Callback memory was allocated from dynamic pool, clear flag */ |
| callb = (TimerCallback_t *)((uint32_t)callb & ~1U); |
| |
| /* Return allocated memory to dynamic pool */ |
| vPortFree (callb); |
| } |
| #endif |
| stat = osOK; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| #endif /* (configUSE_OS2_TIMER == 1) */ |
| |
| |
| /* ==== Event Flags Management Functions ==== */ |
| |
| /* |
| Create and Initialize an Event Flags object. |
| |
| Limitations: |
| - Event flags are limited to 24 bits. |
| */ |
| osEventFlagsId_t osEventFlagsNew (const osEventFlagsAttr_t *attr) { |
| EventGroupHandle_t hEventGroup; |
| int32_t mem; |
| |
| hEventGroup = NULL; |
| |
| if (IRQ_Context() == 0U) { |
| mem = -1; |
| |
| if (attr != NULL) { |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticEventGroup_t))) { |
| /* The memory for control block is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { |
| /* Control block will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hEventGroup = xEventGroupCreateStatic (attr->cb_mem); |
| #endif |
| } |
| else { |
| if (mem == 0) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| hEventGroup = xEventGroupCreate(); |
| #endif |
| } |
| } |
| } |
| |
| /* Return event flags ID */ |
| return ((osEventFlagsId_t)hEventGroup); |
| } |
| |
| /* |
| Set the specified Event Flags. |
| |
| Limitations: |
| - Event flags are limited to 24 bits. |
| */ |
| uint32_t osEventFlagsSet (osEventFlagsId_t ef_id, uint32_t flags) { |
| EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; |
| uint32_t rflags; |
| BaseType_t yield; |
| |
| if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| #if (configUSE_OS2_EVENTFLAGS_FROM_ISR == 0) |
| (void)yield; |
| /* Enable timers and xTimerPendFunctionCall function to support osEventFlagsSet from ISR */ |
| rflags = (uint32_t)osErrorResource; |
| #else |
| yield = pdFALSE; |
| |
| if (xEventGroupSetBitsFromISR (hEventGroup, (EventBits_t)flags, &yield) == pdFAIL) { |
| rflags = (uint32_t)osErrorResource; |
| } else { |
| /* Retrieve bits that are already set and add flags to be set in current call */ |
| rflags = xEventGroupGetBitsFromISR (hEventGroup); |
| rflags |= flags; |
| portYIELD_FROM_ISR (yield); |
| } |
| #endif |
| } |
| else { |
| rflags = xEventGroupSetBits (hEventGroup, (EventBits_t)flags); |
| } |
| |
| /* Return event flags after setting */ |
| return (rflags); |
| } |
| |
| /* |
| Clear the specified Event Flags. |
| |
| Limitations: |
| - Event flags are limited to 24 bits. |
| */ |
| uint32_t osEventFlagsClear (osEventFlagsId_t ef_id, uint32_t flags) { |
| EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; |
| uint32_t rflags; |
| |
| if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| #if (configUSE_OS2_EVENTFLAGS_FROM_ISR == 0) |
| /* Enable timers and xTimerPendFunctionCall function to support osEventFlagsSet from ISR */ |
| rflags = (uint32_t)osErrorResource; |
| #else |
| rflags = xEventGroupGetBitsFromISR (hEventGroup); |
| |
| if (xEventGroupClearBitsFromISR (hEventGroup, (EventBits_t)flags) == pdFAIL) { |
| rflags = (uint32_t)osErrorResource; |
| } |
| else { |
| /* xEventGroupClearBitsFromISR only registers clear operation in the timer command queue. */ |
| /* Yield is required here otherwise clear operation might not execute in the right order. */ |
| /* See https://github.com/FreeRTOS/FreeRTOS-Kernel/issues/93 for more info. */ |
| portYIELD_FROM_ISR (pdTRUE); |
| } |
| #endif |
| } |
| else { |
| rflags = xEventGroupClearBits (hEventGroup, (EventBits_t)flags); |
| } |
| |
| /* Return event flags before clearing */ |
| return (rflags); |
| } |
| |
| /* |
| Get the current Event Flags. |
| |
| Limitations: |
| - Event flags are limited to 24 bits. |
| */ |
| uint32_t osEventFlagsGet (osEventFlagsId_t ef_id) { |
| EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; |
| uint32_t rflags; |
| |
| if (ef_id == NULL) { |
| rflags = 0U; |
| } |
| else if (IRQ_Context() != 0U) { |
| rflags = xEventGroupGetBitsFromISR (hEventGroup); |
| } |
| else { |
| rflags = xEventGroupGetBits (hEventGroup); |
| } |
| |
| /* Return current event flags */ |
| return (rflags); |
| } |
| |
| /* |
| Wait for one or more Event Flags to become signaled. |
| |
| Limitations: |
| - Event flags are limited to 24 bits. |
| - osEventFlagsWait cannot be called from an ISR. |
| */ |
| uint32_t osEventFlagsWait (osEventFlagsId_t ef_id, uint32_t flags, uint32_t options, uint32_t timeout) { |
| EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; |
| BaseType_t wait_all; |
| BaseType_t exit_clr; |
| uint32_t rflags; |
| |
| if ((hEventGroup == NULL) || ((flags & EVENT_FLAGS_INVALID_BITS) != 0U)) { |
| rflags = (uint32_t)osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| if (timeout == 0U) { |
| /* Try semantic is not supported */ |
| rflags = (uint32_t)osErrorISR; |
| } else { |
| /* Calling osEventFlagsWait from ISR with non-zero timeout is invalid */ |
| rflags = (uint32_t)osFlagsErrorParameter; |
| } |
| } |
| else { |
| if (options & osFlagsWaitAll) { |
| wait_all = pdTRUE; |
| } else { |
| wait_all = pdFAIL; |
| } |
| |
| if (options & osFlagsNoClear) { |
| exit_clr = pdFAIL; |
| } else { |
| exit_clr = pdTRUE; |
| } |
| |
| rflags = xEventGroupWaitBits (hEventGroup, (EventBits_t)flags, exit_clr, wait_all, (TickType_t)timeout); |
| |
| if (options & osFlagsWaitAll) { |
| if ((flags & rflags) != flags) { |
| if (timeout > 0U) { |
| rflags = (uint32_t)osErrorTimeout; |
| } else { |
| rflags = (uint32_t)osErrorResource; |
| } |
| } |
| } |
| else { |
| if ((flags & rflags) == 0U) { |
| if (timeout > 0U) { |
| rflags = (uint32_t)osErrorTimeout; |
| } else { |
| rflags = (uint32_t)osErrorResource; |
| } |
| } |
| } |
| } |
| |
| /* Return event flags before clearing */ |
| return (rflags); |
| } |
| |
| /* |
| Delete an Event Flags object. |
| */ |
| osStatus_t osEventFlagsDelete (osEventFlagsId_t ef_id) { |
| EventGroupHandle_t hEventGroup = (EventGroupHandle_t)ef_id; |
| osStatus_t stat; |
| |
| #ifndef USE_FreeRTOS_HEAP_1 |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hEventGroup == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| vEventGroupDelete (hEventGroup); |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| |
| /* ==== Mutex Management Functions ==== */ |
| |
| #if (configUSE_OS2_MUTEX == 1) |
| /* |
| Create and Initialize a Mutex object. |
| |
| Limitations: |
| - Priority inherit protocol is used by default, osMutexPrioInherit attribute is ignored. |
| - Robust mutex is not supported, NULL is returned if used. |
| */ |
| osMutexId_t osMutexNew (const osMutexAttr_t *attr) { |
| SemaphoreHandle_t hMutex; |
| uint32_t type; |
| uint32_t rmtx; |
| int32_t mem; |
| |
| hMutex = NULL; |
| |
| if (IRQ_Context() == 0U) { |
| if (attr != NULL) { |
| type = attr->attr_bits; |
| } else { |
| type = 0U; |
| } |
| |
| if ((type & osMutexRecursive) == osMutexRecursive) { |
| rmtx = 1U; |
| } else { |
| rmtx = 0U; |
| } |
| |
| if ((type & osMutexRobust) != osMutexRobust) { |
| mem = -1; |
| |
| if (attr != NULL) { |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) { |
| /* The memory for control block is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { |
| /* Control block will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| if (rmtx != 0U) { |
| #if (configUSE_RECURSIVE_MUTEXES == 1) |
| hMutex = xSemaphoreCreateRecursiveMutexStatic (attr->cb_mem); |
| #endif |
| } |
| else { |
| hMutex = xSemaphoreCreateMutexStatic (attr->cb_mem); |
| } |
| #endif |
| } |
| else { |
| if (mem == 0) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| if (rmtx != 0U) { |
| #if (configUSE_RECURSIVE_MUTEXES == 1) |
| hMutex = xSemaphoreCreateRecursiveMutex (); |
| #endif |
| } else { |
| hMutex = xSemaphoreCreateMutex (); |
| } |
| #endif |
| } |
| } |
| |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| if (hMutex != NULL) { |
| if ((attr != NULL) && (attr->name != NULL)) { |
| /* Only non-NULL name objects are added to the Queue Registry */ |
| vQueueAddToRegistry (hMutex, attr->name); |
| } |
| } |
| #endif |
| |
| if ((hMutex != NULL) && (rmtx != 0U)) { |
| /* Set LSB as 'recursive mutex flag' */ |
| hMutex = (SemaphoreHandle_t)((uint32_t)hMutex | 1U); |
| } |
| } |
| } |
| |
| /* Return mutex ID */ |
| return ((osMutexId_t)hMutex); |
| } |
| |
| /* |
| Acquire a Mutex or timeout if it is locked. |
| */ |
| osStatus_t osMutexAcquire (osMutexId_t mutex_id, uint32_t timeout) { |
| SemaphoreHandle_t hMutex; |
| osStatus_t stat; |
| uint32_t rmtx; |
| |
| hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); |
| |
| /* Extract recursive mutex flag */ |
| rmtx = (uint32_t)mutex_id & 1U; |
| |
| stat = osOK; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hMutex == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (rmtx != 0U) { |
| #if (configUSE_RECURSIVE_MUTEXES == 1) |
| if (xSemaphoreTakeRecursive (hMutex, timeout) != pdPASS) { |
| if (timeout != 0U) { |
| stat = osErrorTimeout; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| #endif |
| } |
| else { |
| if (xSemaphoreTake (hMutex, timeout) != pdPASS) { |
| if (timeout != 0U) { |
| stat = osErrorTimeout; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Release a Mutex that was acquired by osMutexAcquire. |
| */ |
| osStatus_t osMutexRelease (osMutexId_t mutex_id) { |
| SemaphoreHandle_t hMutex; |
| osStatus_t stat; |
| uint32_t rmtx; |
| |
| hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); |
| |
| /* Extract recursive mutex flag */ |
| rmtx = (uint32_t)mutex_id & 1U; |
| |
| stat = osOK; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hMutex == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (rmtx != 0U) { |
| #if (configUSE_RECURSIVE_MUTEXES == 1) |
| if (xSemaphoreGiveRecursive (hMutex) != pdPASS) { |
| stat = osErrorResource; |
| } |
| #endif |
| } |
| else { |
| if (xSemaphoreGive (hMutex) != pdPASS) { |
| stat = osErrorResource; |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get Thread which owns a Mutex object. |
| */ |
| osThreadId_t osMutexGetOwner (osMutexId_t mutex_id) { |
| SemaphoreHandle_t hMutex; |
| osThreadId_t owner; |
| |
| hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); |
| |
| if ((IRQ_Context() != 0U) || (hMutex == NULL)) { |
| owner = NULL; |
| } else { |
| owner = (osThreadId_t)xSemaphoreGetMutexHolder (hMutex); |
| } |
| |
| /* Return owner thread ID */ |
| return (owner); |
| } |
| |
| /* |
| Delete a Mutex object. |
| */ |
| osStatus_t osMutexDelete (osMutexId_t mutex_id) { |
| osStatus_t stat; |
| #ifndef USE_FreeRTOS_HEAP_1 |
| SemaphoreHandle_t hMutex; |
| |
| hMutex = (SemaphoreHandle_t)((uint32_t)mutex_id & ~1U); |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hMutex == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| vQueueUnregisterQueue (hMutex); |
| #endif |
| stat = osOK; |
| vSemaphoreDelete (hMutex); |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| #endif /* (configUSE_OS2_MUTEX == 1) */ |
| |
| |
| /* ==== Semaphore Management Functions ==== */ |
| |
| /* |
| Create and Initialize a Semaphore object. |
| */ |
| osSemaphoreId_t osSemaphoreNew (uint32_t max_count, uint32_t initial_count, const osSemaphoreAttr_t *attr) { |
| SemaphoreHandle_t hSemaphore; |
| int32_t mem; |
| |
| hSemaphore = NULL; |
| |
| if ((IRQ_Context() == 0U) && (max_count > 0U) && (initial_count <= max_count)) { |
| mem = -1; |
| |
| if (attr != NULL) { |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticSemaphore_t))) { |
| /* The memory for control block is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { |
| /* Control block will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| |
| if (mem != -1) { |
| if (max_count == 1U) { |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hSemaphore = xSemaphoreCreateBinaryStatic ((StaticSemaphore_t *)attr->cb_mem); |
| #endif |
| } |
| else { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| hSemaphore = xSemaphoreCreateBinary(); |
| #endif |
| } |
| |
| if ((hSemaphore != NULL) && (initial_count != 0U)) { |
| if (xSemaphoreGive (hSemaphore) != pdPASS) { |
| vSemaphoreDelete (hSemaphore); |
| hSemaphore = NULL; |
| } |
| } |
| } |
| else { |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hSemaphore = xSemaphoreCreateCountingStatic (max_count, initial_count, (StaticSemaphore_t *)attr->cb_mem); |
| #endif |
| } |
| else { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| hSemaphore = xSemaphoreCreateCounting (max_count, initial_count); |
| #endif |
| } |
| } |
| |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| if (hSemaphore != NULL) { |
| if ((attr != NULL) && (attr->name != NULL)) { |
| /* Only non-NULL name objects are added to the Queue Registry */ |
| vQueueAddToRegistry (hSemaphore, attr->name); |
| } |
| } |
| #endif |
| } |
| } |
| |
| /* Return semaphore ID */ |
| return ((osSemaphoreId_t)hSemaphore); |
| } |
| |
| /* |
| Acquire a Semaphore token or timeout if no tokens are available. |
| */ |
| osStatus_t osSemaphoreAcquire (osSemaphoreId_t semaphore_id, uint32_t timeout) { |
| SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; |
| osStatus_t stat; |
| BaseType_t yield; |
| |
| stat = osOK; |
| |
| if (hSemaphore == NULL) { |
| stat = osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| if (timeout != 0U) { |
| stat = osErrorParameter; |
| } |
| else { |
| yield = pdFALSE; |
| |
| if (xSemaphoreTakeFromISR (hSemaphore, &yield) != pdPASS) { |
| stat = osErrorResource; |
| } else { |
| portYIELD_FROM_ISR (yield); |
| } |
| } |
| } |
| else { |
| if (xSemaphoreTake (hSemaphore, (TickType_t)timeout) != pdPASS) { |
| if (timeout != 0U) { |
| stat = osErrorTimeout; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Release a Semaphore token up to the initial maximum count. |
| */ |
| osStatus_t osSemaphoreRelease (osSemaphoreId_t semaphore_id) { |
| SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; |
| osStatus_t stat; |
| BaseType_t yield; |
| |
| stat = osOK; |
| |
| if (hSemaphore == NULL) { |
| stat = osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| yield = pdFALSE; |
| |
| if (xSemaphoreGiveFromISR (hSemaphore, &yield) != pdTRUE) { |
| stat = osErrorResource; |
| } else { |
| portYIELD_FROM_ISR (yield); |
| } |
| } |
| else { |
| if (xSemaphoreGive (hSemaphore) != pdPASS) { |
| stat = osErrorResource; |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get current Semaphore token count. |
| */ |
| uint32_t osSemaphoreGetCount (osSemaphoreId_t semaphore_id) { |
| SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; |
| uint32_t count; |
| |
| if (hSemaphore == NULL) { |
| count = 0U; |
| } |
| else if (IRQ_Context() != 0U) { |
| count = (uint32_t)uxSemaphoreGetCountFromISR (hSemaphore); |
| } else { |
| count = (uint32_t)uxSemaphoreGetCount (hSemaphore); |
| } |
| |
| /* Return number of tokens */ |
| return (count); |
| } |
| |
| /* |
| Delete a Semaphore object. |
| */ |
| osStatus_t osSemaphoreDelete (osSemaphoreId_t semaphore_id) { |
| SemaphoreHandle_t hSemaphore = (SemaphoreHandle_t)semaphore_id; |
| osStatus_t stat; |
| |
| #ifndef USE_FreeRTOS_HEAP_1 |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hSemaphore == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| vQueueUnregisterQueue (hSemaphore); |
| #endif |
| |
| stat = osOK; |
| vSemaphoreDelete (hSemaphore); |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| |
| /* ==== Message Queue Management Functions ==== */ |
| |
| /* |
| Create and Initialize a Message Queue object. |
| |
| Limitations: |
| - The memory for control block and and message data must be provided in the |
| osThreadAttr_t structure in order to allocate object statically. |
| */ |
| osMessageQueueId_t osMessageQueueNew (uint32_t msg_count, uint32_t msg_size, const osMessageQueueAttr_t *attr) { |
| QueueHandle_t hQueue; |
| int32_t mem; |
| |
| hQueue = NULL; |
| |
| if ((IRQ_Context() == 0U) && (msg_count > 0U) && (msg_size > 0U)) { |
| mem = -1; |
| |
| if (attr != NULL) { |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(StaticQueue_t)) && |
| (attr->mq_mem != NULL) && (attr->mq_size >= (msg_count * msg_size))) { |
| /* The memory for control block and message data is provided, use static object */ |
| mem = 1; |
| } |
| else { |
| if ((attr->cb_mem == NULL) && (attr->cb_size == 0U) && |
| (attr->mq_mem == NULL) && (attr->mq_size == 0U)) { |
| /* Control block will be allocated from the dynamic pool */ |
| mem = 0; |
| } |
| } |
| } |
| else { |
| mem = 0; |
| } |
| |
| if (mem == 1) { |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| hQueue = xQueueCreateStatic (msg_count, msg_size, attr->mq_mem, attr->cb_mem); |
| #endif |
| } |
| else { |
| if (mem == 0) { |
| #if (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| hQueue = xQueueCreate (msg_count, msg_size); |
| #endif |
| } |
| } |
| |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| if (hQueue != NULL) { |
| if ((attr != NULL) && (attr->name != NULL)) { |
| /* Only non-NULL name objects are added to the Queue Registry */ |
| vQueueAddToRegistry (hQueue, attr->name); |
| } |
| } |
| #endif |
| |
| } |
| |
| /* Return message queue ID */ |
| return ((osMessageQueueId_t)hQueue); |
| } |
| |
| /* |
| Put a Message into a Queue or timeout if Queue is full. |
| |
| Limitations: |
| - Message priority is ignored |
| */ |
| osStatus_t osMessageQueuePut (osMessageQueueId_t mq_id, const void *msg_ptr, uint8_t msg_prio, uint32_t timeout) { |
| QueueHandle_t hQueue = (QueueHandle_t)mq_id; |
| osStatus_t stat; |
| BaseType_t yield; |
| |
| (void)msg_prio; /* Message priority is ignored */ |
| |
| stat = osOK; |
| |
| if (IRQ_Context() != 0U) { |
| if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) { |
| stat = osErrorParameter; |
| } |
| else { |
| yield = pdFALSE; |
| |
| if (xQueueSendToBackFromISR (hQueue, msg_ptr, &yield) != pdTRUE) { |
| stat = osErrorResource; |
| } else { |
| portYIELD_FROM_ISR (yield); |
| } |
| } |
| } |
| else { |
| if ((hQueue == NULL) || (msg_ptr == NULL)) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (xQueueSendToBack (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) { |
| if (timeout != 0U) { |
| stat = osErrorTimeout; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get a Message from a Queue or timeout if Queue is empty. |
| |
| Limitations: |
| - Message priority is ignored |
| */ |
| osStatus_t osMessageQueueGet (osMessageQueueId_t mq_id, void *msg_ptr, uint8_t *msg_prio, uint32_t timeout) { |
| QueueHandle_t hQueue = (QueueHandle_t)mq_id; |
| osStatus_t stat; |
| BaseType_t yield; |
| |
| (void)msg_prio; /* Message priority is ignored */ |
| |
| stat = osOK; |
| |
| if (IRQ_Context() != 0U) { |
| if ((hQueue == NULL) || (msg_ptr == NULL) || (timeout != 0U)) { |
| stat = osErrorParameter; |
| } |
| else { |
| yield = pdFALSE; |
| |
| if (xQueueReceiveFromISR (hQueue, msg_ptr, &yield) != pdPASS) { |
| stat = osErrorResource; |
| } else { |
| portYIELD_FROM_ISR (yield); |
| } |
| } |
| } |
| else { |
| if ((hQueue == NULL) || (msg_ptr == NULL)) { |
| stat = osErrorParameter; |
| } |
| else { |
| if (xQueueReceive (hQueue, msg_ptr, (TickType_t)timeout) != pdPASS) { |
| if (timeout != 0U) { |
| stat = osErrorTimeout; |
| } else { |
| stat = osErrorResource; |
| } |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get maximum number of messages in a Message Queue. |
| */ |
| uint32_t osMessageQueueGetCapacity (osMessageQueueId_t mq_id) { |
| StaticQueue_t *mq = (StaticQueue_t *)mq_id; |
| uint32_t capacity; |
| |
| if (mq == NULL) { |
| capacity = 0U; |
| } else { |
| /* capacity = pxQueue->uxLength */ |
| capacity = mq->uxDummy4[1]; |
| } |
| |
| /* Return maximum number of messages */ |
| return (capacity); |
| } |
| |
| /* |
| Get maximum message size in a Message Queue. |
| */ |
| uint32_t osMessageQueueGetMsgSize (osMessageQueueId_t mq_id) { |
| StaticQueue_t *mq = (StaticQueue_t *)mq_id; |
| uint32_t size; |
| |
| if (mq == NULL) { |
| size = 0U; |
| } else { |
| /* size = pxQueue->uxItemSize */ |
| size = mq->uxDummy4[2]; |
| } |
| |
| /* Return maximum message size */ |
| return (size); |
| } |
| |
| /* |
| Get number of queued messages in a Message Queue. |
| */ |
| uint32_t osMessageQueueGetCount (osMessageQueueId_t mq_id) { |
| QueueHandle_t hQueue = (QueueHandle_t)mq_id; |
| UBaseType_t count; |
| |
| if (hQueue == NULL) { |
| count = 0U; |
| } |
| else if (IRQ_Context() != 0U) { |
| count = uxQueueMessagesWaitingFromISR (hQueue); |
| } |
| else { |
| count = uxQueueMessagesWaiting (hQueue); |
| } |
| |
| /* Return number of queued messages */ |
| return ((uint32_t)count); |
| } |
| |
| /* |
| Get number of available slots for messages in a Message Queue. |
| */ |
| uint32_t osMessageQueueGetSpace (osMessageQueueId_t mq_id) { |
| StaticQueue_t *mq = (StaticQueue_t *)mq_id; |
| uint32_t space; |
| uint32_t isrm; |
| |
| if (mq == NULL) { |
| space = 0U; |
| } |
| else if (IRQ_Context() != 0U) { |
| isrm = taskENTER_CRITICAL_FROM_ISR(); |
| |
| /* space = pxQueue->uxLength - pxQueue->uxMessagesWaiting; */ |
| space = mq->uxDummy4[1] - mq->uxDummy4[0]; |
| |
| taskEXIT_CRITICAL_FROM_ISR(isrm); |
| } |
| else { |
| space = (uint32_t)uxQueueSpacesAvailable ((QueueHandle_t)mq); |
| } |
| |
| /* Return number of available slots */ |
| return (space); |
| } |
| |
| /* |
| Reset a Message Queue to initial empty state. |
| */ |
| osStatus_t osMessageQueueReset (osMessageQueueId_t mq_id) { |
| QueueHandle_t hQueue = (QueueHandle_t)mq_id; |
| osStatus_t stat; |
| |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hQueue == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| (void)xQueueReset (hQueue); |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Delete a Message Queue object. |
| */ |
| osStatus_t osMessageQueueDelete (osMessageQueueId_t mq_id) { |
| QueueHandle_t hQueue = (QueueHandle_t)mq_id; |
| osStatus_t stat; |
| |
| #ifndef USE_FreeRTOS_HEAP_1 |
| if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else if (hQueue == NULL) { |
| stat = osErrorParameter; |
| } |
| else { |
| #if (configQUEUE_REGISTRY_SIZE > 0) |
| vQueueUnregisterQueue (hQueue); |
| #endif |
| |
| stat = osOK; |
| vQueueDelete (hQueue); |
| } |
| #else |
| stat = osError; |
| #endif |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| |
| /* ==== Memory Pool Management Functions ==== */ |
| |
| #ifdef FREERTOS_MPOOL_H_ |
| /* Static memory pool functions */ |
| static void FreeBlock (MemPool_t *mp, void *block); |
| static void *AllocBlock (MemPool_t *mp); |
| static void *CreateBlock (MemPool_t *mp); |
| |
| /* |
| Create and Initialize a Memory Pool object. |
| */ |
| osMemoryPoolId_t osMemoryPoolNew (uint32_t block_count, uint32_t block_size, const osMemoryPoolAttr_t *attr) { |
| MemPool_t *mp; |
| const char *name; |
| int32_t mem_cb, mem_mp; |
| uint32_t sz; |
| |
| if (IRQ_Context() != 0U) { |
| mp = NULL; |
| } |
| else if ((block_count == 0U) || (block_size == 0U)) { |
| mp = NULL; |
| } |
| else { |
| mp = NULL; |
| sz = MEMPOOL_ARR_SIZE (block_count, block_size); |
| |
| name = NULL; |
| mem_cb = -1; |
| mem_mp = -1; |
| |
| if (attr != NULL) { |
| if (attr->name != NULL) { |
| name = attr->name; |
| } |
| |
| if ((attr->cb_mem != NULL) && (attr->cb_size >= sizeof(MemPool_t))) { |
| /* Static control block is provided */ |
| mem_cb = 1; |
| } |
| else if ((attr->cb_mem == NULL) && (attr->cb_size == 0U)) { |
| /* Allocate control block memory on heap */ |
| mem_cb = 0; |
| } |
| |
| if ((attr->mp_mem == NULL) && (attr->mp_size == 0U)) { |
| /* Allocate memory array on heap */ |
| mem_mp = 0; |
| } |
| else { |
| if (attr->mp_mem != NULL) { |
| /* Check if array is 4-byte aligned */ |
| if (((uint32_t)attr->mp_mem & 3U) == 0U) { |
| /* Check if array big enough */ |
| if (attr->mp_size >= sz) { |
| /* Static memory pool array is provided */ |
| mem_mp = 1; |
| } |
| } |
| } |
| } |
| } |
| else { |
| /* Attributes not provided, allocate memory on heap */ |
| mem_cb = 0; |
| mem_mp = 0; |
| } |
| |
| if (mem_cb == 0) { |
| mp = pvPortMalloc (sizeof(MemPool_t)); |
| } else { |
| mp = attr->cb_mem; |
| } |
| |
| if (mp != NULL) { |
| /* Create a semaphore (max count == initial count == block_count) */ |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| mp->sem = xSemaphoreCreateCountingStatic (block_count, block_count, &mp->mem_sem); |
| #elif (configSUPPORT_DYNAMIC_ALLOCATION == 1) |
| mp->sem = xSemaphoreCreateCounting (block_count, block_count); |
| #else |
| mp->sem = NULL; |
| #endif |
| |
| if (mp->sem != NULL) { |
| /* Setup memory array */ |
| if (mem_mp == 0) { |
| mp->mem_arr = pvPortMalloc (sz); |
| } else { |
| mp->mem_arr = attr->mp_mem; |
| } |
| } |
| } |
| |
| if ((mp != NULL) && (mp->mem_arr != NULL)) { |
| /* Memory pool can be created */ |
| mp->head = NULL; |
| mp->mem_sz = sz; |
| mp->name = name; |
| mp->bl_sz = block_size; |
| mp->bl_cnt = block_count; |
| mp->n = 0U; |
| |
| /* Set heap allocated memory flags */ |
| mp->status = MPOOL_STATUS; |
| |
| if (mem_cb == 0) { |
| /* Control block on heap */ |
| mp->status |= 1U; |
| } |
| if (mem_mp == 0) { |
| /* Memory array on heap */ |
| mp->status |= 2U; |
| } |
| } |
| else { |
| /* Memory pool cannot be created, release allocated resources */ |
| if ((mem_cb == 0) && (mp != NULL)) { |
| /* Free control block memory */ |
| vPortFree (mp); |
| } |
| mp = NULL; |
| } |
| } |
| |
| /* Return memory pool ID */ |
| return (mp); |
| } |
| |
| /* |
| Get name of a Memory Pool object. |
| */ |
| const char *osMemoryPoolGetName (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp = (osMemoryPoolId_t)mp_id; |
| const char *p; |
| |
| if (IRQ_Context() != 0U) { |
| p = NULL; |
| } |
| else if (mp_id == NULL) { |
| p = NULL; |
| } |
| else { |
| p = mp->name; |
| } |
| |
| /* Return name as null-terminated string */ |
| return (p); |
| } |
| |
| /* |
| Allocate a memory block from a Memory Pool. |
| */ |
| void *osMemoryPoolAlloc (osMemoryPoolId_t mp_id, uint32_t timeout) { |
| MemPool_t *mp; |
| void *block; |
| uint32_t isrm; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| block = NULL; |
| } |
| else { |
| block = NULL; |
| |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) { |
| if (IRQ_Context() != 0U) { |
| if (timeout == 0U) { |
| if (xSemaphoreTakeFromISR (mp->sem, NULL) == pdTRUE) { |
| if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) { |
| isrm = taskENTER_CRITICAL_FROM_ISR(); |
| |
| /* Get a block from the free-list */ |
| block = AllocBlock(mp); |
| |
| if (block == NULL) { |
| /* List of free blocks is empty, 'create' new block */ |
| block = CreateBlock(mp); |
| } |
| |
| taskEXIT_CRITICAL_FROM_ISR(isrm); |
| } |
| } |
| } |
| } |
| else { |
| if (xSemaphoreTake (mp->sem, (TickType_t)timeout) == pdTRUE) { |
| if ((mp->status & MPOOL_STATUS) == MPOOL_STATUS) { |
| taskENTER_CRITICAL(); |
| |
| /* Get a block from the free-list */ |
| block = AllocBlock(mp); |
| |
| if (block == NULL) { |
| /* List of free blocks is empty, 'create' new block */ |
| block = CreateBlock(mp); |
| } |
| |
| taskEXIT_CRITICAL(); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Return memory block address */ |
| return (block); |
| } |
| |
| /* |
| Return an allocated memory block back to a Memory Pool. |
| */ |
| osStatus_t osMemoryPoolFree (osMemoryPoolId_t mp_id, void *block) { |
| MemPool_t *mp; |
| osStatus_t stat; |
| uint32_t isrm; |
| BaseType_t yield; |
| |
| if ((mp_id == NULL) || (block == NULL)) { |
| /* Invalid input parameters */ |
| stat = osErrorParameter; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) { |
| /* Invalid object status */ |
| stat = osErrorResource; |
| } |
| else if ((block < (void *)&mp->mem_arr[0]) || (block > (void*)&mp->mem_arr[mp->mem_sz-1])) { |
| /* Block pointer outside of memory array area */ |
| stat = osErrorParameter; |
| } |
| else { |
| stat = osOK; |
| |
| if (IRQ_Context() != 0U) { |
| if (uxSemaphoreGetCountFromISR (mp->sem) == mp->bl_cnt) { |
| stat = osErrorResource; |
| } |
| else { |
| isrm = taskENTER_CRITICAL_FROM_ISR(); |
| |
| /* Add block to the list of free blocks */ |
| FreeBlock(mp, block); |
| |
| taskEXIT_CRITICAL_FROM_ISR(isrm); |
| |
| yield = pdFALSE; |
| xSemaphoreGiveFromISR (mp->sem, &yield); |
| portYIELD_FROM_ISR (yield); |
| } |
| } |
| else { |
| if (uxSemaphoreGetCount (mp->sem) == mp->bl_cnt) { |
| stat = osErrorResource; |
| } |
| else { |
| taskENTER_CRITICAL(); |
| |
| /* Add block to the list of free blocks */ |
| FreeBlock(mp, block); |
| |
| taskEXIT_CRITICAL(); |
| |
| xSemaphoreGive (mp->sem); |
| } |
| } |
| } |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Get maximum number of memory blocks in a Memory Pool. |
| */ |
| uint32_t osMemoryPoolGetCapacity (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp; |
| uint32_t n; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| n = 0U; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) { |
| /* Invalid object status */ |
| n = 0U; |
| } |
| else { |
| n = mp->bl_cnt; |
| } |
| } |
| |
| /* Return maximum number of memory blocks */ |
| return (n); |
| } |
| |
| /* |
| Get memory block size in a Memory Pool. |
| */ |
| uint32_t osMemoryPoolGetBlockSize (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp; |
| uint32_t sz; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| sz = 0U; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) { |
| /* Invalid object status */ |
| sz = 0U; |
| } |
| else { |
| sz = mp->bl_sz; |
| } |
| } |
| |
| /* Return memory block size in bytes */ |
| return (sz); |
| } |
| |
| /* |
| Get number of memory blocks used in a Memory Pool. |
| */ |
| uint32_t osMemoryPoolGetCount (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp; |
| uint32_t n; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| n = 0U; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) { |
| /* Invalid object status */ |
| n = 0U; |
| } |
| else { |
| if (IRQ_Context() != 0U) { |
| n = uxSemaphoreGetCountFromISR (mp->sem); |
| } else { |
| n = uxSemaphoreGetCount (mp->sem); |
| } |
| |
| n = mp->bl_cnt - n; |
| } |
| } |
| |
| /* Return number of memory blocks used */ |
| return (n); |
| } |
| |
| /* |
| Get number of memory blocks available in a Memory Pool. |
| */ |
| uint32_t osMemoryPoolGetSpace (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp; |
| uint32_t n; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| n = 0U; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| if ((mp->status & MPOOL_STATUS) != MPOOL_STATUS) { |
| /* Invalid object status */ |
| n = 0U; |
| } |
| else { |
| if (IRQ_Context() != 0U) { |
| n = uxSemaphoreGetCountFromISR (mp->sem); |
| } else { |
| n = uxSemaphoreGetCount (mp->sem); |
| } |
| } |
| } |
| |
| /* Return number of memory blocks available */ |
| return (n); |
| } |
| |
| /* |
| Delete a Memory Pool object. |
| */ |
| osStatus_t osMemoryPoolDelete (osMemoryPoolId_t mp_id) { |
| MemPool_t *mp; |
| osStatus_t stat; |
| |
| if (mp_id == NULL) { |
| /* Invalid input parameters */ |
| stat = osErrorParameter; |
| } |
| else if (IRQ_Context() != 0U) { |
| stat = osErrorISR; |
| } |
| else { |
| mp = (MemPool_t *)mp_id; |
| |
| taskENTER_CRITICAL(); |
| |
| /* Invalidate control block status */ |
| mp->status = mp->status & 3U; |
| |
| /* Wake-up tasks waiting for pool semaphore */ |
| while (xSemaphoreGive (mp->sem) == pdTRUE); |
| |
| mp->head = NULL; |
| mp->bl_sz = 0U; |
| mp->bl_cnt = 0U; |
| |
| if ((mp->status & 2U) != 0U) { |
| /* Memory pool array allocated on heap */ |
| vPortFree (mp->mem_arr); |
| } |
| if ((mp->status & 1U) != 0U) { |
| /* Memory pool control block allocated on heap */ |
| vPortFree (mp); |
| } |
| |
| taskEXIT_CRITICAL(); |
| |
| stat = osOK; |
| } |
| |
| /* Return execution status */ |
| return (stat); |
| } |
| |
| /* |
| Create new block given according to the current block index. |
| */ |
| static void *CreateBlock (MemPool_t *mp) { |
| MemPoolBlock_t *p = NULL; |
| |
| if (mp->n < mp->bl_cnt) { |
| /* Unallocated blocks exist, set pointer to new block */ |
| p = (void *)(mp->mem_arr + (mp->bl_sz * mp->n)); |
| |
| /* Increment block index */ |
| mp->n += 1U; |
| } |
| |
| return (p); |
| } |
| |
| /* |
| Allocate a block by reading the list of free blocks. |
| */ |
| static void *AllocBlock (MemPool_t *mp) { |
| MemPoolBlock_t *p = NULL; |
| |
| if (mp->head != NULL) { |
| /* List of free block exists, get head block */ |
| p = mp->head; |
| |
| /* Head block is now next on the list */ |
| mp->head = p->next; |
| } |
| |
| return (p); |
| } |
| |
| /* |
| Free block by putting it to the list of free blocks. |
| */ |
| static void FreeBlock (MemPool_t *mp, void *block) { |
| MemPoolBlock_t *p = block; |
| |
| /* Store current head into block memory space */ |
| p->next = mp->head; |
| |
| /* Store current block as new head */ |
| mp->head = p; |
| } |
| #endif /* FREERTOS_MPOOL_H_ */ |
| /*---------------------------------------------------------------------------*/ |
| |
| /* Callback function prototypes */ |
| extern void vApplicationIdleHook (void); |
| extern void vApplicationMallocFailedHook (void); |
| extern void vApplicationDaemonTaskStartupHook (void); |
| |
| /** |
| Dummy implementation of the callback function vApplicationIdleHook(). |
| */ |
| #if (configUSE_IDLE_HOOK == 1) |
| __WEAK void vApplicationIdleHook (void){} |
| #endif |
| |
| /** |
| Dummy implementation of the callback function vApplicationTickHook(). |
| */ |
| #if (configUSE_TICK_HOOK == 1) |
| __WEAK void vApplicationTickHook (void){} |
| #endif |
| |
| /** |
| Dummy implementation of the callback function vApplicationMallocFailedHook(). |
| */ |
| #if (configUSE_MALLOC_FAILED_HOOK == 1) |
| __WEAK void vApplicationMallocFailedHook (void) { |
| /* Assert when malloc failed hook is enabled but no application defined function exists */ |
| configASSERT(0); |
| } |
| #endif |
| |
| /** |
| Dummy implementation of the callback function vApplicationDaemonTaskStartupHook(). |
| */ |
| #if (configUSE_DAEMON_TASK_STARTUP_HOOK == 1) |
| __WEAK void vApplicationDaemonTaskStartupHook (void){} |
| #endif |
| |
| /** |
| Dummy implementation of the callback function vApplicationStackOverflowHook(). |
| */ |
| #if (configCHECK_FOR_STACK_OVERFLOW > 0) |
| __WEAK void vApplicationStackOverflowHook (TaskHandle_t xTask, char *pcTaskName) { |
| (void)xTask; |
| (void)pcTaskName; |
| |
| /* Assert when stack overflow is enabled but no application defined function exists */ |
| configASSERT(0); |
| } |
| #endif |
| |
| /*---------------------------------------------------------------------------*/ |
| #if (configSUPPORT_STATIC_ALLOCATION == 1) |
| /* |
| vApplicationGetIdleTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION |
| equals to 1 and is required for static memory allocation support. |
| */ |
| __WEAK void vApplicationGetIdleTaskMemory (StaticTask_t **ppxIdleTaskTCBBuffer, StackType_t **ppxIdleTaskStackBuffer, uint32_t *pulIdleTaskStackSize) { |
| /* Idle task control block and stack */ |
| static StaticTask_t Idle_TCB; |
| static StackType_t Idle_Stack[configMINIMAL_STACK_SIZE]; |
| |
| *ppxIdleTaskTCBBuffer = &Idle_TCB; |
| *ppxIdleTaskStackBuffer = &Idle_Stack[0]; |
| *pulIdleTaskStackSize = (uint32_t)configMINIMAL_STACK_SIZE; |
| } |
| |
| /* |
| vApplicationGetTimerTaskMemory gets called when configSUPPORT_STATIC_ALLOCATION |
| equals to 1 and is required for static memory allocation support. |
| */ |
| __WEAK void vApplicationGetTimerTaskMemory (StaticTask_t **ppxTimerTaskTCBBuffer, StackType_t **ppxTimerTaskStackBuffer, uint32_t *pulTimerTaskStackSize) { |
| /* Timer task control block and stack */ |
| static StaticTask_t Timer_TCB; |
| static StackType_t Timer_Stack[configTIMER_TASK_STACK_DEPTH]; |
| |
| *ppxTimerTaskTCBBuffer = &Timer_TCB; |
| *ppxTimerTaskStackBuffer = &Timer_Stack[0]; |
| *pulTimerTaskStackSize = (uint32_t)configTIMER_TASK_STACK_DEPTH; |
| } |
| #endif |