blob: b8aa1025c849451a73a873b8c7ce39b5299e7e2c [file] [log] [blame]
/**
******************************************************************************
* @file stm32l0xx_hal_cryp.c
* @author MCD Application Team
* @brief CRYP HAL module driver.
*
* This file provides firmware functions to manage the following
* functionalities of the Cryptography (CRYP) peripheral:
* + Initialization and de-initialization functions
* + Processing functions by algorithm using polling mode
* + Processing functions by algorithm using interrupt mode
* + Processing functions by algorithm using DMA mode
* + Peripheral State functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The CRYP HAL driver can be used as follows:
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
(##) Enable the CRYP interface clock using __HAL_RCC_AES_CLK_ENABLE()
(##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT())
(+) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
(+) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
(+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
(##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA())
(+) Enable the DMA1 interface clock using
(++) __HAL_RCC_DMA1_CLK_ENABLE()
(+) Configure and enable two DMA Channels one for managing data transfer from
memory to peripheral (input channel) and another channel for managing data
transfer from peripheral to memory (output channel)
(+) Associate the initialized DMA handle to the CRYP DMA handle
using __HAL_LINKDMA()
(+) Configure the priority and enable the NVIC for the transfer complete
interrupt on the two DMA Streams. The output stream should have higher
priority than the input stream.
(++) HAL_NVIC_SetPriority()
(++) HAL_NVIC_EnableIRQ()
(#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
(##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
(##) The encryption/decryption key.
(##) The initialization vector (counter). It is not used ECB mode.
(#)Three processing (encryption/decryption) functions are available:
(##) Polling mode: encryption and decryption APIs are blocking functions
i.e. they process the data and wait till the processing is finished
e.g. HAL_CRYP_AESCBC_Encrypt()
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
i.e. they process the data under interrupt
e.g. HAL_CRYP_AESCBC_Encrypt_IT()
(##) DMA mode: encryption and decryption APIs are not blocking functions
i.e. the data transfer is ensured by DMA
e.g. HAL_CRYP_AESCBC_Encrypt_DMA()
(#)When the processing function is called for the first time after HAL_CRYP_Init()
the CRYP peripheral is initialized and processes the buffer in input.
At second call, the processing function performs an append of the already
processed buffer.
When a new data block is to be processed, call HAL_CRYP_Init() then the
processing function.
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
#if defined (STM32L021xx) || defined (STM32L041xx) || defined (STM32L062xx) || defined (STM32L063xx) || defined (STM32L081xx) || defined (STM32L082xx) || defined (STM32L083xx)
/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx_hal.h"
#ifdef HAL_CRYP_MODULE_ENABLED
/** @addtogroup STM32L0xx_HAL_Driver
* @{
*/
/** @addtogroup CRYP
* @brief CRYP HAL module driver.
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup CRYP_Private CRYP Private
* @{
*/
#define CRYP_ALGO_CHAIN_MASK (AES_CR_MODE | AES_CR_CHMOD)
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup CRYP_Private
* @{
*/
static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp);
static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector);
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key);
static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
static void CRYP_DMAError(DMA_HandleTypeDef *hdma);
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup CRYP_Exported_Functions
* @{
*/
/** @addtogroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and Configuration functions.
*
@verbatim
==============================================================================
##### Initialization and de-initialization functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Initialize the CRYP according to the specified parameters
in the CRYP_InitTypeDef and creates the associated handle
(+) DeInitialize the CRYP peripheral
(+) Initialize the CRYP MSP
(+) DeInitialize CRYP MSP
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP according to the specified
* parameters in the CRYP_InitTypeDef and creates the associated handle.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Check the parameters */
assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance));
assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
if(hcryp->State == HAL_CRYP_STATE_RESET)
{
/* Allocate lock resource and initialize it */
hcryp->Lock = HAL_UNLOCKED;
/* Init the low level hardware */
HAL_CRYP_MspInit(hcryp);
}
/* Check if AES already enabled */
if (HAL_IS_BIT_CLR(hcryp->Instance->CR, AES_CR_EN))
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the data type*/
MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Set the default CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_READY;
/* Return function status */
return HAL_OK;
}
else
{
/* The Datatype selection must be changed if the AES is disabled. Writing these bits while the AES is */
/* enabled is forbidden to avoid unpredictable AES behavior.*/
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief DeInitializes the CRYP peripheral.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
{
/* Check the CRYP handle allocation */
if(hcryp == NULL)
{
return HAL_ERROR;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the default CRYP phase */
hcryp->Phase = HAL_CRYP_PHASE_READY;
/* Reset CrypInCount and CrypOutCount */
hcryp->CrypInCount = 0U;
hcryp->CrypOutCount = 0U;
/* Disable the CRYP Peripheral Clock */
__HAL_CRYP_DISABLE(hcryp);
/* DeInit the low level hardware: CLOCK, NVIC.*/
HAL_CRYP_MspDeInit(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_RESET;
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_MspInit can be implemented in the user file */
}
/**
* @brief DeInitializes CRYP MSP.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_MspDeInit can be implemented in the user file */
}
/**
* @}
*/
/** @addtogroup CRYP_Exported_Functions_Group2
* @brief processing functions.
*
@verbatim
==============================================================================
##### AES processing functions #####
==============================================================================
[..] This section provides functions allowing to:
(+) Encrypt plaintext using AES algorithm in different chaining modes
(+) Decrypt ciphertext using AES algorithm in different chaining modes
[..] Three processing functions are available:
(+) Polling mode
(+) Interrupt mode
(+) DMA mode
@endverbatim
* @{
*/
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 and Size multiple of 16*/
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if(hcryp->State != HAL_CRYP_STATE_RESET)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if(hcryp->State != HAL_CRYP_STATE_RESET)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CBC mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode
* then encrypt pPlainData. The cypher data are available in pCypherData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if(hcryp->State != HAL_CRYP_STATE_RESET)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Plain Data and Get Cypher Data */
if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if(hcryp->State != HAL_CRYP_STATE_RESET)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Cypher Data and Get Plain Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if(hcryp->State != HAL_CRYP_STATE_RESET)
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Cypher Data and Get Plain Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode
* then decrypted pCypherData. The cypher data are available in pPlainData
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Timeout Specify Timeout value
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if initialization phase has already been performed */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->Phase == HAL_CRYP_PHASE_READY))
{
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CTR decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Write Cypher Data and Get Plain Data */
if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
{
return HAL_TIMEOUT;
}
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CBC mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pPlainData;
hcryp->pCrypOutBuffPtr = pCypherData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC decryption mode using IT.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
/* Get the buffer addresses and sizes */
hcryp->CrypInCount = Size;
hcryp->pCrypInBuffPtr = pCypherData;
hcryp->pCrypOutBuffPtr = pPlainData;
hcryp->CrypOutCount = Size;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CTR decryption mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Enable Interrupts */
__HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
/* Get the last input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Set the CRYP peripheral in AES ECB mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Set the CRYP peripheral in AES CBC mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16.
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pPlainData;
outputaddr = (uint32_t)pCypherData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES ECB decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16 bytes
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Reset the CHMOD & MODE bits */
CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
/* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @brief Initializes the CRYP peripheral in AES CTR decryption mode using DMA.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param pCypherData Pointer to the ciphertext buffer (aligned on u32)
* @param Size Length of the plaintext buffer, must be a multiple of 16
* @param pPlainData Pointer to the plaintext buffer (aligned on u32)
* @retval HAL status
*/
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Check that data aligned on u32 */
if((((uint32_t)pPlainData & 0x00000003UL) != 0U) || (((uint32_t)pCypherData & 0x00000003UL) != 0U) || ((Size & 0x000FU) != 0U))
{
/* Process Locked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_ERROR;
}
/* Check if HAL_CRYP_Init has been called */
if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
{
/* Process Locked */
__HAL_LOCK(hcryp);
inputaddr = (uint32_t)pCypherData;
outputaddr = (uint32_t)pPlainData;
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_BUSY;
/* Check if initialization phase has already been performed */
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
{
/* Set the key */
CRYP_SetKey(hcryp, hcryp->Init.pKey);
/* Set the CRYP peripheral in AES CTR mode */
__HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
/* Set the Initialization Vector */
CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
/* Set the phase */
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
}
/* Set the input and output addresses and start DMA transfer */
CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Return function status */
return HAL_OK;
}
else
{
/* Release Lock */
__HAL_UNLOCK(hcryp);
return HAL_ERROR;
}
}
/**
* @}
*/
/** @addtogroup CRYP_Exported_Functions_Group3
* @brief DMA callback functions.
*
@verbatim
==============================================================================
##### DMA callback functions #####
==============================================================================
[..] This section provides DMA callback functions:
(+) DMA Input data transfer complete
(+) DMA Output data transfer complete
(+) DMA error
@endverbatim
* @{
*/
/**
* @brief CRYP error callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_ErrorCallback can be implemented in the user file
*/
}
/**
* @brief Input transfer completed callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_InCpltCallback can be implemented in the user file
*/
}
/**
* @brief Output transfer completed callback.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(hcryp);
/* NOTE : This function should not be modified; when the callback is needed,
the HAL_CRYP_OutCpltCallback can be implemented in the user file
*/
}
/**
* @}
*/
/** @addtogroup CRYP_Exported_Functions_Group4
* @brief CRYP IRQ handler.
*
@verbatim
==============================================================================
##### CRYP IRQ handler management #####
==============================================================================
[..] This section provides CRYP IRQ handler function.
@endverbatim
* @{
*/
/**
* @brief This function handles CRYP interrupt request.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval None
*/
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
/* Check if error occurred*/
if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERR) != RESET)
{
if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_RDERR) != RESET)
{
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_RDERR);
}
if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_WRERR) != RESET)
{
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_WRERR);
}
if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_CCF) != RESET)
{
__HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CLEARFLAG_CCF);
}
hcryp->State= HAL_CRYP_STATE_ERROR;
/* Disable Computation Complete Interrupt */
__HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC);
__HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR);
HAL_CRYP_ErrorCallback(hcryp);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return;
}
/* Check if computation complete interrupt was enabled*/
if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CC) != RESET)
{
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);
CRYP_EncryptDecrypt_IT(hcryp);
}
}
/**
* @}
*/
/** @addtogroup CRYP_Exported_Functions_Group5
* @brief Peripheral State functions.
*
@verbatim
==============================================================================
##### Peripheral State functions #####
==============================================================================
[..]
This subsection permits to get in run-time the status of the peripheral.
@endverbatim
* @{
*/
/**
* @brief Returns the CRYP state.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL state
*/
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
{
return hcryp->State;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup CRYP_Private
* @{
*/
/**
* @brief IT function called under interruption context to continue encryption or decryption
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @retval HAL status
*/
static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp)
{
uint32_t inputaddr = 0U, outputaddr = 0U;
/* Get the last Output data address */
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
/* Read the Output block from the Output Register */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
hcryp->pCrypOutBuffPtr += 16U;
hcryp->CrypOutCount -= 16U;
/* Check if all input text is encrypted or decrypted */
if(hcryp->CrypOutCount == 0U)
{
/* Disable Computation Complete Interrupt */
__HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC);
__HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR);
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
/* Change the CRYP state */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call computation complete callback */
HAL_CRYPEx_ComputationCpltCallback(hcryp);
}
else /* Process the rest of input text */
{
/* Get the last Input data address */
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
/* Increment the pointer before writing the input block in the IN FIFO to make sure that
when Computation Completed IRQ fires, the hcryp->CrypInCount has always a consistent value
and it is ready for the next operation. */
hcryp->pCrypInBuffPtr += 16U;
hcryp->CrypInCount -= 16U;
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
}
return HAL_OK;
}
/**
* @brief DMA CRYP Input Data process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for input request */
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
/* Call input data transfer complete callback */
HAL_CRYP_InCpltCallback(hcryp);
}
/**
* @brief DMA CRYP Output Data process complete callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
/* Disable the DMA transfer for output request by resetting the DMAOUTEN bit
in the DMACR register */
CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);
/* Disable CRYP */
__HAL_CRYP_DISABLE(hcryp);
/* Change the CRYP state to ready */
hcryp->State = HAL_CRYP_STATE_READY;
/* Call output data transfer complete callback */
HAL_CRYP_OutCpltCallback(hcryp);
}
/**
* @brief DMA CRYP communication error callback.
* @param hdma DMA handle
* @retval None
*/
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
{
CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
hcryp->State= HAL_CRYP_STATE_ERROR;
HAL_CRYP_ErrorCallback(hcryp);
}
/**
* @brief Writes the Key in Key registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Key Pointer to Key buffer
* @note Key must be written as little endian.
* If Key pointer points at address n,
* n[15:0] contains key[96:127],
* (n+4)[15:0] contains key[64:95],
* (n+8)[15:0] contains key[32:63] and
* (n+12)[15:0] contains key[0:31]
* @retval None
*/
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key)
{
uint32_t keyaddr = (uint32_t)Key;
hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
keyaddr+=4U;
hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));
}
/**
* @brief Writes the InitVector/InitCounter in IV registers.
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param InitVector Pointer to InitVector/InitCounter buffer
* @note Init Vector must be written as little endian.
* If Init Vector pointer points at address n,
* n[15:0] contains Vector[96:127],
* (n+4)[15:0] contains Vector[64:95],
* (n+8)[15:0] contains Vector[32:63] and
* (n+12)[15:0] contains Vector[0:31]
* @retval None
*/
static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
{
uint32_t ivaddr = (uint32_t)InitVector;
hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
ivaddr+=4U;
hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
}
/**
* @brief Process Data: Writes Input data in polling mode and reads the output data
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param Input Pointer to the Input buffer
* @param Ilength Length of the Input buffer, must be a multiple of 16.
* @param Output Pointer to the returned buffer
* @param Timeout Specify Timeout value
* @retval None
*/
static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
{
uint32_t tickstart = 0U;
uint32_t index = 0U;
uint32_t inputaddr = (uint32_t)Input;
uint32_t outputaddr = (uint32_t)Output;
for(index=0U; (index < Ilength); index += 16U)
{
/* Write the Input block in the Data Input register */
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
inputaddr+=4U;
/* Get timeout */
tickstart = HAL_GetTick();
while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
{
/* Check for the Timeout */
if(Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U)||((HAL_GetTick() - tickstart ) > Timeout))
{
/* Change state */
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
/* Process Unlocked */
__HAL_UNLOCK(hcryp);
return HAL_TIMEOUT;
}
}
}
/* Clear CCF Flag */
__HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);
/* Read the Output block from the Data Output Register */
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
*(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
outputaddr+=4U;
}
/* Return function status */
return HAL_OK;
}
/**
* @brief Set the DMA configuration and start the DMA transfer
* @param hcryp pointer to a CRYP_HandleTypeDef structure that contains
* the configuration information for CRYP module
* @param inputaddr address of the Input buffer
* @param Size Size of the Input buffer, must be a multiple of 16.
* @param outputaddr address of the Output buffer
* @retval None
*/
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
{
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
/* Set the DMA error callback */
hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
/* Set the CRYP DMA transfer complete callback */
hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
/* Set the DMA error callback */
hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;
/* Enable the DMA In DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);
/* Enable the DMA Out DMA Stream */
HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);
/* Enable In and Out DMA requests */
SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));
/* Enable CRYP */
__HAL_CRYP_ENABLE(hcryp);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CRYP_MODULE_ENABLED */
#endif /* STM32L021xx || STM32L041xx || STM32L062xx || STM32L063xx || STM32L081xx || STM32L082xx || STM32L083xx */