| /** |
| ****************************************************************************** |
| * @file stm32l0xx_hal_adc.c |
| * @author MCD Application Team |
| * @brief This file provides firmware functions to manage the following |
| * functionalities of the Analog to Digital Convertor (ADC) |
| * peripheral: |
| * + Peripheral Control functions |
| * + Peripheral State functions |
| * Other functions (extended functions) are available in file |
| * "stm32l0xx_hal_adc_ex.c". |
| * |
| ****************************************************************************** |
| * @attention |
| * |
| * Copyright (c) 2016 STMicroelectronics. |
| * All rights reserved. |
| * |
| * This software is licensed under terms that can be found in the LICENSE file |
| * in the root directory of this software component. |
| * If no LICENSE file comes with this software, it is provided AS-IS. |
| * |
| ****************************************************************************** |
| @verbatim |
| ============================================================================== |
| ##### ADC peripheral features ##### |
| ============================================================================== |
| [..] |
| (+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution. |
| |
| (+) Interrupt generation at the end of regular conversion and in case of |
| analog watchdog or overrun events. |
| |
| (+) Single and continuous conversion modes. |
| |
| (+) Scan mode for conversion of several channels sequentially. |
| |
| (+) Data alignment with in-built data coherency. |
| |
| (+) Programmable sampling time (common for all channels) |
| |
| (+) External trigger (timer or EXTI) with configurable polarity |
| |
| (+) DMA request generation for transfer of conversions data of regular group. |
| |
| (+) ADC calibration |
| |
| (+) ADC conversion of regular group. |
| |
| (+) ADC supply requirements: 1.62 V to 3.6 V. |
| |
| (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to |
| Vdda or to an external voltage reference). |
| |
| |
| ##### How to use this driver ##### |
| ============================================================================== |
| [..] |
| |
| *** Configuration of top level parameters related to ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Enable the ADC interface |
| (++) As prerequisite, ADC clock must be configured at RCC top level. |
| Caution: On STM32L0, ADC clock frequency max is 16MHz (refer |
| to device datasheet). |
| Therefore, ADC clock prescaler must be configured in |
| function of ADC clock source frequency to remain below |
| this maximum frequency. |
| |
| (++) Two clock settings are mandatory: |
| (+++) ADC clock (core clock, also possibly conversion clock). |
| |
| (+++) ADC clock (conversions clock). |
| Two possible clock sources: synchronous clock derived from APB clock |
| or asynchronous clock derived from ADC dedicated HSI RC oscillator |
| 16MHz. |
| If asynchronous clock is selected, parameter "HSIState" must be set either: |
| - to "...HSIState = RCC_HSI_ON" to maintain the HSI16 oscillator |
| always enabled: can be used to supply the main system clock. |
| |
| (+++) Example: |
| Into HAL_ADC_MspInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) __HAL_RCC_ADC1_CLK_ENABLE(); (mandatory) |
| |
| HSI enable (optional: if asynchronous clock selected) |
| (+++) RCC_OscInitTypeDef RCC_OscInitStructure; |
| (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI; |
| (+++) RCC_OscInitStructure.HSI16CalibrationValue = RCC_HSICALIBRATION_DEFAULT; |
| (+++) RCC_OscInitStructure.HSIState = RCC_HSI_ON; |
| (+++) RCC_OscInitStructure.PLL... (optional if used for system clock) |
| (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); |
| |
| (++) ADC clock source and clock prescaler are configured at ADC level with |
| parameter "ClockPrescaler" using function HAL_ADC_Init(). |
| |
| (#) ADC pins configuration |
| (++) Enable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_ENABLE() |
| (++) Configure these ADC pins in analog mode |
| using function HAL_GPIO_Init() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Configure the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding ADC interruption vector |
| ADCx_IRQHandler(). |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Configure the DMA (DMA channel, mode normal or circular, ...) |
| using function HAL_DMA_Init(). |
| (++) Configure the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() |
| into the function of corresponding DMA interruption vector |
| DMAx_Channelx_IRQHandler(). |
| |
| *** Configuration of ADC, group regular, channels parameters *** |
| ================================================================ |
| [..] |
| |
| (#) Configure the ADC parameters (resolution, data alignment, ...) |
| and regular group parameters (conversion trigger, sequencer, ...) |
| using function HAL_ADC_Init(). |
| |
| (#) Configure the channels for regular group parameters (channel number, |
| channel rank into sequencer, ..., into regular group) |
| using function HAL_ADC_ConfigChannel(). |
| |
| (#) Optionally, configure the analog watchdog parameters (channels |
| monitored, thresholds, ...) |
| using function HAL_ADC_AnalogWDGConfig(). |
| |
| |
| (#) When device is in mode low-power (low-power run, low-power sleep or stop mode), |
| function "HAL_ADCEx_EnableVREFINT()" must be called before function HAL_ADC_Init(). |
| In case of internal temperature sensor to be measured: |
| function "HAL_ADCEx_EnableVREFINTTempSensor()" must be called similarilly |
| |
| *** Execution of ADC conversions *** |
| ==================================== |
| [..] |
| |
| (#) Optionally, perform an automatic ADC calibration to improve the |
| conversion accuracy |
| using function HAL_ADCEx_Calibration_Start(). |
| |
| (#) ADC driver can be used among three modes: polling, interruption, |
| transfer by DMA. |
| |
| (++) ADC conversion by polling: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start() |
| (+++) Wait for ADC conversion completion |
| using function HAL_ADC_PollForConversion() |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop() |
| |
| (++) ADC conversion by interruption: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_IT() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() |
| (this function must be implemented in user program) |
| (+++) Retrieve conversion results |
| using function HAL_ADC_GetValue() |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_IT() |
| |
| (++) ADC conversion with transfer by DMA: |
| (+++) Activate the ADC peripheral and start conversions |
| using function HAL_ADC_Start_DMA() |
| (+++) Wait for ADC conversion completion by call of function |
| HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback() |
| (these functions must be implemented in user program) |
| (+++) Conversion results are automatically transferred by DMA into |
| destination variable address. |
| (+++) Stop conversion and disable the ADC peripheral |
| using function HAL_ADC_Stop_DMA() |
| |
| [..] |
| |
| (@) Callback functions must be implemented in user program: |
| (+@) HAL_ADC_ErrorCallback() |
| (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog) |
| (+@) HAL_ADC_ConvCpltCallback() |
| (+@) HAL_ADC_ConvHalfCpltCallback |
| |
| *** Deinitialization of ADC *** |
| ============================================================ |
| [..] |
| |
| (#) Disable the ADC interface |
| (++) ADC clock can be hard reset and disabled at RCC top level. |
| (++) Hard reset of ADC peripherals |
| using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET(). |
| (++) ADC clock disable |
| using the equivalent macro/functions as configuration step. |
| (+++) Example: |
| Into HAL_ADC_MspDeInit() (recommended code location) or with |
| other device clock parameters configuration: |
| (+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI; |
| (+++) RCC_OscInitStructure.HSIState = RCC_HSI_OFF; (if not used for system clock) |
| (+++) HAL_RCC_OscConfig(&RCC_OscInitStructure); |
| |
| (#) ADC pins configuration |
| (++) Disable the clock for the ADC GPIOs |
| using macro __HAL_RCC_GPIOx_CLK_DISABLE() |
| |
| (#) Optionally, in case of usage of ADC with interruptions: |
| (++) Disable the NVIC for ADC |
| using function HAL_NVIC_EnableIRQ(ADCx_IRQn) |
| |
| (#) Optionally, in case of usage of DMA: |
| (++) Deinitialize the DMA |
| using function HAL_DMA_Init(). |
| (++) Disable the NVIC for DMA |
| using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn) |
| |
| [..] |
| |
| *** Callback registration *** |
| ============================================= |
| [..] |
| |
| The compilation flag USE_HAL_ADC_REGISTER_CALLBACKS, when set to 1, |
| allows the user to configure dynamically the driver callbacks. |
| Use Functions HAL_ADC_RegisterCallback() |
| to register an interrupt callback. |
| [..] |
| |
| Function HAL_ADC_RegisterCallback() allows to register following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| This function takes as parameters the HAL peripheral handle, the Callback ID |
| and a pointer to the user callback function. |
| [..] |
| |
| Use function HAL_ADC_UnRegisterCallback to reset a callback to the default |
| weak function. |
| [..] |
| |
| HAL_ADC_UnRegisterCallback takes as parameters the HAL peripheral handle, |
| and the Callback ID. |
| This function allows to reset following callbacks: |
| (+) ConvCpltCallback : ADC conversion complete callback |
| (+) ConvHalfCpltCallback : ADC conversion DMA half-transfer callback |
| (+) LevelOutOfWindowCallback : ADC analog watchdog 1 callback |
| (+) ErrorCallback : ADC error callback |
| (+) MspInitCallback : ADC Msp Init callback |
| (+) MspDeInitCallback : ADC Msp DeInit callback |
| [..] |
| |
| By default, after the HAL_ADC_Init() and when the state is HAL_ADC_STATE_RESET |
| all callbacks are set to the corresponding weak functions: |
| examples HAL_ADC_ConvCpltCallback(), HAL_ADC_ErrorCallback(). |
| Exception done for MspInit and MspDeInit functions that are |
| reset to the legacy weak functions in the HAL_ADC_Init()/ HAL_ADC_DeInit() only when |
| these callbacks are null (not registered beforehand). |
| [..] |
| |
| If MspInit or MspDeInit are not null, the HAL_ADC_Init()/ HAL_ADC_DeInit() |
| keep and use the user MspInit/MspDeInit callbacks (registered beforehand) whatever the state. |
| [..] |
| |
| Callbacks can be registered/unregistered in HAL_ADC_STATE_READY state only. |
| Exception done MspInit/MspDeInit functions that can be registered/unregistered |
| in HAL_ADC_STATE_READY or HAL_ADC_STATE_RESET state, |
| thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit. |
| [..] |
| |
| Then, the user first registers the MspInit/MspDeInit user callbacks |
| using HAL_ADC_RegisterCallback() before calling HAL_ADC_DeInit() |
| or HAL_ADC_Init() function. |
| [..] |
| |
| When the compilation flag USE_HAL_ADC_REGISTER_CALLBACKS is set to 0 or |
| not defined, the callback registration feature is not available and all callbacks |
| are set to the corresponding weak functions. |
| |
| @endverbatim |
| ****************************************************************************** |
| */ |
| |
| /* Includes ------------------------------------------------------------------*/ |
| #include "stm32l0xx_hal.h" |
| |
| /** @addtogroup STM32L0xx_HAL_Driver |
| * @{ |
| */ |
| |
| /** @defgroup ADC ADC |
| * @brief ADC HAL module driver |
| * @{ |
| */ |
| |
| #ifdef HAL_ADC_MODULE_ENABLED |
| |
| /* Private typedef -----------------------------------------------------------*/ |
| /* Private define ------------------------------------------------------------*/ |
| |
| /** @defgroup ADC_Private_Constants ADC Private Constants |
| * @{ |
| */ |
| |
| /* Delay for ADC stabilization time. */ |
| /* Maximum delay is 1us (refer to device datasheet, parameter tSTART). */ |
| /* Unit: us */ |
| #define ADC_STAB_DELAY_US (1U) |
| |
| /* Delay for temperature sensor stabilization time. */ |
| /* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */ |
| /* Unit: us */ |
| #define ADC_TEMPSENSOR_DELAY_US (10U) |
| /** |
| * @} |
| */ |
| |
| /* Private macro -------------------------------------------------------------*/ |
| /* Private variables ---------------------------------------------------------*/ |
| /* Private function prototypes -----------------------------------------------*/ |
| /** @defgroup ADC_Private_Functions ADC Private Functions |
| * @{ |
| */ |
| static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc); |
| static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc); |
| static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc); |
| static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma); |
| static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma); |
| static void ADC_DMAError(DMA_HandleTypeDef *hdma); |
| static void ADC_DelayMicroSecond(uint32_t microSecond); |
| /** |
| * @} |
| */ |
| |
| /* Exported functions ---------------------------------------------------------*/ |
| |
| /** @defgroup ADC_Exported_Functions ADC Exported Functions |
| * @{ |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group1 Initialization and de-initialization functions |
| * @brief ADC Initialization and Configuration functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Initialization and de-initialization functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Initialize and configure the ADC. |
| (+) De-initialize the ADC. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Initialize the ADC peripheral and regular group according to |
| * parameters specified in structure "ADC_InitTypeDef". |
| * @note As prerequisite, ADC clock must be configured at RCC top level |
| * depending on possible clock sources: APB clock of HSI clock. |
| * See commented example code below that can be copied and uncommented |
| * into HAL_ADC_MspInit(). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes the ADC MSP (HAL_ADC_MspInit()) only when |
| * coming from ADC state reset. Following calls to this function can |
| * be used to reconfigure some parameters of ADC_InitTypeDef |
| * structure on the fly, without modifying MSP configuration. If ADC |
| * MSP has to be modified again, HAL_ADC_DeInit() must be called |
| * before HAL_ADC_Init(). |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_InitTypeDef". |
| * @note This function configures the ADC within 2 scopes: scope of entire |
| * ADC and scope of regular group. For parameters details, see comments |
| * of structure "ADC_InitTypeDef". |
| * @note When device is in mode low-power (low-power run, low-power sleep or stop mode), |
| * function "HAL_ADCEx_EnableVREFINT()" must be called before function HAL_ADC_Init() |
| * (in case of previous ADC operations: function HAL_ADC_DeInit() must be called first). |
| * In case of internal temperature sensor to be measured: |
| * function "HAL_ADCEx_EnableVREFINTTempSensor()" must be called similarilly. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef *hadc) |
| { |
| |
| /* Check ADC handle */ |
| if (hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler)); |
| assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution)); |
| assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign)); |
| assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode)); |
| assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge)); |
| assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests)); |
| assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); |
| assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerFrequencyMode)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff)); |
| assert_param(IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTime)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.OversamplingMode)); |
| |
| /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */ |
| /* at RCC top level depending on both possible clock sources: */ |
| /* APB clock or HSI clock. */ |
| /* Refer to header of this file for more details on clock enabling procedure*/ |
| |
| /* Actions performed only if ADC is coming from state reset: */ |
| /* - Initialization of ADC MSP */ |
| /* - ADC voltage regulator enable */ |
| if (hadc->State == HAL_ADC_STATE_RESET) |
| { |
| /* Initialize ADC error code */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Allocate lock resource and initialize it */ |
| hadc->Lock = HAL_UNLOCKED; |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /* Init the ADC Callback settings */ |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; /* Legacy weak callback */ |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; /* Legacy weak callback */ |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; /* Legacy weak callback */ |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; /* Legacy weak callback */ |
| |
| if (hadc->MspInitCallback == NULL) |
| { |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| } |
| |
| /* Init the low level hardware */ |
| hadc->MspInitCallback(hadc); |
| #else |
| /* Init the low level hardware */ |
| HAL_ADC_MspInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| /* and if there is no conversion on going on regular group (ADC can be */ |
| /* enabled anyway, in case of call of this function to update a parameter */ |
| /* on the fly). */ |
| if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) || |
| (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) != RESET)) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| return HAL_ERROR; |
| } |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated only when ADC is disabled: */ |
| /* - ADC clock mode */ |
| /* - ADC clock prescaler */ |
| /* - ADC Resolution */ |
| if (ADC_IS_ENABLE(hadc) == RESET) |
| { |
| /* Some parameters of this register are not reset, since they are set */ |
| /* by other functions and must be kept in case of usage of this */ |
| /* function on the fly (update of a parameter of ADC_InitTypeDef */ |
| /* without needing to reconfigure all other ADC groups/channels */ |
| /* parameters): */ |
| /* - internal measurement paths: Vbat, temperature sensor, Vref */ |
| /* (set into HAL_ADC_ConfigChannel() ) */ |
| |
| /* Configuration of ADC clock: clock source PCLK or asynchronous with |
| selectable prescaler */ |
| __HAL_ADC_CLOCK_PRESCALER(hadc); |
| |
| /* Configuration of ADC: */ |
| /* - Resolution */ |
| hadc->Instance->CFGR1 &= ~(ADC_CFGR1_RES); |
| hadc->Instance->CFGR1 |= hadc->Init.Resolution; |
| } |
| |
| /* Set the Low Frequency mode */ |
| ADC->CCR &= (uint32_t)~ADC_CCR_LFMEN; |
| ADC->CCR |= __HAL_ADC_CCR_LOWFREQUENCY(hadc->Init.LowPowerFrequencyMode); |
| |
| /* Enable voltage regulator (if disabled at this step) */ |
| if (HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADVREGEN)) |
| { |
| /* Set ADVREGEN bit */ |
| hadc->Instance->CR |= ADC_CR_ADVREGEN; |
| } |
| |
| /* Configuration of ADC: */ |
| /* - Resolution */ |
| /* - Data alignment */ |
| /* - Scan direction */ |
| /* - External trigger to start conversion */ |
| /* - External trigger polarity */ |
| /* - Continuous conversion mode */ |
| /* - DMA continuous request */ |
| /* - Overrun */ |
| /* - AutoDelay feature */ |
| /* - Discontinuous mode */ |
| hadc->Instance->CFGR1 &= ~(ADC_CFGR1_ALIGN | |
| ADC_CFGR1_SCANDIR | |
| ADC_CFGR1_EXTSEL | |
| ADC_CFGR1_EXTEN | |
| ADC_CFGR1_CONT | |
| ADC_CFGR1_DMACFG | |
| ADC_CFGR1_OVRMOD | |
| ADC_CFGR1_AUTDLY | |
| ADC_CFGR1_AUTOFF | |
| ADC_CFGR1_DISCEN); |
| |
| hadc->Instance->CFGR1 |= (hadc->Init.DataAlign | |
| ADC_SCANDIR(hadc->Init.ScanConvMode) | |
| ADC_CONTINUOUS((uint32_t)hadc->Init.ContinuousConvMode) | |
| ADC_DMACONTREQ((uint32_t)hadc->Init.DMAContinuousRequests) | |
| hadc->Init.Overrun | |
| __HAL_ADC_CFGR1_AutoDelay(hadc->Init.LowPowerAutoWait) | |
| __HAL_ADC_CFGR1_AUTOFF(hadc->Init.LowPowerAutoPowerOff)); |
| |
| /* Enable external trigger if trigger selection is different of software */ |
| /* start. */ |
| /* Note: This configuration keeps the hardware feature of parameter */ |
| /* ExternalTrigConvEdge "trigger edge none" equivalent to */ |
| /* software start. */ |
| if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START) |
| { |
| hadc->Instance->CFGR1 |= hadc->Init.ExternalTrigConv | |
| hadc->Init.ExternalTrigConvEdge; |
| } |
| |
| /* Enable discontinuous mode only if continuous mode is disabled */ |
| if (hadc->Init.DiscontinuousConvMode == ENABLE) |
| { |
| if (hadc->Init.ContinuousConvMode == DISABLE) |
| { |
| /* Enable the selected ADC group regular discontinuous mode */ |
| hadc->Instance->CFGR1 |= (ADC_CFGR1_DISCEN); |
| } |
| else |
| { |
| /* ADC regular group discontinuous was intended to be enabled, */ |
| /* but ADC regular group modes continuous and sequencer discontinuous */ |
| /* cannot be enabled simultaneously. */ |
| |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| |
| if (hadc->Init.OversamplingMode == ENABLE) |
| { |
| assert_param(IS_ADC_OVERSAMPLING_RATIO(hadc->Init.Oversample.Ratio)); |
| assert_param(IS_ADC_RIGHT_BIT_SHIFT(hadc->Init.Oversample.RightBitShift)); |
| assert_param(IS_ADC_TRIGGERED_OVERSAMPLING_MODE(hadc->Init.Oversample.TriggeredMode)); |
| |
| /* Configuration of Oversampler: */ |
| /* - Oversampling Ratio */ |
| /* - Right bit shift */ |
| /* - Triggered mode */ |
| |
| hadc->Instance->CFGR2 &= ~(ADC_CFGR2_OVSR | |
| ADC_CFGR2_OVSS | |
| ADC_CFGR2_TOVS); |
| |
| hadc->Instance->CFGR2 |= (hadc->Init.Oversample.Ratio | |
| hadc->Init.Oversample.RightBitShift | |
| hadc->Init.Oversample.TriggeredMode); |
| |
| /* Enable OverSampling mode */ |
| hadc->Instance->CFGR2 |= ADC_CFGR2_OVSE; |
| } |
| else |
| { |
| if (HAL_IS_BIT_SET(hadc->Instance->CFGR2, ADC_CFGR2_OVSE)) |
| { |
| /* Disable OverSampling mode if needed */ |
| hadc->Instance->CFGR2 &= ~ADC_CFGR2_OVSE; |
| } |
| } |
| |
| /* Clear the old sampling time */ |
| hadc->Instance->SMPR &= (uint32_t)(~ADC_SMPR_SMPR); |
| |
| /* Set the new sample time */ |
| hadc->Instance->SMPR |= hadc->Init.SamplingTime; |
| |
| /* Clear ADC error code */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set the ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_BUSY_INTERNAL, |
| HAL_ADC_STATE_READY); |
| |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Deinitialize the ADC peripheral registers to their default reset |
| * values, with deinitialization of the ADC MSP. |
| * @note For devices with several ADCs: reset of ADC common registers is done |
| * only if all ADCs sharing the same common group are disabled. |
| * If this is not the case, reset of these common parameters reset is |
| * bypassed without error reporting: it can be the intended behavior in |
| * case of reset of a single ADC while the other ADCs sharing the same |
| * common group is still running. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check ADC handle */ |
| if (hadc == NULL) |
| { |
| return HAL_ERROR; |
| } |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL); |
| |
| /* Stop potential conversion on going, on regular group */ |
| tmp_hal_status = ADC_ConversionStop(hadc); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status != HAL_ERROR) |
| { |
| /* Change ADC state */ |
| hadc->State = HAL_ADC_STATE_READY; |
| } |
| } |
| |
| |
| /* Configuration of ADC parameters if previous preliminary actions are */ |
| /* correctly completed. */ |
| if (tmp_hal_status != HAL_ERROR) |
| { |
| |
| /* ========== Reset ADC registers ========== */ |
| /* Reset register IER */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD | ADC_IT_OVR | ADC_IT_EOCAL | ADC_IT_EOS | \ |
| ADC_IT_EOC | ADC_IT_RDY | ADC_IT_EOSMP)); |
| |
| |
| /* Reset register ISR */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_EOCAL | ADC_FLAG_OVR | ADC_FLAG_EOS | \ |
| ADC_FLAG_EOC | ADC_FLAG_EOSMP | ADC_FLAG_RDY)); |
| |
| |
| /* Reset register CR */ |
| /* Disable voltage regulator */ |
| /* Note: Regulator disable useful for power saving */ |
| /* Reset ADVREGEN bit */ |
| hadc->Instance->CR &= ~ADC_CR_ADVREGEN; |
| |
| /* Bits ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode "read-set": no direct reset applicable */ |
| /* No action */ |
| |
| /* Reset register CFGR1 */ |
| hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | \ |
| ADC_CFGR1_DISCEN | ADC_CFGR1_AUTOFF | ADC_CFGR1_AUTDLY | \ |
| ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD | ADC_CFGR1_EXTEN | \ |
| ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES | \ |
| ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN); |
| |
| /* Reset register CFGR2 */ |
| hadc->Instance->CFGR2 &= ~(ADC_CFGR2_TOVS | ADC_CFGR2_OVSS | ADC_CFGR2_OVSR | \ |
| ADC_CFGR2_OVSE | ADC_CFGR2_CKMODE); |
| |
| |
| /* Reset register SMPR */ |
| hadc->Instance->SMPR &= ~(ADC_SMPR_SMPR); |
| |
| /* Reset register TR */ |
| hadc->Instance->TR &= ~(ADC_TR_LT | ADC_TR_HT); |
| |
| /* Reset register CALFACT */ |
| hadc->Instance->CALFACT &= ~(ADC_CALFACT_CALFACT); |
| |
| |
| |
| |
| |
| /* Reset register DR */ |
| /* bits in access mode read only, no direct reset applicable*/ |
| |
| /* Reset register CALFACT */ |
| hadc->Instance->CALFACT &= ~(ADC_CALFACT_CALFACT); |
| |
| /* ========== Hard reset ADC peripheral ========== */ |
| /* Performs a global reset of the entire ADC peripheral: ADC state is */ |
| /* forced to a similar state after device power-on. */ |
| /* If needed, copy-paste and uncomment the following reset code into */ |
| /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */ |
| /* */ |
| /* __HAL_RCC_ADC1_FORCE_RESET() */ |
| /* __HAL_RCC_ADC1_RELEASE_RESET() */ |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| if (hadc->MspDeInitCallback == NULL) |
| { |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| } |
| |
| /* DeInit the low level hardware */ |
| hadc->MspDeInitCallback(hadc); |
| #else |
| /* DeInit the low level hardware */ |
| HAL_ADC_MspDeInit(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Set ADC error code to none */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Set ADC state */ |
| hadc->State = HAL_ADC_STATE_RESET; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Initialize the ADC MSP. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspInit(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspInit must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief DeInitialize the ADC MSP. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_MspDeInit must be implemented in the user file. |
| */ |
| } |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| /** |
| * @brief Register a User ADC Callback |
| * To be used instead of the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be registered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @param pCallback pointer to the Callback function |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_RegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID, pADC_CallbackTypeDef pCallback) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if (pCallback == NULL) |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| return HAL_ERROR; |
| } |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = pCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = pCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = pCallback; |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = pCallback; |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| /** |
| * @brief Unregister a ADC Callback |
| * ADC callback is redirected to the weak predefined callback |
| * @param hadc Pointer to a ADC_HandleTypeDef structure that contains |
| * the configuration information for the specified ADC. |
| * @param CallbackID ID of the callback to be unregistered |
| * This parameter can be one of the following values: |
| * @arg @ref HAL_ADC_CONVERSION_COMPLETE_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_CONVERSION_HALF_CB_ID ADC conversion complete callback ID |
| * @arg @ref HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID ADC analog watchdog 1 callback ID |
| * @arg @ref HAL_ADC_ERROR_CB_ID ADC error callback ID |
| * @arg @ref HAL_ADC_INJ_CONVERSION_COMPLETE_CB_ID ADC group injected conversion complete callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID ADC Msp Init callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID ADC Msp DeInit callback ID |
| * @arg @ref HAL_ADC_MSPINIT_CB_ID MspInit callback ID |
| * @arg @ref HAL_ADC_MSPDEINIT_CB_ID MspDeInit callback ID |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_UnRegisterCallback(ADC_HandleTypeDef *hadc, HAL_ADC_CallbackIDTypeDef CallbackID) |
| { |
| HAL_StatusTypeDef status = HAL_OK; |
| |
| if ((hadc->State & HAL_ADC_STATE_READY) != 0) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_CONVERSION_COMPLETE_CB_ID : |
| hadc->ConvCpltCallback = HAL_ADC_ConvCpltCallback; |
| break; |
| |
| case HAL_ADC_CONVERSION_HALF_CB_ID : |
| hadc->ConvHalfCpltCallback = HAL_ADC_ConvHalfCpltCallback; |
| break; |
| |
| case HAL_ADC_LEVEL_OUT_OF_WINDOW_1_CB_ID : |
| hadc->LevelOutOfWindowCallback = HAL_ADC_LevelOutOfWindowCallback; |
| break; |
| |
| case HAL_ADC_ERROR_CB_ID : |
| hadc->ErrorCallback = HAL_ADC_ErrorCallback; |
| break; |
| |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else if (HAL_ADC_STATE_RESET == hadc->State) |
| { |
| switch (CallbackID) |
| { |
| case HAL_ADC_MSPINIT_CB_ID : |
| hadc->MspInitCallback = HAL_ADC_MspInit; /* Legacy weak MspInit */ |
| break; |
| |
| case HAL_ADC_MSPDEINIT_CB_ID : |
| hadc->MspDeInitCallback = HAL_ADC_MspDeInit; /* Legacy weak MspDeInit */ |
| break; |
| |
| default : |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| break; |
| } |
| } |
| else |
| { |
| /* Update the error code */ |
| hadc->ErrorCode |= HAL_ADC_ERROR_INVALID_CALLBACK; |
| |
| /* Return error status */ |
| status = HAL_ERROR; |
| } |
| |
| return status; |
| } |
| |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group2 ADC Input and Output operation functions |
| * @brief ADC IO operation functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### IO operation functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Start conversion of regular group. |
| (+) Stop conversion of regular group. |
| (+) Poll for conversion complete on regular group. |
| (+) Poll for conversion event. |
| (+) Get result of regular channel conversion. |
| (+) Start conversion of regular group and enable interruptions. |
| (+) Stop conversion of regular group and disable interruptions. |
| (+) Handle ADC interrupt request |
| (+) Start conversion of regular group and enable DMA transfer. |
| (+) Stop conversion of regular group and disable ADC DMA transfer. |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group. |
| * @note Interruptions enabled in this function: None. |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ |
| /* performed automatically by hardware. */ |
| if (hadc->Init.LowPowerAutoPowerOff != ENABLE) |
| { |
| tmp_hal_status = ADC_Enable(hadc); |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC */ |
| /* operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| hadc->Instance->CR |= ADC_CR_ADSTART; |
| } |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected channels in |
| * case of auto_injection mode), disable ADC peripheral. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential conversion on going, on ADC group regular */ |
| tmp_hal_status = ADC_ConversionStop(hadc); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* 2. Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Wait for regular group conversion to be completed. |
| * @note ADC conversion flags EOS (end of sequence) and EOC (end of |
| * conversion) are cleared by this function, with an exception: |
| * if low power feature "LowPowerAutoWait" is enabled, flags are |
| * not cleared to not interfere with this feature until data register |
| * is read using function HAL_ADC_GetValue(). |
| * @note This function cannot be used in a particular setup: ADC configured |
| * in DMA mode and polling for end of each conversion (ADC init |
| * parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV). |
| * In this case, DMA resets the flag EOC and polling cannot be |
| * performed on each conversion. Nevertheless, polling can still |
| * be performed on the complete sequence (ADC init |
| * parameter "EOCSelection" set to ADC_EOC_SEQ_CONV). |
| * @param hadc ADC handle |
| * @param Timeout Timeout value in millisecond. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0; |
| uint32_t tmp_Flag_EOC = 0x00; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* If end of conversion selected to end of sequence conversions */ |
| if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV) |
| { |
| tmp_Flag_EOC = ADC_FLAG_EOS; |
| } |
| /* If end of conversion selected to end of unitary conversion */ |
| else /* ADC_EOC_SINGLE_CONV */ |
| { |
| /* Verification that ADC configuration is compliant with polling for */ |
| /* each conversion: */ |
| /* Particular case is ADC configured in DMA mode and ADC sequencer with */ |
| /* several ranks and polling for end of each conversion. */ |
| /* For code simplicity sake, this particular case is generalized to */ |
| /* ADC configured in DMA mode and and polling for end of each conversion. */ |
| if (HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_ERROR; |
| } |
| else |
| { |
| tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS); |
| } |
| } |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait until End of unitary conversion or sequence conversions flag is raised */ |
| while (HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC)) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if (HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC)) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| /* Update ADC state machine */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE)) |
| { |
| /* If End of Sequence is reached, disable interrupts */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) |
| { |
| /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ |
| /* ADSTART==0 (no conversion on going) */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Disable ADC end of single conversion interrupt on group regular */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Change ADC state to error state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| } |
| |
| /* Clear end of conversion flag of regular group if low power feature */ |
| /* "LowPowerAutoWait " is disabled, to not interfere with this feature */ |
| /* until data register is read using function HAL_ADC_GetValue(). */ |
| if (hadc->Init.LowPowerAutoWait == DISABLE) |
| { |
| /* Clear regular group conversion flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Poll for ADC event. |
| * @param hadc ADC handle |
| * @param EventType the ADC event type. |
| * This parameter can be one of the following values: |
| * @arg ADC_AWD_EVENT: ADC Analog watchdog event |
| * @arg ADC_OVR_EVENT: ADC Overrun event |
| * @param Timeout Timeout value in millisecond. |
| * @note The relevant flag is cleared if found to be set, except for ADC_FLAG_OVR. |
| * Indeed, the latter is reset only if hadc->Init.Overrun field is set |
| * to ADC_OVR_DATA_OVERWRITTEN. Otherwise, data register may be potentially overwritten |
| * by a new converted data as soon as OVR is cleared. |
| * To reset OVR flag once the preserved data is retrieved, the user can resort |
| * to macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef *hadc, uint32_t EventType, uint32_t Timeout) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_EVENT_TYPE(EventType)); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Check selected event flag */ |
| while (__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) |
| { |
| /* Check if timeout is disabled (set to infinite wait) */ |
| if (Timeout != HAL_MAX_DELAY) |
| { |
| if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if (__HAL_ADC_GET_FLAG(hadc, EventType) == RESET) |
| { |
| /* Update ADC state machine to timeout */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT); |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| return HAL_TIMEOUT; |
| } |
| } |
| } |
| } |
| |
| switch (EventType) |
| { |
| /* Analog watchdog (level out of window) event */ |
| case ADC_AWD_EVENT: |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| /* Clear ADC analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| break; |
| |
| /* Overrun event */ |
| default: /* Case ADC_OVR_EVENT */ |
| /* If overrun is set to overwrite previous data, overrun event is not */ |
| /* considered as an error. */ |
| /* (cf ref manual "Managing conversions without using the DMA and without */ |
| /* overrun ") */ |
| if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR); |
| |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| } |
| |
| /* Clear ADC Overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| break; |
| } |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group with interruption. |
| * @note Interruptions enabled in this function according to initialization |
| * setting : EOC (end of conversion), EOS (end of sequence), |
| * OVR overrun. |
| * Each of these interruptions has its dedicated callback function. |
| * @note To guarantee a proper reset of all interruptions once all the needed |
| * conversions are obtained, HAL_ADC_Stop_IT() must be called to ensure |
| * a correct stop of the IT-based conversions. |
| * @note By default, HAL_ADC_Start_IT() doesn't enable the End Of Sampling |
| * interruption. If required (e.g. in case of oversampling with trigger |
| * mode), the user must: |
| * 1. first clear the EOSMP flag if set with macro __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOSMP) |
| * 2. then enable the EOSMP interrupt with macro __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOSMP) |
| * before calling HAL_ADC_Start_IT(). |
| * @param hadc ADC handle |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable the ADC peripheral */ |
| /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ |
| /* performed automatically by hardware. */ |
| if (hadc->Init.LowPowerAutoPowerOff != ENABLE) |
| { |
| tmp_hal_status = ADC_Enable(hadc); |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC */ |
| /* operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Enable ADC end of conversion interrupt */ |
| /* Enable ADC overrun interrupt */ |
| switch (hadc->Init.EOCSelection) |
| { |
| case ADC_EOC_SEQ_CONV: |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC); |
| __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR)); |
| break; |
| /* case ADC_EOC_SINGLE_CONV */ |
| default: |
| __HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); |
| break; |
| } |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| hadc->Instance->CR |= ADC_CR_ADSTART; |
| } |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable interrution of |
| * end-of-conversion, disable ADC peripheral. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential conversion on going, on ADC group regular */ |
| tmp_hal_status = ADC_ConversionStop(hadc); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC end of conversion interrupt for regular group */ |
| /* Disable ADC overrun interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR)); |
| |
| /* 2. Disable the ADC peripheral */ |
| tmp_hal_status = ADC_Disable(hadc); |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Enable ADC, start conversion of regular group and transfer result through DMA. |
| * @note Interruptions enabled in this function: |
| * overrun (if applicable), DMA half transfer, DMA transfer complete. |
| * Each of these interruptions has its dedicated callback function. |
| * @param hadc ADC handle |
| * @param pData Destination Buffer address. |
| * @param Length Length of data to be transferred from ADC peripheral to memory (in bytes) |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData, uint32_t Length) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Perform ADC enable and conversion start if no conversion is on going */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Enable ADC DMA mode */ |
| hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN; |
| |
| /* Enable the ADC peripheral */ |
| /* If low power mode AutoPowerOff is enabled, power-on/off phases are */ |
| /* performed automatically by hardware. */ |
| if (hadc->Init.LowPowerAutoPowerOff != ENABLE) |
| { |
| tmp_hal_status = ADC_Enable(hadc); |
| } |
| |
| /* Start conversion if ADC is effectively enabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| /* - Clear state bitfield related to regular group conversion results */ |
| /* - Set state bitfield related to regular operation */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP, |
| HAL_ADC_STATE_REG_BUSY); |
| |
| /* Reset ADC all error code fields */ |
| ADC_CLEAR_ERRORCODE(hadc); |
| |
| /* Process unlocked */ |
| /* Unlock before starting ADC conversions: in case of potential */ |
| /* interruption, to let the process to ADC IRQ Handler. */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Set the DMA transfer complete callback */ |
| hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt; |
| |
| /* Set the DMA half transfer complete callback */ |
| hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt; |
| |
| /* Set the DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback = ADC_DMAError; |
| |
| |
| /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */ |
| /* start (in case of SW start): */ |
| |
| /* Clear regular group conversion flag and overrun flag */ |
| /* (To ensure of no unknown state from potential previous ADC */ |
| /* operations) */ |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR)); |
| |
| /* Enable ADC overrun interrupt */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* Start the DMA channel */ |
| HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length); |
| |
| /* Enable conversion of regular group. */ |
| /* If software start has been selected, conversion starts immediately. */ |
| /* If external trigger has been selected, conversion will start at next */ |
| /* trigger event. */ |
| hadc->Instance->CR |= ADC_CR_ADSTART; |
| } |
| } |
| else |
| { |
| tmp_hal_status = HAL_BUSY; |
| } |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Stop ADC conversion of regular group (and injected group in |
| * case of auto_injection mode), disable ADC DMA transfer, disable |
| * ADC peripheral. |
| * Each of these interruptions has its dedicated callback function. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* 1. Stop potential ADC group regular conversion on going */ |
| tmp_hal_status = ADC_ConversionStop(hadc); |
| |
| /* Disable ADC peripheral if conversions are effectively stopped */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */ |
| CLEAR_BIT(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN); |
| |
| /* Disable the DMA channel (in case of DMA in circular mode or stop */ |
| /* while DMA transfer is on going) */ |
| if (hadc->DMA_Handle->State == HAL_DMA_STATE_BUSY) |
| { |
| tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle); |
| |
| /* Check if DMA channel effectively disabled */ |
| if (tmp_hal_status != HAL_OK) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| } |
| } |
| |
| /* Disable ADC overrun interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR); |
| |
| /* 2. Disable the ADC peripheral */ |
| /* Update "tmp_hal_status" only if DMA channel disabling passed, to keep */ |
| /* in memory a potential failing status. */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| tmp_hal_status = ADC_Disable(hadc); |
| } |
| else |
| { |
| ADC_Disable(hadc); |
| } |
| |
| /* Check if ADC is effectively disabled */ |
| if (tmp_hal_status == HAL_OK) |
| { |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| /** |
| * @brief Get ADC regular group conversion result. |
| * @note Reading register DR automatically clears ADC flag EOC |
| * (ADC group regular end of unitary conversion). |
| * @note This function does not clear ADC flag EOS |
| * (ADC group regular end of sequence conversion). |
| * Occurrence of flag EOS rising: |
| * - If sequencer is composed of 1 rank, flag EOS is equivalent |
| * to flag EOC. |
| * - If sequencer is composed of several ranks, during the scan |
| * sequence flag EOC only is raised, at the end of the scan sequence |
| * both flags EOC and EOS are raised. |
| * To clear this flag, either use function: |
| * in programming model IT: @ref HAL_ADC_IRQHandler(), in programming |
| * model polling: @ref HAL_ADC_PollForConversion() |
| * or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS). |
| * @param hadc ADC handle |
| * @retval ADC group regular conversion data |
| */ |
| uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Note: EOC flag is not cleared here by software because automatically */ |
| /* cleared by hardware when reading register DR. */ |
| |
| /* Return ADC converted value */ |
| return hadc->Instance->DR; |
| } |
| |
| /** |
| * @brief Handle ADC interrupt request. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| void HAL_ADC_IRQHandler(ADC_HandleTypeDef *hadc) |
| { |
| uint32_t tmp_isr = hadc->Instance->ISR; |
| uint32_t tmp_ier = hadc->Instance->IER; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode)); |
| assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection)); |
| |
| /* ========== Check End of Conversion flag for regular group ========== */ |
| if ((((tmp_isr & ADC_FLAG_EOC) == ADC_FLAG_EOC) && ((tmp_ier & ADC_IT_EOC) == ADC_IT_EOC)) || |
| (((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) && ((tmp_ier & ADC_IT_EOS) == ADC_IT_EOS))) |
| { |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| } |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE)) |
| { |
| /* If End of Sequence is reached, disable interrupts */ |
| if ((tmp_isr & ADC_FLAG_EOS) == ADC_FLAG_EOS) |
| { |
| /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ |
| /* ADSTART==0 (no conversion on going) */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Disable ADC end of single conversion interrupt on group regular */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Change ADC state to error state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| } |
| |
| /* Note: into callback, to determine if conversion has been triggered */ |
| /* from EOC or EOS, possibility to use: */ |
| /* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear regular group conversion flag */ |
| /* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */ |
| /* conversion flags clear induces the release of the preserved data.*/ |
| /* Therefore, if the preserved data value is needed, it must be */ |
| /* read preliminarily into HAL_ADC_ConvCpltCallback(). */ |
| /* Note: Management of low power auto-wait enabled: flags must be cleared */ |
| /* by user when fetching ADC conversion data. */ |
| /* This case is managed in IRQ handler, but this low-power mode */ |
| /* should not be used with programming model IT or DMA. */ |
| /* Refer to comment of parameter "LowPowerAutoWait". */ |
| if (hadc->Init.LowPowerAutoWait != ENABLE) |
| { |
| __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS)); |
| } |
| } |
| |
| /* ========== Check analog watchdog 1 flag ========== */ |
| if (((tmp_isr & ADC_FLAG_AWD) == ADC_FLAG_AWD) && ((tmp_ier & ADC_IT_AWD) == ADC_IT_AWD)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_AWD1); |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->LevelOutOfWindowCallback(hadc); |
| #else |
| HAL_ADC_LevelOutOfWindowCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| |
| /* Clear ADC Analog watchdog flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD); |
| |
| } |
| |
| |
| /* ========== Check Overrun flag ========== */ |
| if (((tmp_isr & ADC_FLAG_OVR) == ADC_FLAG_OVR) && ((tmp_ier & ADC_IT_OVR) == ADC_IT_OVR)) |
| { |
| /* If overrun is set to overwrite previous data (default setting), */ |
| /* overrun event is not considered as an error. */ |
| /* (cf ref manual "Managing conversions without using the DMA and without */ |
| /* overrun ") */ |
| /* Exception for usage with DMA overrun event always considered as an */ |
| /* error. */ |
| if ((hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) || |
| HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN)) |
| { |
| /* Set ADC error code to overrun */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR); |
| |
| /* Clear ADC overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /* Clear the Overrun flag */ |
| __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR); |
| } |
| |
| } |
| |
| /** |
| * @brief Conversion complete callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Conversion DMA half-transfer callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief Analog watchdog 1 callback in non-blocking mode. |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @brief ADC error callback in non-blocking mode |
| * (ADC conversion with interruption or transfer by DMA). |
| * @note In case of error due to overrun when using ADC with DMA transfer |
| * (HAL ADC handle parameter "ErrorCode" to state "HAL_ADC_ERROR_OVR"): |
| * - Reinitialize the DMA using function "HAL_ADC_Stop_DMA()". |
| * - If needed, restart a new ADC conversion using function |
| * "HAL_ADC_Start_DMA()" |
| * (this function is also clearing overrun flag) |
| * @param hadc ADC handle |
| * @retval None |
| */ |
| __weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) |
| { |
| /* Prevent unused argument(s) compilation warning */ |
| UNUSED(hadc); |
| |
| /* NOTE : This function should not be modified. When the callback is needed, |
| function HAL_ADC_ErrorCallback must be implemented in the user file. |
| */ |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions |
| * @brief Peripheral Control functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral Control functions ##### |
| =============================================================================== |
| [..] This section provides functions allowing to: |
| (+) Configure channels on regular group |
| (+) Configure the analog watchdog |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Configure a channel to be assigned to ADC group regular. |
| * @note In case of usage of internal measurement channels: |
| * VrefInt/Vlcd(STM32L0x3xx only)/TempSensor. |
| * Sampling time constraints must be respected (sampling time can be |
| * adjusted in function of ADC clock frequency and sampling time |
| * setting). |
| * Refer to device datasheet for timings values, parameters TS_vrefint, |
| * TS_vlcd (STM32L0x3xx only), TS_temp (values rough order: 5us to 17us). |
| * These internal paths can be be disabled using function |
| * HAL_ADC_DeInit(). |
| * @note Possibility to update parameters on the fly: |
| * This function initializes channel into ADC group regular, |
| * following calls to this function can be used to reconfigure |
| * some parameters of structure "ADC_ChannelConfTypeDef" on the fly, |
| * without resetting the ADC. |
| * The setting of these parameters is conditioned to ADC state: |
| * Refer to comments of structure "ADC_ChannelConfTypeDef". |
| * @param hadc ADC handle |
| * @param sConfig Structure of ADC channel assigned to ADC group regular. |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef *hadc, ADC_ChannelConfTypeDef *sConfig) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_CHANNEL(sConfig->Channel)); |
| assert_param(IS_ADC_RANK(sConfig->Rank)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on regular group: */ |
| /* - Channel number */ |
| /* - Management of internal measurement channels: Vbat/VrefInt/TempSensor */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) != RESET) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| return HAL_ERROR; |
| } |
| |
| if (sConfig->Rank != ADC_RANK_NONE) |
| { |
| /* Enable selected channels */ |
| hadc->Instance->CHSELR |= (uint32_t)(sConfig->Channel & ADC_CHANNEL_MASK); |
| |
| /* Management of internal measurement channels: Vlcd (STM32L0x3xx only)/VrefInt/TempSensor */ |
| /* internal measurement paths enable: If internal channel selected, enable */ |
| /* dedicated internal buffers and path. */ |
| |
| #if defined(ADC_CCR_TSEN) |
| /* If Temperature sensor channel is selected, then enable the internal */ |
| /* buffers and path */ |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_TEMPSENSOR) == (ADC_CHANNEL_TEMPSENSOR & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR |= ADC_CCR_TSEN; |
| |
| /* Delay for temperature sensor stabilization time */ |
| ADC_DelayMicroSecond(ADC_TEMPSENSOR_DELAY_US); |
| } |
| #endif |
| |
| /* If VRefInt channel is selected, then enable the internal buffers and path */ |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_VREFINT) == (ADC_CHANNEL_VREFINT & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR |= ADC_CCR_VREFEN; |
| } |
| |
| #if defined (STM32L053xx) || defined (STM32L063xx) || defined (STM32L073xx) || defined (STM32L083xx) |
| /* If Vlcd channel is selected, then enable the internal buffers and path */ |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_VLCD) == (ADC_CHANNEL_VLCD & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR |= ADC_CCR_VLCDEN; |
| } |
| #endif |
| } |
| else |
| { |
| /* Regular sequence configuration */ |
| /* Reset the channel selection register from the selected channel */ |
| hadc->Instance->CHSELR &= ~((uint32_t)(sConfig->Channel & ADC_CHANNEL_MASK)); |
| |
| /* Management of internal measurement channels: VrefInt/TempSensor/Vbat */ |
| /* internal measurement paths disable: If internal channel selected, */ |
| /* disable dedicated internal buffers and path. */ |
| #if defined(ADC_CCR_TSEN) |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_TEMPSENSOR) == (ADC_CHANNEL_TEMPSENSOR & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR &= ~ADC_CCR_TSEN; |
| } |
| #endif |
| |
| /* If VRefInt channel is selected, then enable the internal buffers and path */ |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_VREFINT) == (ADC_CHANNEL_VREFINT & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR &= ~ADC_CCR_VREFEN; |
| } |
| |
| #if defined (STM32L053xx) || defined (STM32L063xx) || defined (STM32L073xx) || defined (STM32L083xx) |
| /* If Vlcd channel is selected, then enable the internal buffers and path */ |
| if (((sConfig->Channel & ADC_CHANNEL_MASK) & ADC_CHANNEL_VLCD) == (ADC_CHANNEL_VLCD & ADC_CHANNEL_MASK)) |
| { |
| ADC->CCR &= ~ADC_CCR_VLCDEN; |
| } |
| #endif |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Configure the analog watchdog. |
| * @note Possibility to update parameters on the fly: |
| * This function initializes the selected analog watchdog, successive |
| * calls to this function can be used to reconfigure some parameters |
| * of structure "ADC_AnalogWDGConfTypeDef" on the fly, without resetting |
| * the ADC. |
| * The setting of these parameters is conditioned to ADC state. |
| * For parameters constraints, see comments of structure |
| * "ADC_AnalogWDGConfTypeDef". |
| * @note Analog watchdog thresholds can be modified while ADC conversion |
| * is on going. |
| * In this case, some constraints must be taken into account: |
| * the programmed threshold values are effective from the next |
| * ADC EOC (end of unitary conversion). |
| * Considering that registers write delay may happen due to |
| * bus activity, this might cause an uncertainty on the |
| * effective timing of the new programmed threshold values. |
| * @param hadc ADC handle |
| * @param AnalogWDGConfig Structure of ADC analog watchdog configuration |
| * @retval HAL status |
| */ |
| HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef *hadc, ADC_AnalogWDGConfTypeDef *AnalogWDGConfig) |
| { |
| HAL_StatusTypeDef tmp_hal_status = HAL_OK; |
| |
| uint32_t tmpAWDHighThresholdShifted; |
| uint32_t tmpAWDLowThresholdShifted; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode)); |
| assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode)); |
| |
| if (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG) |
| { |
| assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel)); |
| } |
| |
| /* Verify if threshold is within the selected ADC resolution */ |
| assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold)); |
| assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold)); |
| |
| /* Process locked */ |
| __HAL_LOCK(hadc); |
| |
| /* Parameters update conditioned to ADC state: */ |
| /* Parameters that can be updated when ADC is disabled or enabled without */ |
| /* conversion on going on regular group: */ |
| /* - Analog watchdog channels */ |
| /* - Analog watchdog thresholds */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Configure ADC Analog watchdog interrupt */ |
| if (AnalogWDGConfig->ITMode == ENABLE) |
| { |
| /* Enable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD); |
| } |
| else |
| { |
| /* Disable the ADC Analog watchdog interrupt */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD); |
| } |
| |
| /* Configuration of analog watchdog: */ |
| /* - Set the analog watchdog mode */ |
| /* - Set the Analog watchdog channel (is not used if watchdog */ |
| /* mode "all channels": ADC_CFGR1_AWD1SGL=0) */ |
| hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDSGL | |
| ADC_CFGR1_AWDEN | |
| ADC_CFGR1_AWDCH); |
| |
| hadc->Instance->CFGR1 |= (AnalogWDGConfig->WatchdogMode | |
| (AnalogWDGConfig->Channel & ADC_CHANNEL_AWD_MASK)); |
| |
| |
| /* Shift the offset in function of the selected ADC resolution: Thresholds */ |
| /* have to be left-aligned on bit 11, the LSB (right bits) are set to 0 */ |
| tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold); |
| tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold); |
| |
| /* Clear High & Low high thresholds */ |
| hadc->Instance->TR &= (uint32_t) ~(ADC_TR_HT | ADC_TR_LT); |
| |
| /* Set the high threshold */ |
| hadc->Instance->TR = ADC_TRX_HIGHTHRESHOLD(tmpAWDHighThresholdShifted); |
| /* Set the low threshold */ |
| hadc->Instance->TR |= tmpAWDLowThresholdShifted; |
| } |
| /* If a conversion is on going on regular group, no update could be done */ |
| /* on neither of the AWD configuration structure parameters. */ |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| tmp_hal_status = HAL_ERROR; |
| } |
| |
| /* Process unlocked */ |
| __HAL_UNLOCK(hadc); |
| |
| /* Return function status */ |
| return tmp_hal_status; |
| } |
| |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions |
| * @brief ADC Peripheral State functions |
| * |
| @verbatim |
| =============================================================================== |
| ##### Peripheral state and errors functions ##### |
| =============================================================================== |
| [..] |
| This subsection provides functions to get in run-time the status of the |
| peripheral. |
| (+) Check the ADC state |
| (+) Check the ADC error code |
| |
| @endverbatim |
| * @{ |
| */ |
| |
| /** |
| * @brief Return the ADC handle state. |
| * @note ADC state machine is managed by bitfields, ADC status must be |
| * compared with states bits. |
| * For example: |
| * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_REG_BUSY)) " |
| * " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1) ) " |
| * @param hadc ADC handle |
| * @retval ADC handle state (bitfield on 32 bits) |
| */ |
| uint32_t HAL_ADC_GetState(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Return ADC handle state */ |
| return hadc->State; |
| } |
| |
| /** |
| * @brief Return the ADC error code. |
| * @param hadc ADC handle |
| * @retval ADC error code (bitfield on 32 bits) |
| */ |
| uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc) |
| { |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| return hadc->ErrorCode; |
| } |
| |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |
| /** @defgroup ADC_Private_Functions ADC Private Functions |
| * @{ |
| */ |
| |
| /** |
| * @brief Enable the selected ADC. |
| * @note Prerequisite condition to use this function: ADC must be disabled |
| * and voltage regulator must be enabled (done into HAL_ADC_Init()). |
| * @note If low power mode AutoPowerOff is enabled, power-on/off phases are |
| * performed automatically by hardware. |
| * In this mode, this function is useless and must not be called because |
| * flag ADC_FLAG_RDY is not usable. |
| * Therefore, this function must be called under condition of |
| * "if (hadc->Init.LowPowerAutoPowerOff != ENABLE)". |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef *hadc) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* ADC enable and wait for ADC ready (in case of ADC is disabled or */ |
| /* enabling phase not yet completed: flag ADC ready not yet set). */ |
| /* Timeout implemented to not be stuck if ADC cannot be enabled (possible */ |
| /* causes: ADC clock not running, ...). */ |
| if (ADC_IS_ENABLE(hadc) == RESET) |
| { |
| /* Check if conditions to enable the ADC are fulfilled */ |
| if (ADC_ENABLING_CONDITIONS(hadc) == RESET) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| |
| /* Enable the ADC peripheral */ |
| __HAL_ADC_ENABLE(hadc); |
| |
| /* Delay for ADC stabilization time. */ |
| ADC_DelayMicroSecond(ADC_STAB_DELAY_US); |
| |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| /* Wait for ADC effectively enabled */ |
| while (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| } |
| |
| /** |
| * @brief Disable the selected ADC. |
| * @note Prerequisite condition to use this function: ADC conversions must be |
| * stopped. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef *hadc) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Verification if ADC is not already disabled: */ |
| /* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */ |
| /* disabled. */ |
| if (ADC_IS_ENABLE(hadc) != RESET) |
| { |
| /* Check if conditions to disable the ADC are fulfilled */ |
| if (ADC_DISABLING_CONDITIONS(hadc) != RESET) |
| { |
| /* Disable the ADC peripheral */ |
| __HAL_ADC_DISABLE(hadc); |
| } |
| else |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| |
| /* Wait for ADC effectively disabled */ |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| while (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN)) |
| { |
| if ((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN)) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief Stop ADC conversion. |
| * @note Prerequisite condition to use this function: ADC conversions must be |
| * stopped to disable the ADC. |
| * @param hadc ADC handle |
| * @retval HAL status. |
| */ |
| static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef *hadc) |
| { |
| uint32_t tickstart = 0U; |
| |
| /* Check the parameters */ |
| assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance)); |
| |
| /* Verification if ADC is not already stopped on regular group to bypass */ |
| /* this function if not needed. */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc)) |
| { |
| |
| /* Stop potential conversion on going on regular group */ |
| /* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */ |
| if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) && |
| HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS)) |
| { |
| /* Stop conversions on regular group */ |
| hadc->Instance->CR |= ADC_CR_ADSTP; |
| } |
| |
| /* Wait for conversion effectively stopped */ |
| /* Get tick count */ |
| tickstart = HAL_GetTick(); |
| |
| while ((hadc->Instance->CR & ADC_CR_ADSTART) != RESET) |
| { |
| if ((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT) |
| { |
| /* New check to avoid false timeout detection in case of preemption */ |
| if ((hadc->Instance->CR & ADC_CR_ADSTART) != RESET) |
| { |
| /* Update ADC state machine to error */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| |
| return HAL_ERROR; |
| } |
| } |
| } |
| } |
| |
| /* Return HAL status */ |
| return HAL_OK; |
| } |
| |
| |
| /** |
| * @brief DMA transfer complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Update state machine on conversion status if not in error state */ |
| if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA)) |
| { |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); |
| |
| /* Determine whether any further conversion upcoming on group regular */ |
| /* by external trigger, continuous mode or scan sequence on going. */ |
| if (ADC_IS_SOFTWARE_START_REGULAR(hadc) && |
| (hadc->Init.ContinuousConvMode == DISABLE)) |
| { |
| /* If End of Sequence is reached, disable interrupts */ |
| if (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS)) |
| { |
| /* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */ |
| /* ADSTART==0 (no conversion on going) */ |
| if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) |
| { |
| /* Disable ADC end of single conversion interrupt on group regular */ |
| /* Note: Overrun interrupt was enabled with EOC interrupt in */ |
| /* HAL_Start_IT(), but is not disabled here because can be used */ |
| /* by overrun IRQ process below. */ |
| __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS); |
| |
| /* Set ADC state */ |
| ADC_STATE_CLR_SET(hadc->State, |
| HAL_ADC_STATE_REG_BUSY, |
| HAL_ADC_STATE_READY); |
| } |
| else |
| { |
| /* Change ADC state to error state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG); |
| |
| /* Set ADC error code to ADC peripheral internal error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL); |
| } |
| } |
| } |
| |
| /* Conversion complete callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| else |
| { |
| /* Call DMA error callback */ |
| hadc->DMA_Handle->XferErrorCallback(hdma); |
| } |
| } |
| |
| /** |
| * @brief DMA half transfer complete callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Half conversion callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ConvHalfCpltCallback(hadc); |
| #else |
| HAL_ADC_ConvHalfCpltCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief DMA error callback. |
| * @param hdma pointer to DMA handle. |
| * @retval None |
| */ |
| static void ADC_DMAError(DMA_HandleTypeDef *hdma) |
| { |
| /* Retrieve ADC handle corresponding to current DMA handle */ |
| ADC_HandleTypeDef *hadc = (ADC_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; |
| |
| /* Set ADC state */ |
| SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA); |
| |
| /* Set ADC error code to DMA error */ |
| SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA); |
| |
| /* Error callback */ |
| #if (USE_HAL_ADC_REGISTER_CALLBACKS == 1) |
| hadc->ErrorCallback(hadc); |
| #else |
| HAL_ADC_ErrorCallback(hadc); |
| #endif /* USE_HAL_ADC_REGISTER_CALLBACKS */ |
| } |
| |
| /** |
| * @brief Delay micro seconds |
| * @param microSecond delay |
| * @retval None |
| */ |
| static void ADC_DelayMicroSecond(uint32_t microSecond) |
| { |
| /* Compute number of CPU cycles to wait for */ |
| __IO uint32_t waitLoopIndex = (microSecond * (SystemCoreClock / 1000000U)); |
| |
| while (waitLoopIndex != 0U) |
| { |
| waitLoopIndex--; |
| } |
| } |
| |
| /** |
| * @} |
| */ |
| |
| #endif /* HAL_ADC_MODULE_ENABLED */ |
| /** |
| * @} |
| */ |
| |
| /** |
| * @} |
| */ |
| |