Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 1 | # benchmark |
Evgeny Safronov | 6f69246 | 2014-11-14 11:11:45 +0400 | [diff] [blame] | 2 | [](https://travis-ci.org/google/benchmark) |
Dominic Hamon | 375e66c | 2015-05-11 12:34:03 -0700 | [diff] [blame] | 3 | [](https://ci.appveyor.com/project/google/benchmark/branch/master) |
Dominic Hamon | d8c7605 | 2015-05-12 11:32:44 -0700 | [diff] [blame] | 4 | [](https://coveralls.io/r/google/benchmark) |
Dominic Hamon | 373a7dd | 2014-01-07 17:04:19 -0800 | [diff] [blame] | 5 | |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 6 | A library to support the benchmarking of functions, similar to unit-tests. |
| 7 | |
Dominic Hamon | 96446f2 | 2014-01-09 10:48:18 -0800 | [diff] [blame] | 8 | Discussion group: https://groups.google.com/d/forum/benchmark-discuss |
| 9 | |
Dominic Hamon | 559c71d | 2015-10-13 12:02:08 -0700 | [diff] [blame] | 10 | IRC channel: https://freenode.net #googlebenchmark |
| 11 | |
Eric Fiselier | 07ee194 | 2016-09-03 00:19:37 -0600 | [diff] [blame] | 12 | [Known issues and common problems](#known-issues) |
Eric Fiselier | 61f570e | 2016-08-30 03:41:58 -0600 | [diff] [blame] | 13 | |
Eric | 83ac086 | 2016-12-02 19:47:27 -0700 | [diff] [blame] | 14 | [Additional Tooling Documentation](docs/tools.md) |
| 15 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 16 | ## Example usage |
| 17 | ### Basic usage |
| 18 | Define a function that executes the code to be measured. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 19 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 20 | ```c++ |
| 21 | static void BM_StringCreation(benchmark::State& state) { |
| 22 | while (state.KeepRunning()) |
| 23 | std::string empty_string; |
| 24 | } |
| 25 | // Register the function as a benchmark |
| 26 | BENCHMARK(BM_StringCreation); |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 27 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 28 | // Define another benchmark |
| 29 | static void BM_StringCopy(benchmark::State& state) { |
| 30 | std::string x = "hello"; |
| 31 | while (state.KeepRunning()) |
| 32 | std::string copy(x); |
| 33 | } |
| 34 | BENCHMARK(BM_StringCopy); |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 35 | |
Dominic Hamon | bdf4a5f | 2015-03-12 21:56:45 -0700 | [diff] [blame] | 36 | BENCHMARK_MAIN(); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 37 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 38 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 39 | ### Passing arguments |
| 40 | Sometimes a family of benchmarks can be implemented with just one routine that |
| 41 | takes an extra argument to specify which one of the family of benchmarks to |
| 42 | run. For example, the following code defines a family of benchmarks for |
| 43 | measuring the speed of `memcpy()` calls of different lengths: |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 44 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 45 | ```c++ |
| 46 | static void BM_memcpy(benchmark::State& state) { |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 47 | char* src = new char[state.range(0)]; |
| 48 | char* dst = new char[state.range(0)]; |
| 49 | memset(src, 'x', state.range(0)); |
Paul Redmond | 0ce150e | 2014-07-23 13:36:58 -0400 | [diff] [blame] | 50 | while (state.KeepRunning()) |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 51 | memcpy(dst, src, state.range(0)); |
Eli Bendersky | f338ce7 | 2015-09-17 20:14:10 -0700 | [diff] [blame] | 52 | state.SetBytesProcessed(int64_t(state.iterations()) * |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 53 | int64_t(state.range(0))); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 54 | delete[] src; |
| 55 | delete[] dst; |
| 56 | } |
| 57 | BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10); |
| 58 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 59 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 60 | The preceding code is quite repetitive, and can be replaced with the following |
| 61 | short-hand. The following invocation will pick a few appropriate arguments in |
| 62 | the specified range and will generate a benchmark for each such argument. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 63 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 64 | ```c++ |
| 65 | BENCHMARK(BM_memcpy)->Range(8, 8<<10); |
| 66 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 67 | |
Dominic Hamon | 2440b75 | 2016-05-24 13:25:59 -0700 | [diff] [blame] | 68 | By default the arguments in the range are generated in multiples of eight and |
| 69 | the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the |
| 70 | range multiplier is changed to multiples of two. |
Ismael | 5812d54 | 2016-05-21 12:16:40 +0200 | [diff] [blame] | 71 | |
| 72 | ```c++ |
| 73 | BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10); |
| 74 | ``` |
Ismael | 07efafb | 2016-05-21 16:34:12 +0200 | [diff] [blame] | 75 | Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ]. |
Ismael | 5812d54 | 2016-05-21 12:16:40 +0200 | [diff] [blame] | 76 | |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 77 | You might have a benchmark that depends on two or more inputs. For example, the |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 78 | following code defines a family of benchmarks for measuring the speed of set |
| 79 | insertion. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 80 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 81 | ```c++ |
| 82 | static void BM_SetInsert(benchmark::State& state) { |
| 83 | while (state.KeepRunning()) { |
| 84 | state.PauseTiming(); |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 85 | std::set<int> data = ConstructRandomSet(state.range(0)); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 86 | state.ResumeTiming(); |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 87 | for (int j = 0; j < state.range(1); ++j) |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 88 | data.insert(RandomNumber()); |
| 89 | } |
| 90 | } |
| 91 | BENCHMARK(BM_SetInsert) |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 92 | ->Args({1<<10, 1}) |
| 93 | ->Args({1<<10, 8}) |
| 94 | ->Args({1<<10, 64}) |
| 95 | ->Args({1<<10, 512}) |
| 96 | ->Args({8<<10, 1}) |
| 97 | ->Args({8<<10, 8}) |
| 98 | ->Args({8<<10, 64}) |
| 99 | ->Args({8<<10, 512}); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 100 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 101 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 102 | The preceding code is quite repetitive, and can be replaced with the following |
| 103 | short-hand. The following macro will pick a few appropriate arguments in the |
| 104 | product of the two specified ranges and will generate a benchmark for each such |
| 105 | pair. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 106 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 107 | ```c++ |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 108 | BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}}); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 109 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 110 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 111 | For more complex patterns of inputs, passing a custom function to `Apply` allows |
| 112 | programmatic specification of an arbitrary set of arguments on which to run the |
| 113 | benchmark. The following example enumerates a dense range on one parameter, |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 114 | and a sparse range on the second. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 115 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 116 | ```c++ |
Dominik Czarnota | d2917bc | 2015-11-30 16:15:00 +0100 | [diff] [blame] | 117 | static void CustomArguments(benchmark::internal::Benchmark* b) { |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 118 | for (int i = 0; i <= 10; ++i) |
| 119 | for (int j = 32; j <= 1024*1024; j *= 8) |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 120 | b->Args({i, j}); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 121 | } |
| 122 | BENCHMARK(BM_SetInsert)->Apply(CustomArguments); |
| 123 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 124 | |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 125 | ### Calculate asymptotic complexity (Big O) |
Dominic Hamon | 2440b75 | 2016-05-24 13:25:59 -0700 | [diff] [blame] | 126 | Asymptotic complexity might be calculated for a family of benchmarks. The |
| 127 | following code will calculate the coefficient for the high-order term in the |
| 128 | running time and the normalized root-mean square error of string comparison. |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 129 | |
| 130 | ```c++ |
| 131 | static void BM_StringCompare(benchmark::State& state) { |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 132 | std::string s1(state.range(0), '-'); |
| 133 | std::string s2(state.range(0), '-'); |
Nick | d147797 | 2016-06-27 13:24:13 -0500 | [diff] [blame] | 134 | while (state.KeepRunning()) { |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 135 | benchmark::DoNotOptimize(s1.compare(s2)); |
Nick | d147797 | 2016-06-27 13:24:13 -0500 | [diff] [blame] | 136 | } |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 137 | state.SetComplexityN(state.range(0)); |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 138 | } |
| 139 | BENCHMARK(BM_StringCompare) |
Dominic Hamon | 2440b75 | 2016-05-24 13:25:59 -0700 | [diff] [blame] | 140 | ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN); |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 141 | ``` |
| 142 | |
Dominic Hamon | 2440b75 | 2016-05-24 13:25:59 -0700 | [diff] [blame] | 143 | As shown in the following invocation, asymptotic complexity might also be |
| 144 | calculated automatically. |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 145 | |
| 146 | ```c++ |
| 147 | BENCHMARK(BM_StringCompare) |
Ismael | 90a8508 | 2016-05-25 23:06:27 +0200 | [diff] [blame] | 148 | ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(); |
Ismael | dc667d0 | 2016-05-21 12:40:27 +0200 | [diff] [blame] | 149 | ``` |
| 150 | |
Ismael | 3ef6339 | 2016-06-02 20:58:14 +0200 | [diff] [blame] | 151 | The following code will specify asymptotic complexity with a lambda function, |
| 152 | that might be used to customize high-order term calculation. |
| 153 | |
| 154 | ```c++ |
| 155 | BENCHMARK(BM_StringCompare)->RangeMultiplier(2) |
Ismael | 240ba4e | 2016-06-02 22:21:52 +0200 | [diff] [blame] | 156 | ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; }); |
Ismael | 3ef6339 | 2016-06-02 20:58:14 +0200 | [diff] [blame] | 157 | ``` |
| 158 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 159 | ### Templated benchmarks |
| 160 | Templated benchmarks work the same way: This example produces and consumes |
| 161 | messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the |
| 162 | absence of multiprogramming. |
Dominic Hamon | 80162ca | 2013-12-20 14:53:25 -0800 | [diff] [blame] | 163 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 164 | ```c++ |
| 165 | template <class Q> int BM_Sequential(benchmark::State& state) { |
| 166 | Q q; |
| 167 | typename Q::value_type v; |
| 168 | while (state.KeepRunning()) { |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 169 | for (int i = state.range(0); i--; ) |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 170 | q.push(v); |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 171 | for (int e = state.range(0); e--; ) |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 172 | q.Wait(&v); |
| 173 | } |
| 174 | // actually messages, not bytes: |
| 175 | state.SetBytesProcessed( |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 176 | static_cast<int64_t>(state.iterations())*state.range(0)); |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 177 | } |
| 178 | BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10); |
| 179 | ``` |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 180 | |
Eric Fiselier | daa8a67 | 2015-03-18 16:34:43 -0400 | [diff] [blame] | 181 | Three macros are provided for adding benchmark templates. |
| 182 | |
| 183 | ```c++ |
| 184 | #if __cplusplus >= 201103L // C++11 and greater. |
| 185 | #define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters. |
| 186 | #else // C++ < C++11 |
| 187 | #define BENCHMARK_TEMPLATE(func, arg1) |
| 188 | #endif |
| 189 | #define BENCHMARK_TEMPLATE1(func, arg1) |
| 190 | #define BENCHMARK_TEMPLATE2(func, arg1, arg2) |
| 191 | ``` |
| 192 | |
Eric | 238e558 | 2016-05-27 13:37:10 -0600 | [diff] [blame] | 193 | ## Passing arbitrary arguments to a benchmark |
| 194 | In C++11 it is possible to define a benchmark that takes an arbitrary number |
| 195 | of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)` |
| 196 | macro creates a benchmark that invokes `func` with the `benchmark::State` as |
| 197 | the first argument followed by the specified `args...`. |
| 198 | The `test_case_name` is appended to the name of the benchmark and |
| 199 | should describe the values passed. |
| 200 | |
| 201 | ```c++ |
| 202 | template <class ...ExtraArgs>` |
| 203 | void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) { |
| 204 | [...] |
| 205 | } |
| 206 | // Registers a benchmark named "BM_takes_args/int_string_test` that passes |
| 207 | // the specified values to `extra_args`. |
| 208 | BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc")); |
| 209 | ``` |
| 210 | Note that elements of `...args` may refer to global variables. Users should |
| 211 | avoid modifying global state inside of a benchmark. |
| 212 | |
Eric | 5f5ca31 | 2016-08-02 17:22:46 -0600 | [diff] [blame] | 213 | ## Using RegisterBenchmark(name, fn, args...) |
| 214 | |
| 215 | The `RegisterBenchmark(name, func, args...)` function provides an alternative |
| 216 | way to create and register benchmarks. |
| 217 | `RegisterBenchmark(name, func, args...)` creates, registers, and returns a |
| 218 | pointer to a new benchmark with the specified `name` that invokes |
| 219 | `func(st, args...)` where `st` is a `benchmark::State` object. |
| 220 | |
| 221 | Unlike the `BENCHMARK` registration macros, which can only be used at the global |
| 222 | scope, the `RegisterBenchmark` can be called anywhere. This allows for |
| 223 | benchmark tests to be registered programmatically. |
| 224 | |
| 225 | Additionally `RegisterBenchmark` allows any callable object to be registered |
| 226 | as a benchmark. Including capturing lambdas and function objects. This |
| 227 | allows the creation |
| 228 | |
| 229 | For Example: |
| 230 | ```c++ |
| 231 | auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ }; |
| 232 | |
| 233 | int main(int argc, char** argv) { |
| 234 | for (auto& test_input : { /* ... */ }) |
| 235 | benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input); |
| 236 | benchmark::Initialize(&argc, argv); |
| 237 | benchmark::RunSpecifiedBenchmarks(); |
| 238 | } |
| 239 | ``` |
| 240 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 241 | ### Multithreaded benchmarks |
Eli Bendersky | c7ab1b9 | 2015-12-30 06:01:19 -0800 | [diff] [blame] | 242 | In a multithreaded test (benchmark invoked by multiple threads simultaneously), |
| 243 | it is guaranteed that none of the threads will start until all have called |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 244 | `KeepRunning`, and all will have finished before KeepRunning returns false. As |
| 245 | such, any global setup or teardown can be wrapped in a check against the thread |
| 246 | index: |
Dominic Hamon | 01af2bc | 2013-12-20 14:51:56 -0800 | [diff] [blame] | 247 | |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 248 | ```c++ |
| 249 | static void BM_MultiThreaded(benchmark::State& state) { |
| 250 | if (state.thread_index == 0) { |
| 251 | // Setup code here. |
| 252 | } |
| 253 | while (state.KeepRunning()) { |
| 254 | // Run the test as normal. |
| 255 | } |
| 256 | if (state.thread_index == 0) { |
| 257 | // Teardown code here. |
| 258 | } |
| 259 | } |
| 260 | BENCHMARK(BM_MultiThreaded)->Threads(2); |
Dominic Hamon | 4499e8e | 2015-11-05 09:53:08 -0800 | [diff] [blame] | 261 | ``` |
Eric Fiselier | e428b9e | 2015-03-27 16:35:46 -0400 | [diff] [blame] | 262 | |
Eli Bendersky | c7ab1b9 | 2015-12-30 06:01:19 -0800 | [diff] [blame] | 263 | If the benchmarked code itself uses threads and you want to compare it to |
| 264 | single-threaded code, you may want to use real-time ("wallclock") measurements |
| 265 | for latency comparisons: |
| 266 | |
| 267 | ```c++ |
| 268 | BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime(); |
| 269 | ``` |
| 270 | |
| 271 | Without `UseRealTime`, CPU time is used by default. |
| 272 | |
Jussi Knuuttila | e253a28 | 2016-04-30 16:23:58 +0300 | [diff] [blame] | 273 | |
| 274 | ## Manual timing |
| 275 | For benchmarking something for which neither CPU time nor real-time are |
| 276 | correct or accurate enough, completely manual timing is supported using |
| 277 | the `UseManualTime` function. |
| 278 | |
| 279 | When `UseManualTime` is used, the benchmarked code must call |
| 280 | `SetIterationTime` once per iteration of the `KeepRunning` loop to |
| 281 | report the manually measured time. |
| 282 | |
| 283 | An example use case for this is benchmarking GPU execution (e.g. OpenCL |
| 284 | or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot |
| 285 | be accurately measured using CPU time or real-time. Instead, they can be |
| 286 | measured accurately using a dedicated API, and these measurement results |
| 287 | can be reported back with `SetIterationTime`. |
| 288 | |
| 289 | ```c++ |
| 290 | static void BM_ManualTiming(benchmark::State& state) { |
Marcin Kolny | dfe0260 | 2016-08-04 21:30:14 +0200 | [diff] [blame] | 291 | int microseconds = state.range(0); |
Jussi Knuuttila | e253a28 | 2016-04-30 16:23:58 +0300 | [diff] [blame] | 292 | std::chrono::duration<double, std::micro> sleep_duration { |
| 293 | static_cast<double>(microseconds) |
| 294 | }; |
| 295 | |
| 296 | while (state.KeepRunning()) { |
| 297 | auto start = std::chrono::high_resolution_clock::now(); |
| 298 | // Simulate some useful workload with a sleep |
| 299 | std::this_thread::sleep_for(sleep_duration); |
| 300 | auto end = std::chrono::high_resolution_clock::now(); |
| 301 | |
| 302 | auto elapsed_seconds = |
| 303 | std::chrono::duration_cast<std::chrono::duration<double>>( |
| 304 | end - start); |
| 305 | |
| 306 | state.SetIterationTime(elapsed_seconds.count()); |
| 307 | } |
| 308 | } |
| 309 | BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime(); |
| 310 | ``` |
| 311 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 312 | ### Preventing optimisation |
Eric Fiselier | e428b9e | 2015-03-27 16:35:46 -0400 | [diff] [blame] | 313 | To prevent a value or expression from being optimized away by the compiler |
Eric Fiselier | 7e40ff9 | 2016-07-11 14:58:50 -0600 | [diff] [blame] | 314 | the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()` |
| 315 | functions can be used. |
Eric Fiselier | e428b9e | 2015-03-27 16:35:46 -0400 | [diff] [blame] | 316 | |
| 317 | ```c++ |
| 318 | static void BM_test(benchmark::State& state) { |
| 319 | while (state.KeepRunning()) { |
| 320 | int x = 0; |
| 321 | for (int i=0; i < 64; ++i) { |
| 322 | benchmark::DoNotOptimize(x += i); |
| 323 | } |
| 324 | } |
| 325 | } |
Chris Seymour | 465cb09 | 2014-02-09 19:45:17 +0000 | [diff] [blame] | 326 | ``` |
Dominic Hamon | fd7d288 | 2014-12-26 08:44:14 -0800 | [diff] [blame] | 327 | |
Eric Fiselier | 7e40ff9 | 2016-07-11 14:58:50 -0600 | [diff] [blame] | 328 | `DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either |
| 329 | memory or a register. For GNU based compilers it acts as read/write barrier |
| 330 | for global memory. More specifically it forces the compiler to flush pending |
| 331 | writes to memory and reload any other values as necessary. |
| 332 | |
| 333 | Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>` |
| 334 | in any way. `<expr>` may even be removed entirely when the result is already |
| 335 | known. For example: |
| 336 | |
| 337 | ```c++ |
| 338 | /* Example 1: `<expr>` is removed entirely. */ |
| 339 | int foo(int x) { return x + 42; } |
| 340 | while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42); |
| 341 | |
| 342 | /* Example 2: Result of '<expr>' is only reused */ |
| 343 | int bar(int) __attribute__((const)); |
| 344 | while (...) DoNotOptimize(bar(0)); // Optimized to: |
| 345 | // int __result__ = bar(0); |
| 346 | // while (...) DoNotOptimize(__result__); |
| 347 | ``` |
| 348 | |
| 349 | The second tool for preventing optimizations is `ClobberMemory()`. In essence |
| 350 | `ClobberMemory()` forces the compiler to perform all pending writes to global |
| 351 | memory. Memory managed by block scope objects must be "escaped" using |
| 352 | `DoNotOptimize(...)` before it can be clobbered. In the below example |
| 353 | `ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized |
| 354 | away. |
| 355 | |
| 356 | ```c++ |
| 357 | static void BM_vector_push_back(benchmark::State& state) { |
| 358 | while (state.KeepRunning()) { |
| 359 | std::vector<int> v; |
| 360 | v.reserve(1); |
| 361 | benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered. |
| 362 | v.push_back(42); |
| 363 | benchmark::ClobberMemory(); // Force 42 to be written to memory. |
| 364 | } |
| 365 | } |
| 366 | ``` |
| 367 | |
Eric | f682f7e | 2017-03-10 18:47:39 -0700 | [diff] [blame] | 368 | Note that `ClobberMemory()` is only available for GNU or MSVC based compilers. |
Eric Fiselier | 7e40ff9 | 2016-07-11 14:58:50 -0600 | [diff] [blame] | 369 | |
Kai Wolf | f352c30 | 2016-04-29 21:42:21 +0200 | [diff] [blame] | 370 | ### Set time unit manually |
Kai Wolf | 0b4111c | 2016-03-28 21:32:11 +0200 | [diff] [blame] | 371 | If a benchmark runs a few milliseconds it may be hard to visually compare the |
| 372 | measured times, since the output data is given in nanoseconds per default. In |
| 373 | order to manually set the time unit, you can specify it manually: |
| 374 | |
| 375 | ```c++ |
| 376 | BENCHMARK(BM_test)->Unit(benchmark::kMillisecond); |
| 377 | ``` |
| 378 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 379 | ## Controlling number of iterations |
| 380 | In all cases, the number of iterations for which the benchmark is run is |
| 381 | governed by the amount of time the benchmark takes. Concretely, the number of |
| 382 | iterations is at least one, not more than 1e9, until CPU time is greater than |
| 383 | the minimum time, or the wallclock time is 5x minimum time. The minimum time is |
| 384 | set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on |
| 385 | the registered benchmark object. |
| 386 | |
Eric Fiselier | 84bc4d7 | 2016-05-24 21:52:23 -0600 | [diff] [blame] | 387 | ## Reporting the mean and standard devation by repeated benchmarks |
| 388 | By default each benchmark is run once and that single result is reported. |
| 389 | However benchmarks are often noisy and a single result may not be representative |
| 390 | of the overall behavior. For this reason it's possible to repeatedly rerun the |
| 391 | benchmark. |
| 392 | |
| 393 | The number of runs of each benchmark is specified globally by the |
| 394 | `--benchmark_repetitions` flag or on a per benchmark basis by calling |
| 395 | `Repetitions` on the registered benchmark object. When a benchmark is run |
| 396 | more than once the mean and standard deviation of the runs will be reported. |
| 397 | |
Eric | a11fb69 | 2016-08-10 18:20:54 -0600 | [diff] [blame] | 398 | Additionally the `--benchmark_report_aggregates_only={true|false}` flag or |
| 399 | `ReportAggregatesOnly(bool)` function can be used to change how repeated tests |
| 400 | are reported. By default the result of each repeated run is reported. When this |
| 401 | option is 'true' only the mean and standard deviation of the runs is reported. |
| 402 | Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides |
| 403 | the value of the flag for that benchmark. |
| 404 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 405 | ## Fixtures |
Eric Fiselier | 9ed538f | 2015-04-06 17:56:05 -0400 | [diff] [blame] | 406 | Fixture tests are created by |
| 407 | first defining a type that derives from ::benchmark::Fixture and then |
| 408 | creating/registering the tests using the following macros: |
| 409 | |
| 410 | * `BENCHMARK_F(ClassName, Method)` |
| 411 | * `BENCHMARK_DEFINE_F(ClassName, Method)` |
| 412 | * `BENCHMARK_REGISTER_F(ClassName, Method)` |
| 413 | |
| 414 | For Example: |
| 415 | |
| 416 | ```c++ |
| 417 | class MyFixture : public benchmark::Fixture {}; |
| 418 | |
| 419 | BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) { |
| 420 | while (st.KeepRunning()) { |
| 421 | ... |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) { |
| 426 | while (st.KeepRunning()) { |
| 427 | ... |
| 428 | } |
| 429 | } |
| 430 | /* BarTest is NOT registered */ |
| 431 | BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2); |
| 432 | /* BarTest is now registered */ |
| 433 | ``` |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 434 | |
jpmag | a9a66c8 | 2017-03-02 00:23:42 +0000 | [diff] [blame] | 435 | |
| 436 | ## User-defined counters |
| 437 | |
| 438 | You can add your own counters with user-defined names. The example below |
| 439 | will add columns "Foo", "Bar" and "Baz" in its output: |
| 440 | |
| 441 | ```c++ |
| 442 | static void UserCountersExample1(benchmark::State& state) { |
| 443 | double numFoos = 0, numBars = 0, numBazs = 0; |
| 444 | while (state.KeepRunning()) { |
| 445 | // ... count Foo,Bar,Baz events |
| 446 | } |
| 447 | state.counters["Foo"] = numFoos; |
| 448 | state.counters["Bar"] = numBars; |
| 449 | state.counters["Baz"] = numBazs; |
| 450 | } |
| 451 | ``` |
| 452 | |
| 453 | The `state.counters` object is a `std::map` with `std::string` keys |
| 454 | and `Counter` values. The latter is a `double`-like class, via an implicit |
| 455 | conversion to `double&`. Thus you can use all of the standard arithmetic |
| 456 | assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter. |
| 457 | |
| 458 | In multithreaded benchmarks, each counter is set on the calling thread only. |
| 459 | When the benchmark finishes, the counters from each thread will be summed; |
| 460 | the resulting sum is the value which will be shown for the benchmark. |
| 461 | |
| 462 | The `Counter` constructor accepts two parameters: the value as a `double` |
| 463 | and a bit flag which allows you to show counters as rates and/or as |
| 464 | per-thread averages: |
| 465 | |
| 466 | ```c++ |
| 467 | // sets a simple counter |
| 468 | state.counters["Foo"] = numFoos; |
| 469 | |
| 470 | // Set the counter as a rate. It will be presented divided |
| 471 | // by the duration of the benchmark. |
| 472 | state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate); |
| 473 | |
| 474 | // Set the counter as a thread-average quantity. It will |
| 475 | // be presented divided by the number of threads. |
| 476 | state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads); |
| 477 | |
| 478 | // There's also a combined flag: |
| 479 | state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate); |
| 480 | ``` |
| 481 | |
| 482 | When you're compiling in C++11 mode or later you can use `insert()` with |
| 483 | `std::initializer_list`: |
| 484 | |
| 485 | ```c++ |
| 486 | // With C++11, this can be done: |
| 487 | state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}}); |
| 488 | // ... instead of: |
| 489 | state.counters["Foo"] = numFoos; |
| 490 | state.counters["Bar"] = numBars; |
| 491 | state.counters["Baz"] = numBazs; |
| 492 | ``` |
| 493 | |
Joao Paulo Magalhaes | 707dd89 | 2017-04-01 22:31:39 +0100 | [diff] [blame] | 494 | ### Counter reporting |
| 495 | |
| 496 | When using the console reporter, by default, user counters are are printed at |
| 497 | the end after the table, the same way as ``bytes_processed`` and |
| 498 | ``items_processed``. This is best for cases in which there are few counters, |
| 499 | or where there are only a couple of lines per benchmark. Here's an example of |
| 500 | the default output: |
| 501 | |
| 502 | ``` |
| 503 | ------------------------------------------------------------------------------ |
| 504 | Benchmark Time CPU Iterations UserCounters... |
| 505 | ------------------------------------------------------------------------------ |
| 506 | BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8 |
| 507 | BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m |
| 508 | BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2 |
| 509 | BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4 |
| 510 | BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8 |
| 511 | BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16 |
| 512 | BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32 |
| 513 | BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4 |
| 514 | BM_Factorial 26 ns 26 ns 26608979 40320 |
| 515 | BM_Factorial/real_time 26 ns 26 ns 26587936 40320 |
| 516 | BM_CalculatePiRange/1 16 ns 16 ns 45704255 0 |
| 517 | BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374 |
| 518 | BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746 |
| 519 | BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355 |
| 520 | ``` |
| 521 | |
| 522 | If this doesn't suit you, you can print each counter as a table column by |
| 523 | passing the flag `--benchmark_counters_tabular=true` to the benchmark |
| 524 | application. This is best for cases in which there are a lot of counters, or |
| 525 | a lot of lines per individual benchmark. Note that this will trigger a |
| 526 | reprinting of the table header any time the counter set changes between |
| 527 | individual benchmarks. Here's an example of corresponding output when |
| 528 | `--benchmark_counters_tabular=true` is passed: |
| 529 | |
| 530 | ``` |
| 531 | --------------------------------------------------------------------------------------- |
| 532 | Benchmark Time CPU Iterations Bar Bat Baz Foo |
| 533 | --------------------------------------------------------------------------------------- |
| 534 | BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8 |
| 535 | BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1 |
| 536 | BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2 |
| 537 | BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4 |
| 538 | BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8 |
| 539 | BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16 |
| 540 | BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32 |
| 541 | BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4 |
| 542 | -------------------------------------------------------------- |
| 543 | Benchmark Time CPU Iterations |
| 544 | -------------------------------------------------------------- |
| 545 | BM_Factorial 26 ns 26 ns 26392245 40320 |
| 546 | BM_Factorial/real_time 26 ns 26 ns 26494107 40320 |
| 547 | BM_CalculatePiRange/1 15 ns 15 ns 45571597 0 |
| 548 | BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374 |
| 549 | BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746 |
| 550 | BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355 |
| 551 | BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184 |
| 552 | BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162 |
| 553 | BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416 |
| 554 | BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159 |
| 555 | BM_CalculatePi/threads:8 2255 ns 9943 ns 70936 |
| 556 | ``` |
| 557 | Note above the additional header printed when the benchmark changes from |
| 558 | ``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does |
| 559 | not have the same counter set as ``BM_UserCounter``. |
| 560 | |
Eric Fiselier | 90c9ab1 | 2016-05-23 20:35:09 -0600 | [diff] [blame] | 561 | ## Exiting Benchmarks in Error |
| 562 | |
Eric Fiselier | 924b8ce | 2016-05-24 15:21:41 -0600 | [diff] [blame] | 563 | When errors caused by external influences, such as file I/O and network |
| 564 | communication, occur within a benchmark the |
| 565 | `State::SkipWithError(const char* msg)` function can be used to skip that run |
| 566 | of benchmark and report the error. Note that only future iterations of the |
| 567 | `KeepRunning()` are skipped. Users may explicitly return to exit the |
| 568 | benchmark immediately. |
Eric Fiselier | 90c9ab1 | 2016-05-23 20:35:09 -0600 | [diff] [blame] | 569 | |
| 570 | The `SkipWithError(...)` function may be used at any point within the benchmark, |
| 571 | including before and after the `KeepRunning()` loop. |
| 572 | |
| 573 | For example: |
| 574 | |
| 575 | ```c++ |
| 576 | static void BM_test(benchmark::State& state) { |
| 577 | auto resource = GetResource(); |
| 578 | if (!resource.good()) { |
| 579 | state.SkipWithError("Resource is not good!"); |
| 580 | // KeepRunning() loop will not be entered. |
| 581 | } |
| 582 | while (state.KeepRunning()) { |
| 583 | auto data = resource.read_data(); |
| 584 | if (!resource.good()) { |
| 585 | state.SkipWithError("Failed to read data!"); |
| 586 | break; // Needed to skip the rest of the iteration. |
| 587 | } |
| 588 | do_stuff(data); |
| 589 | } |
| 590 | } |
| 591 | ``` |
| 592 | |
Eric Fiselier | 9c26168 | 2016-09-05 15:40:12 -0600 | [diff] [blame] | 593 | ## Running a subset of the benchmarks |
| 594 | |
| 595 | The `--benchmark_filter=<regex>` option can be used to only run the benchmarks |
| 596 | which match the specified `<regex>`. For example: |
| 597 | |
| 598 | ```bash |
| 599 | $ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32 |
| 600 | Run on (1 X 2300 MHz CPU ) |
| 601 | 2016-06-25 19:34:24 |
| 602 | Benchmark Time CPU Iterations |
| 603 | ---------------------------------------------------- |
| 604 | BM_memcpy/32 11 ns 11 ns 79545455 |
| 605 | BM_memcpy/32k 2181 ns 2185 ns 324074 |
| 606 | BM_memcpy/32 12 ns 12 ns 54687500 |
| 607 | BM_memcpy/32k 1834 ns 1837 ns 357143 |
| 608 | ``` |
| 609 | |
| 610 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 611 | ## Output Formats |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 612 | The library supports multiple output formats. Use the |
Eric Fiselier | 44128d8 | 2016-08-02 15:12:43 -0600 | [diff] [blame] | 613 | `--benchmark_format=<console|json|csv>` flag to set the format type. `console` |
| 614 | is the default format. |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 615 | |
Eric Fiselier | 44128d8 | 2016-08-02 15:12:43 -0600 | [diff] [blame] | 616 | The Console format is intended to be a human readable format. By default |
Dominic Hamon | 9934396 | 2015-04-01 10:51:37 -0400 | [diff] [blame] | 617 | the format generates color output. Context is output on stderr and the |
| 618 | tabular data on stdout. Example tabular output looks like: |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 619 | ``` |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 620 | Benchmark Time(ns) CPU(ns) Iterations |
| 621 | ---------------------------------------------------------------------- |
| 622 | BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s |
| 623 | BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s |
| 624 | BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s |
| 625 | ``` |
| 626 | |
| 627 | The JSON format outputs human readable json split into two top level attributes. |
| 628 | The `context` attribute contains information about the run in general, including |
| 629 | information about the CPU and the date. |
| 630 | The `benchmarks` attribute contains a list of ever benchmark run. Example json |
| 631 | output looks like: |
jpmag | a9a66c8 | 2017-03-02 00:23:42 +0000 | [diff] [blame] | 632 | ```json |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 633 | { |
| 634 | "context": { |
| 635 | "date": "2015/03/17-18:40:25", |
| 636 | "num_cpus": 40, |
| 637 | "mhz_per_cpu": 2801, |
| 638 | "cpu_scaling_enabled": false, |
| 639 | "build_type": "debug" |
| 640 | }, |
| 641 | "benchmarks": [ |
| 642 | { |
| 643 | "name": "BM_SetInsert/1024/1", |
| 644 | "iterations": 94877, |
| 645 | "real_time": 29275, |
| 646 | "cpu_time": 29836, |
| 647 | "bytes_per_second": 134066, |
| 648 | "items_per_second": 33516 |
| 649 | }, |
| 650 | { |
| 651 | "name": "BM_SetInsert/1024/8", |
| 652 | "iterations": 21609, |
| 653 | "real_time": 32317, |
| 654 | "cpu_time": 32429, |
| 655 | "bytes_per_second": 986770, |
| 656 | "items_per_second": 246693 |
| 657 | }, |
| 658 | { |
| 659 | "name": "BM_SetInsert/1024/10", |
| 660 | "iterations": 21393, |
| 661 | "real_time": 32724, |
| 662 | "cpu_time": 33355, |
| 663 | "bytes_per_second": 1199226, |
| 664 | "items_per_second": 299807 |
| 665 | } |
| 666 | ] |
| 667 | } |
| 668 | ``` |
| 669 | |
Dominic Hamon | 9934396 | 2015-04-01 10:51:37 -0400 | [diff] [blame] | 670 | The CSV format outputs comma-separated values. The `context` is output on stderr |
| 671 | and the CSV itself on stdout. Example CSV output looks like: |
| 672 | ``` |
| 673 | name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label |
| 674 | "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942, |
| 675 | "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115, |
| 676 | "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06, |
| 677 | ``` |
Eric Fiselier | ffb67dc | 2015-03-17 18:42:41 -0400 | [diff] [blame] | 678 | |
Eric Fiselier | 44128d8 | 2016-08-02 15:12:43 -0600 | [diff] [blame] | 679 | ## Output Files |
| 680 | The library supports writing the output of the benchmark to a file specified |
| 681 | by `--benchmark_out=<filename>`. The format of the output can be specified |
| 682 | using `--benchmark_out_format={json|console|csv}`. Specifying |
| 683 | `--benchmark_out` does not suppress the console output. |
| 684 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 685 | ## Debug vs Release |
Dominic Hamon | 211f23e | 2016-02-14 09:28:10 -0800 | [diff] [blame] | 686 | By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use: |
| 687 | |
| 688 | ``` |
| 689 | cmake -DCMAKE_BUILD_TYPE=Release |
| 690 | ``` |
| 691 | |
| 692 | To enable link-time optimisation, use |
| 693 | |
| 694 | ``` |
| 695 | cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true |
| 696 | ``` |
| 697 | |
Dominic Hamon | d6f96ed | 2016-04-19 09:34:13 -0700 | [diff] [blame] | 698 | ## Linking against the library |
Eric | de4ead7 | 2016-08-09 12:31:44 -0600 | [diff] [blame] | 699 | When using gcc, it is necessary to link against pthread to avoid runtime exceptions. |
| 700 | This is due to how gcc implements std::thread. |
Eric Fiselier | 9820035 | 2016-08-07 16:31:43 -0600 | [diff] [blame] | 701 | See [issue #67](https://github.com/google/benchmark/issues/67) for more details. |
Eric | de4ead7 | 2016-08-09 12:31:44 -0600 | [diff] [blame] | 702 | |
| 703 | ## Compiler Support |
| 704 | |
| 705 | Google Benchmark uses C++11 when building the library. As such we require |
| 706 | a modern C++ toolchain, both compiler and standard library. |
| 707 | |
| 708 | The following minimum versions are strongly recommended build the library: |
| 709 | |
| 710 | * GCC 4.8 |
| 711 | * Clang 3.4 |
| 712 | * Visual Studio 2013 |
rolandschulz | 9b92ed7 | 2017-03-27 17:30:54 -0700 | [diff] [blame] | 713 | * Intel 2015 Update 1 |
Eric | de4ead7 | 2016-08-09 12:31:44 -0600 | [diff] [blame] | 714 | |
| 715 | Anything older *may* work. |
| 716 | |
| 717 | Note: Using the library and its headers in C++03 is supported. C++11 is only |
| 718 | required to build the library. |
Eric Fiselier | 61f570e | 2016-08-30 03:41:58 -0600 | [diff] [blame] | 719 | |
| 720 | # Known Issues |
| 721 | |
| 722 | ### Windows |
| 723 | |
| 724 | * Users must manually link `shlwapi.lib`. Failure to do so may result |
Dominic Hamon | 62c68ba | 2016-09-23 12:44:22 -0700 | [diff] [blame] | 725 | in unresolved symbols. |
| 726 | |