| // Copyright 2019 Google LLC |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| // Implementations for the operations and builtin functions in the Emboss |
| // expression language. |
| #ifndef EMBOSS_RUNTIME_CPP_EMBOSS_ARITHMETIC_H_ |
| #define EMBOSS_RUNTIME_CPP_EMBOSS_ARITHMETIC_H_ |
| |
| #include <cstdint> |
| #include <type_traits> |
| |
| #include "runtime/cpp/emboss_bit_util.h" |
| #include "runtime/cpp/emboss_maybe.h" |
| |
| namespace emboss { |
| namespace support { |
| |
| // Arithmetic operations |
| // |
| // Emboss arithmetic is performed by special-purpose functions, not (directly) |
| // using C++ operators. This allows Emboss to handle the minor differences |
| // between the ways that Emboss operations are defined and the way that C++ |
| // operations are defined, and provides a convenient way to handle arithmetic on |
| // values that might not be readable. |
| // |
| // The biggest differences are: |
| // |
| // Emboss's And and Or are defined to return false or true, respectively, if at |
| // least one operand is false or true, respectively, even if the other operand |
| // is not Known(). This is similar to C/C++ shortcut evaluation, except that it |
| // is symmetric. |
| // |
| // Emboss's expression type system uses (notionally) infinite-size integers, but |
| // it is an error in Emboss if the full range of any subexpression cannot fit in |
| // either [-(2**63), 2**63 - 1] or [0, 2**64 - 1]. Additionally, either all |
| // arguments to and the return type of an operation, if integers, must fit in |
| // int64_t, or they must all fit in uin64_t. This means that C++ integer types |
| // can be used directly for each operation, but casting may be required in |
| // between operations. |
| |
| |
| // AllKnown(...) returns true if all of its arguments are Known(). The base |
| // case is no arguments. |
| inline constexpr bool AllKnown() { return true; } |
| |
| // The rest of AllKnown() could be: |
| // |
| // template <typename T, typename... RestT> |
| // inline constexpr bool AllKnown(T v, RestT... rest) { |
| // return v.Known() && AllKnown(rest...); |
| // } |
| // |
| // ... unfortunately, some compilers do not optimize this well, and it ends |
| // up using linear stack space instead of constant stack space; for complex |
| // structs on systems with limited stack (such as typical microcontrollers), |
| // this can cause methods like Ok() to blow the stack. |
| // |
| // The C++14 solution would be to use a std::initializer_list and iterate over |
| // the arguments. Unfortunately, C++11 std::initializer_list is not |
| // constexpr, and C++11 constexpr does not allow iteration. |
| // |
| // Instead, for "small" numbers of arguments (up to 64, at time of writing, |
| // controlled by OVERLOADS in generators/all_known.py), we have generated |
| // overloads of the form: |
| // |
| // template <typename T0, ... typename TN> |
| // inline constexpr bool AllKnown(T0 v0, ... TN vN) { |
| // return v0.Known() && ... && vN.Known(); |
| // } |
| // |
| // This reduces stack frames by ~64x. |
| #include "emboss_arithmetic_all_known_generated.h" |
| |
| // MaybeDo implements the logic of checking for known values, unwrapping the |
| // known values, passing the unwrapped values to OperatorT, and then rewrapping |
| // the result. |
| template <typename IntermediateT, typename ResultT, typename OperatorT, |
| typename... ArgsT> |
| inline constexpr Maybe<ResultT> MaybeDo(Maybe<ArgsT>... args) { |
| return AllKnown(args...) |
| ? Maybe<ResultT>(static_cast<ResultT>(OperatorT::template Do( |
| static_cast<IntermediateT>(args.ValueOrDefault())...))) |
| : Maybe<ResultT>(); |
| } |
| |
| //// Operations intended to be passed to MaybeDo: |
| |
| struct SumOperation { |
| template <typename T> |
| static inline constexpr T Do(T l, T r) { |
| return l + r; |
| } |
| }; |
| |
| struct DifferenceOperation { |
| template <typename T> |
| static inline constexpr T Do(T l, T r) { |
| return l - r; |
| } |
| }; |
| |
| struct ProductOperation { |
| template <typename T> |
| static inline constexpr T Do(T l, T r) { |
| return l * r; |
| } |
| }; |
| |
| // Assertions for the template types of comparisons. |
| template <typename ResultT, typename LeftT, typename RightT> |
| inline constexpr bool AssertComparisonInPartsTypes() { |
| static_assert(::std::is_same<ResultT, bool>::value, |
| "EMBOSS BUG: Comparisons must return bool."); |
| static_assert( |
| ::std::is_signed<LeftT>::value || ::std::is_signed<RightT>::value, |
| "EMBOSS BUG: Comparisons in parts expect one side to be signed."); |
| static_assert( |
| ::std::is_unsigned<LeftT>::value || ::std::is_unsigned<RightT>::value, |
| "EMBOSS BUG: Comparisons in parts expect one side to be unsigned."); |
| return true; // A literal return type is required for a constexpr function. |
| } |
| |
| struct EqualOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l == r; |
| } |
| }; |
| |
| struct NotEqualOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l != r; |
| } |
| }; |
| |
| struct LessThanOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l < r; |
| } |
| }; |
| |
| struct LessThanOrEqualOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l <= r; |
| } |
| }; |
| |
| struct GreaterThanOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l > r; |
| } |
| }; |
| |
| struct GreaterThanOrEqualOperation { |
| template <typename T> |
| static inline constexpr bool Do(T l, T r) { |
| return l >= r; |
| } |
| }; |
| |
| // MaximumOperation is a bit more complex, in order to handle the variable |
| // number of parameters. |
| struct MaximumOperation { |
| // Maximum of 1 element is just itself. |
| template <typename T> |
| static inline constexpr T Do(T arg) { |
| return arg; |
| } |
| |
| // The rest of MaximumOperation::Do could be: |
| // |
| // template <typename T, typename... RestT> |
| // static inline constexpr T Do(T v0, T v1, RestT... rest) { |
| // return Do(v0 < v1 ? v1 : v0, rest...); |
| // } |
| // |
| // ... unfortunately, some compilers do not optimize this well, and it ends |
| // up using linear stack space instead of constant stack space; for complex |
| // structs on systems with limited stack (such as typical microcontrollers), |
| // this can cause methods like Ok() to blow the stack. |
| // |
| // The C++14 solution would be to use a std::initializer_list and iterate over |
| // the arguments. Unfortunately, C++11 std::initializer_list is not |
| // constexpr, and C++11 constexpr does not allow iteration. |
| // |
| // Instead, we have a small number of hand-written overloads and a large |
| // number (59, at time of writing, controlled by OVERLOADS in |
| // generators/maximum_operation_do.py) of generated overloads, which use |
| // O(lg(N)) stack for "small" numbers of arguments (128 or fewer, at time of |
| // writing), and O(N) stack for more arguments, but with a much, much smaller |
| // constant multiplier: one additional stack frame per 64 arguments, instead |
| // of one per argument. |
| |
| // Maximum of 2-4 elements are special-cased. |
| template <typename T> |
| static inline constexpr T Do(T v0, T v1) { |
| // C++11 std::max is not constexpr, so we can't just call it. |
| return v0 < v1 ? v1 : v0; |
| } |
| |
| template <typename T> |
| static inline constexpr T Do(T v0, T v1, T v2) { |
| return Do(v0 < v1 ? v1 : v0, v2); |
| } |
| |
| template <typename T> |
| static inline constexpr T Do(T v0, T v1, T v2, T v3) { |
| return Do(v0 < v1 ? v1 : v0, v2 < v3 ? v3 : v2); |
| } |
| |
| // The remaining overloads (5+ arguments) are generated by a script and |
| // #included, so that they do not clutter the hand-written code. |
| // |
| // They are of the form: |
| // |
| // template <typename T> |
| // static inline constexpr Do(T v0, ... T vN, T vN_plus_1, ... T v2N) { |
| // return Do(Do(v0, ... vN), Do(vN_plus_1, ... v2N)); |
| // } |
| // |
| // In each case, they cut their argument lists in half, calling Do(Do(first |
| // half), Do(second half)). |
| // |
| // Note that, if there are enough arguments, this still falls back onto |
| // linear-stack-space recursion. |
| #include "emboss_arithmetic_maximum_operation_generated.h" |
| }; |
| |
| //// Special operations, where either un-Known() operands do not always result |
| //// in un-Known() results, or where Known() operands do not always result in |
| //// Known() results. |
| |
| // Assertions for And and Or. |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr bool AssertBooleanOperationTypes() { |
| // And and Or are templates so that the Emboss code generator |
| // doesn't have to special case AND, but they should only be instantiated with |
| // <bool, bool, bool>. This pushes a bit of extra work onto the C++ compiler. |
| static_assert(::std::is_same<IntermediateT, bool>::value, |
| "EMBOSS BUG: Boolean operations must have bool IntermediateT."); |
| static_assert(::std::is_same<ResultT, bool>::value, |
| "EMBOSS BUG: Boolean operations must return bool."); |
| static_assert(::std::is_same<LeftT, bool>::value, |
| "EMBOSS BUG: Boolean operations require boolean operands."); |
| static_assert(::std::is_same<RightT, bool>::value, |
| "EMBOSS BUG: Boolean operations require boolean operands."); |
| return true; // A literal return type is required for a constexpr function. |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> And(Maybe<LeftT> l, Maybe<RightT> r) { |
| // If either value is false, the result is false, even if the other value is |
| // unknown. Otherwise, if either value is unknown, the result is unknown. |
| // Otherwise, both values are true, and the result is true. |
| return AssertBooleanOperationTypes<IntermediateT, ResultT, LeftT, RightT>(), |
| !l.ValueOr(true) || !r.ValueOr(true) |
| ? Maybe<ResultT>(false) |
| : (!l.Known() || !r.Known() ? Maybe<ResultT>() |
| : Maybe<ResultT>(true)); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> Or(Maybe<LeftT> l, Maybe<RightT> r) { |
| // If either value is true, the result is true, even if the other value is |
| // unknown. Otherwise, if either value is unknown, the result is unknown. |
| // Otherwise, both values are false, and the result is false. |
| return AssertBooleanOperationTypes<IntermediateT, ResultT, LeftT, RightT>(), |
| l.ValueOr(false) || r.ValueOr(false) |
| ? Maybe<ResultT>(true) |
| : (!l.Known() || !r.Known() ? Maybe<ResultT>() |
| : Maybe<ResultT>(false)); |
| } |
| |
| template <typename ResultT, typename ValueT> |
| inline constexpr Maybe<ResultT> MaybeStaticCast(Maybe<ValueT> value) { |
| return value.Known() |
| ? Maybe<ResultT>(static_cast<ResultT>(value.ValueOrDefault())) |
| : Maybe<ResultT>(); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename ConditionT, |
| typename TrueT, typename FalseT> |
| inline constexpr Maybe<ResultT> Choice(Maybe<ConditionT> condition, |
| Maybe<TrueT> if_true, |
| Maybe<FalseT> if_false) { |
| // Since the result of a condition could be any value from either if_true or |
| // if_false, it should be the same type as IntermediateT. |
| static_assert(::std::is_same<IntermediateT, ResultT>::value, |
| "Choice's IntermediateT should be the same as ResultT."); |
| static_assert(::std::is_same<ConditionT, bool>::value, |
| "Choice operation requires a boolean condition."); |
| // If the condition is un-Known(), then the result is un-Known(). Otherwise, |
| // the result is if_true if condition, or if_false if not condition. For |
| // integral types, ResultT may differ from TrueT or FalseT, so Known() results |
| // must be unwrapped, cast to ResultT, and re-wrapped in Maybe<ResultT>. For |
| // non-integral TrueT/FalseT/ResultT, the cast is unnecessary, but safe. |
| return condition.Known() ? condition.ValueOrDefault() |
| ? MaybeStaticCast<ResultT, TrueT>(if_true) |
| : MaybeStaticCast<ResultT, FalseT>(if_false) |
| : Maybe<ResultT>(); |
| } |
| |
| //// From here down: boilerplate instantiations of the various operations, which |
| //// only forward to MaybeDo: |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> Sum(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, SumOperation, LeftT, RightT>(l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> Difference(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, DifferenceOperation, LeftT, RightT>(l, |
| r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> Product(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, ProductOperation, LeftT, RightT>(l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> Equal(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, EqualOperation, LeftT, RightT>(l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> NotEqual(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, NotEqualOperation, LeftT, RightT>(l, |
| r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> LessThan(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, LessThanOperation, LeftT, RightT>(l, |
| r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> LessThanOrEqual(Maybe<LeftT> l, |
| Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, LessThanOrEqualOperation, LeftT, |
| RightT>(l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> GreaterThan(Maybe<LeftT> l, Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, GreaterThanOperation, LeftT, RightT>( |
| l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename LeftT, |
| typename RightT> |
| inline constexpr Maybe<ResultT> GreaterThanOrEqual(Maybe<LeftT> l, |
| Maybe<RightT> r) { |
| return MaybeDo<IntermediateT, ResultT, GreaterThanOrEqualOperation, LeftT, |
| RightT>(l, r); |
| } |
| |
| template <typename IntermediateT, typename ResultT, typename... ArgsT> |
| inline constexpr Maybe<ResultT> Maximum(Maybe<ArgsT>... args) { |
| return MaybeDo<IntermediateT, ResultT, MaximumOperation, ArgsT...>(args...); |
| } |
| |
| } // namespace support |
| } // namespace emboss |
| |
| #endif // EMBOSS_RUNTIME_CPP_EMBOSS_ARITHMETIC_H_ |