blob: 752371f88195226da9299b0accadc310711904bc [file] [log] [blame]
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization for the Emboss definition language.
This module exports the tokenize function and various errors.
In addition, a couple of lists are exported for the use of
generate_grammar_md.py:
LITERAL_TOKEN_PATTERNS: A list of literal strings which are matched against
input.
REGEX_TOKEN_PATTERNS: A list of regexes used for tokenization.
REGEX_TOKEN_PATTERNS[n].regex is an re.RegexObject
(REGEX_TOKEN_PATTERNS[n].regex.pattern contains the text of the pattern), and
REGEX_TOKEN_PATTERNS[n].symbol is the name of the symbol assigned to tokens
which match the pattern.
"""
import collections
import re
from compiler.util import error
from compiler.util import parser_types
def tokenize(text, file_name):
# TODO(bolms): suppress end-of-line, indent, and dedent tokens between matched
# delimiters ([], (), and {}).
"""Tokenizes its argument.
Arguments:
text: The raw text of a .emb file.
file_name: The name of the file to use in errors.
Returns:
A tuple of:
a list of parser_types.Tokens or None
a possibly-empty list of errors.
"""
tokens = []
indent_stack = [""]
line_number = 0
for line in text.splitlines():
line_number += 1
# _tokenize_line splits the actual text into tokens.
line_tokens, errors = _tokenize_line(line, line_number, file_name)
if errors:
return None, errors
# Lines with only whitespace and comments are not used for Indent/Dedent
# calculation, and do not produce end-of-line tokens.
for token in line_tokens:
if token.symbol != "Comment":
break
else:
tokens.extend(line_tokens)
tokens.append(parser_types.Token(
'"\\n"', "\n", parser_types.make_location(
(line_number, len(line) + 1), (line_number, len(line) + 1))))
continue
# Leading whitespace is whatever .lstrip() removes.
leading_whitespace = line[0:len(line) - len(line.lstrip())]
if leading_whitespace == indent_stack[-1]:
# If the current leading whitespace is equal to the last leading
# whitespace, do not emit an Indent or Dedent token.
pass
elif leading_whitespace.startswith(indent_stack[-1]):
# If the current leading whitespace is longer than the last leading
# whitespace, emit an Indent token. For the token text, take the new
# part of the whitespace.
tokens.append(
parser_types.Token(
"Indent", leading_whitespace[len(indent_stack[-1]):],
parser_types.make_location(
(line_number, len(indent_stack[-1]) + 1),
(line_number, len(leading_whitespace) + 1))))
indent_stack.append(leading_whitespace)
else:
# Otherwise, search for the unclosed indentation level that matches
# the current indentation level. Emit a Dedent token for each
# newly-closed indentation level.
for i in range(len(indent_stack) - 1, -1, -1):
if leading_whitespace == indent_stack[i]:
break
tokens.append(
parser_types.Token("Dedent", "", parser_types.make_location(
(line_number, len(leading_whitespace) + 1),
(line_number, len(leading_whitespace) + 1))))
del indent_stack[i]
else:
return None, [[error.error(
file_name, parser_types.make_location(
(line_number, 1), (line_number, len(leading_whitespace) + 1)),
"Bad indentation")]]
tokens.extend(line_tokens)
# Append an end-of-line token (for non-whitespace lines).
tokens.append(parser_types.Token(
'"\\n"', "\n", parser_types.make_location(
(line_number, len(line) + 1), (line_number, len(line) + 1))))
for i in range(len(indent_stack) - 1):
tokens.append(parser_types.Token("Dedent", "", parser_types.make_location(
(line_number + 1, 1), (line_number + 1, 1))))
return tokens, []
# Token patterns used by _tokenize_line.
LITERAL_TOKEN_PATTERNS = (
"[ ] ( ) : = + - * . ? == != && || < > <= >= , "
"$static_size_in_bits $is_statically_sized "
"$max $present $upper_bound $lower_bound $next "
"$size_in_bits $size_in_bytes "
"$max_size_in_bits $max_size_in_bytes $min_size_in_bits $min_size_in_bytes "
"$default struct bits enum external import as if let").split()
_T = collections.namedtuple("T", ["regex", "symbol"])
REGEX_TOKEN_PATTERNS = [
# Words starting with variations of "emboss reserved" are reserved for
# internal use by the Emboss compiler.
_T(re.compile(r"EmbossReserved[A-Za-z0-9]*"), "BadWord"),
_T(re.compile(r"emboss_reserved[_a-z0-9]*"), "BadWord"),
_T(re.compile(r"EMBOSS_RESERVED[_A-Z0-9]*"), "BadWord"),
_T(re.compile(r'"(?:[^"\n\\]|\\[n\\"])*"'), "String"),
_T(re.compile("[0-9]+"), "Number"),
_T(re.compile("[0-9]{1,3}(?:_[0-9]{3})*"), "Number"),
_T(re.compile("0x[0-9a-fA-F]+"), "Number"),
_T(re.compile("0x_?[0-9a-fA-F]{1,4}(?:_[0-9a-fA-F]{4})*"), "Number"),
_T(re.compile("0x_?[0-9a-fA-F]{1,8}(?:_[0-9a-fA-F]{8})*"), "Number"),
_T(re.compile("0b[01]+"), "Number"),
_T(re.compile("0b_?[01]{1,4}(?:_[01]{4})*"), "Number"),
_T(re.compile("0b_?[01]{1,8}(?:_[01]{8})*"), "Number"),
_T(re.compile("true|false"), "BooleanConstant"),
_T(re.compile("[a-z][a-z_0-9]*"), "SnakeWord"),
# Single-letter ShoutyWords (like "A") and single-letter-followed-by-number
# ShoutyWords ("A100") are disallowed due to ambiguity with CamelWords. A
# ShoutyWord must start with an upper case letter and contain at least one
# more upper case letter or '_'.
_T(re.compile("[A-Z][A-Z_0-9]*[A-Z_][A-Z_0-9]*"), "ShoutyWord"),
# A CamelWord starts with A-Z and contains at least one a-z, and no _.
_T(re.compile("[A-Z][a-zA-Z0-9]*[a-z][a-zA-Z0-9]*"), "CamelWord"),
_T(re.compile("-- .*"), "Documentation"),
_T(re.compile("--$"), "Documentation"),
_T(re.compile("--.*"), "BadDocumentation"),
_T(re.compile(r"\s+"), None),
_T(re.compile("#.*"), "Comment"),
# BadWord and BadNumber are a catch-alls for words and numbers so that
# something like "abcDef" doesn't tokenize to [SnakeWord, CamelWord].
#
# This is preferable to returning an error because the BadWord and BadNumber
# token types can be used in example-based errors.
_T(re.compile("[0-9][bxBX]?[0-9a-fA-F_]*"), "BadNumber"),
_T(re.compile("[a-zA-Z_$0-9]+"), "BadWord"),
]
del _T
def _tokenize_line(line, line_number, file_name):
"""Tokenizes a single line of input.
Arguments:
line: The line of text to tokenize.
line_number: The line number (used when constructing token objects).
file_name: The name of a file to use in errors.
Returns:
A tuple of:
A list of token objects or None.
A possibly-empty list of errors.
"""
tokens = []
offset = 0
while offset < len(line):
best_candidate = ""
best_candidate_symbol = None
# Find the longest match. Ties go to the first match. This way, keywords
# ("struct") are matched as themselves, but words that only happen to start
# with keywords ("structure") are matched as words.
#
# There is never a reason to try to match a literal after a regex that
# could also match that literal, so check literals first.
for literal in LITERAL_TOKEN_PATTERNS:
if line[offset:].startswith(literal) and len(literal) > len(
best_candidate):
best_candidate = literal
# For Emboss, the name of a literal token is just the literal in quotes,
# so that the grammar can read a little more naturally, e.g.:
#
# expression -> expression "+" expression
#
# instead of
#
# expression -> expression Plus expression
best_candidate_symbol = '"' + literal + '"'
for pattern in REGEX_TOKEN_PATTERNS:
match_result = pattern.regex.match(line[offset:])
if match_result and len(match_result.group(0)) > len(best_candidate):
best_candidate = match_result.group(0)
best_candidate_symbol = pattern.symbol
if not best_candidate:
return None, [[error.error(
file_name, parser_types.make_location(
(line_number, offset + 1), (line_number, offset + 2)),
"Unrecognized token")]]
if best_candidate_symbol:
tokens.append(parser_types.Token(
best_candidate_symbol, best_candidate, parser_types.make_location(
(line_number, offset + 1),
(line_number, offset + len(best_candidate) + 1))))
offset += len(best_candidate)
return tokens, None