| /* |
| * Copyright (c) 2011-2014, Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Misc utilities |
| * |
| * Misc utilities usable by the kernel and application code. |
| */ |
| |
| #ifndef _UTIL__H_ |
| #define _UTIL__H_ |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| #ifndef _ASMLANGUAGE |
| |
| #include <zephyr/types.h> |
| |
| /* Helper to pass a int as a pointer or vice-versa. |
| * Those are available for 32 bits architectures: |
| */ |
| #define POINTER_TO_UINT(x) ((u32_t) (x)) |
| #define UINT_TO_POINTER(x) ((void *) (x)) |
| #define POINTER_TO_INT(x) ((s32_t) (x)) |
| #define INT_TO_POINTER(x) ((void *) (x)) |
| |
| /* Evaluates to 0 if cond is true-ish; compile error otherwise */ |
| #define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1) |
| |
| /* Evaluates to 0 if array is an array; compile error if not array (e.g. |
| * pointer) |
| */ |
| #define IS_ARRAY(array) \ |
| ZERO_OR_COMPILE_ERROR( \ |
| !__builtin_types_compatible_p(__typeof__(array), \ |
| __typeof__(&(array)[0]))) |
| |
| /* Evaluates to number of elements in an array; compile error if not |
| * an array (e.g. pointer) |
| */ |
| #define ARRAY_SIZE(array) \ |
| ((unsigned long) (IS_ARRAY(array) + \ |
| (sizeof(array) / sizeof((array)[0])))) |
| |
| /* Evaluates to 1 if ptr is part of array, 0 otherwise; compile error if |
| * "array" argument is not an array (e.g. "ptr" and "array" mixed up) |
| */ |
| #define PART_OF_ARRAY(array, ptr) \ |
| ((ptr) && ((ptr) >= &array[0] && (ptr) < &array[ARRAY_SIZE(array)])) |
| |
| #define CONTAINER_OF(ptr, type, field) \ |
| ((type *)(((char *)(ptr)) - offsetof(type, field))) |
| |
| /* round "x" up/down to next multiple of "align" (which must be a power of 2) */ |
| #define ROUND_UP(x, align) \ |
| (((unsigned long)(x) + ((unsigned long)align - 1)) & \ |
| ~((unsigned long)align - 1)) |
| #define ROUND_DOWN(x, align) ((unsigned long)(x) & ~((unsigned long)align - 1)) |
| |
| #define ceiling_fraction(numerator, divider) \ |
| (((numerator) + ((divider) - 1)) / (divider)) |
| |
| #ifdef INLINED |
| #define INLINE inline |
| #else |
| #define INLINE |
| #endif |
| |
| #ifndef max |
| #define max(a, b) (((a) > (b)) ? (a) : (b)) |
| #endif |
| |
| #ifndef min |
| #define min(a, b) (((a) < (b)) ? (a) : (b)) |
| #endif |
| |
| static inline int is_power_of_two(unsigned int x) |
| { |
| return (x != 0) && !(x & (x - 1)); |
| } |
| |
| static inline s64_t arithmetic_shift_right(s64_t value, u8_t shift) |
| { |
| s64_t sign_ext; |
| |
| if (shift == 0) { |
| return value; |
| } |
| |
| /* extract sign bit */ |
| sign_ext = (value >> 63) & 1; |
| |
| /* make all bits of sign_ext be the same as the value's sign bit */ |
| sign_ext = -sign_ext; |
| |
| /* shift value and fill opened bit positions with sign bit */ |
| return (value >> shift) | (sign_ext << (64 - shift)); |
| } |
| |
| #endif /* !_ASMLANGUAGE */ |
| |
| /* KB, MB, GB */ |
| #define KB(x) ((x) << 10) |
| #define MB(x) (KB(x) << 10) |
| #define GB(x) (MB(x) << 10) |
| |
| /* KHZ, MHZ */ |
| #define KHZ(x) ((x) * 1000) |
| #define MHZ(x) (KHZ(x) * 1000) |
| |
| #ifndef BIT |
| #define BIT(n) (1UL << (n)) |
| #endif |
| |
| #define BIT_MASK(n) (BIT(n) - 1) |
| |
| /** |
| * @brief Check for macro definition in compiler-visible expressions |
| * |
| * This trick was pioneered in Linux as the config_enabled() macro. |
| * The madness has the effect of taking a macro value that may be |
| * defined to "1" (e.g. CONFIG_MYFEATURE), or may not be defined at |
| * all and turning it into a literal expression that can be used at |
| * "runtime". That is, it works similarly to |
| * "defined(CONFIG_MYFEATURE)" does except that it is an expansion |
| * that can exist in a standard expression and be seen by the compiler |
| * and optimizer. Thus much ifdef usage can be replaced with cleaner |
| * expressions like: |
| * |
| * if (IS_ENABLED(CONFIG_MYFEATURE)) |
| * myfeature_enable(); |
| * |
| * INTERNAL |
| * First pass just to expand any existing macros, we need the macro |
| * value to be e.g. a literal "1" at expansion time in the next macro, |
| * not "(1)", etc... Standard recursive expansion does not work. |
| */ |
| #define IS_ENABLED(config_macro) _IS_ENABLED1(config_macro) |
| |
| /* Now stick on a "_XXXX" prefix, it will now be "_XXXX1" if config_macro |
| * is "1", or just "_XXXX" if it's undefined. |
| * ENABLED: _IS_ENABLED2(_XXXX1) |
| * DISABLED _IS_ENABLED2(_XXXX) |
| */ |
| #define _IS_ENABLED1(config_macro) _IS_ENABLED2(_XXXX##config_macro) |
| |
| /* Here's the core trick, we map "_XXXX1" to "_YYYY," (i.e. a string |
| * with a trailing comma), so it has the effect of making this a |
| * two-argument tuple to the preprocessor only in the case where the |
| * value is defined to "1" |
| * ENABLED: _YYYY, <--- note comma! |
| * DISABLED: _XXXX |
| */ |
| #define _XXXX1 _YYYY, |
| |
| /* Then we append an extra argument to fool the gcc preprocessor into |
| * accepting it as a varargs macro. |
| * arg1 arg2 arg3 |
| * ENABLED: _IS_ENABLED3(_YYYY, 1, 0) |
| * DISABLED _IS_ENABLED3(_XXXX 1, 0) |
| */ |
| #define _IS_ENABLED2(one_or_two_args) _IS_ENABLED3(one_or_two_args 1, 0) |
| |
| /* And our second argument is thus now cooked to be 1 in the case |
| * where the value is defined to 1, and 0 if not: |
| */ |
| #define _IS_ENABLED3(ignore_this, val, ...) val |
| |
| /** |
| * Macros for doing code-generation with the preprocessor. |
| * |
| * Generally it is better to generate code with the preprocessor than |
| * to copy-paste code or to generate code with the build system / |
| * python script's etc. |
| * |
| * http://stackoverflow.com/a/12540675 |
| */ |
| #define UTIL_EMPTY(...) |
| #define UTIL_DEFER(...) __VA_ARGS__ UTIL_EMPTY() |
| #define UTIL_OBSTRUCT(...) __VA_ARGS__ UTIL_DEFER(UTIL_EMPTY)() |
| #define UTIL_EXPAND(...) __VA_ARGS__ |
| |
| #define UTIL_EVAL(...) UTIL_EVAL1(UTIL_EVAL1(UTIL_EVAL1(__VA_ARGS__))) |
| #define UTIL_EVAL1(...) UTIL_EVAL2(UTIL_EVAL2(UTIL_EVAL2(__VA_ARGS__))) |
| #define UTIL_EVAL2(...) UTIL_EVAL3(UTIL_EVAL3(UTIL_EVAL3(__VA_ARGS__))) |
| #define UTIL_EVAL3(...) UTIL_EVAL4(UTIL_EVAL4(UTIL_EVAL4(__VA_ARGS__))) |
| #define UTIL_EVAL4(...) UTIL_EVAL5(UTIL_EVAL5(UTIL_EVAL5(__VA_ARGS__))) |
| #define UTIL_EVAL5(...) __VA_ARGS__ |
| |
| #define UTIL_CAT(a, ...) UTIL_PRIMITIVE_CAT(a, __VA_ARGS__) |
| #define UTIL_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__ |
| |
| #define UTIL_INC(x) UTIL_PRIMITIVE_CAT(UTIL_INC_, x) |
| #define UTIL_INC_0 1 |
| #define UTIL_INC_1 2 |
| #define UTIL_INC_2 3 |
| #define UTIL_INC_3 4 |
| #define UTIL_INC_4 5 |
| #define UTIL_INC_5 6 |
| #define UTIL_INC_6 7 |
| #define UTIL_INC_7 8 |
| #define UTIL_INC_8 9 |
| #define UTIL_INC_9 10 |
| #define UTIL_INC_10 11 |
| #define UTIL_INC_11 12 |
| #define UTIL_INC_12 13 |
| #define UTIL_INC_13 14 |
| #define UTIL_INC_14 15 |
| #define UTIL_INC_15 16 |
| #define UTIL_INC_16 17 |
| #define UTIL_INC_17 18 |
| #define UTIL_INC_18 19 |
| #define UTIL_INC_19 19 |
| |
| #define UTIL_DEC(x) UTIL_PRIMITIVE_CAT(UTIL_DEC_, x) |
| #define UTIL_DEC_0 0 |
| #define UTIL_DEC_1 0 |
| #define UTIL_DEC_2 1 |
| #define UTIL_DEC_3 2 |
| #define UTIL_DEC_4 3 |
| #define UTIL_DEC_5 4 |
| #define UTIL_DEC_6 5 |
| #define UTIL_DEC_7 6 |
| #define UTIL_DEC_8 7 |
| #define UTIL_DEC_9 8 |
| #define UTIL_DEC_10 9 |
| #define UTIL_DEC_11 10 |
| #define UTIL_DEC_12 11 |
| #define UTIL_DEC_13 12 |
| #define UTIL_DEC_14 13 |
| #define UTIL_DEC_15 14 |
| #define UTIL_DEC_16 15 |
| #define UTIL_DEC_17 16 |
| #define UTIL_DEC_18 17 |
| #define UTIL_DEC_19 18 |
| |
| #define UTIL_CHECK_N(x, n, ...) n |
| #define UTIL_CHECK(...) UTIL_CHECK_N(__VA_ARGS__, 0,) |
| |
| #define UTIL_NOT(x) UTIL_CHECK(UTIL_PRIMITIVE_CAT(UTIL_NOT_, x)) |
| #define UTIL_NOT_0 ~, 1, |
| |
| #define UTIL_COMPL(b) UTIL_PRIMITIVE_CAT(UTIL_COMPL_, b) |
| #define UTIL_COMPL_0 1 |
| #define UTIL_COMPL_1 0 |
| |
| #define UTIL_BOOL(x) UTIL_COMPL(UTIL_NOT(x)) |
| |
| #define UTIL_IIF(c) UTIL_PRIMITIVE_CAT(UTIL_IIF_, c) |
| #define UTIL_IIF_0(t, ...) __VA_ARGS__ |
| #define UTIL_IIF_1(t, ...) t |
| |
| #define UTIL_IF(c) UTIL_IIF(UTIL_BOOL(c)) |
| |
| #define UTIL_EAT(...) |
| #define UTIL_EXPAND(...) __VA_ARGS__ |
| #define UTIL_WHEN(c) UTIL_IF(c)(UTIL_EXPAND, UTIL_EAT) |
| |
| #define UTIL_REPEAT(count, macro, ...) \ |
| UTIL_WHEN(count) \ |
| ( \ |
| UTIL_OBSTRUCT(UTIL_REPEAT_INDIRECT) () \ |
| ( \ |
| UTIL_DEC(count), macro, __VA_ARGS__ \ |
| ) \ |
| UTIL_OBSTRUCT(macro) \ |
| ( \ |
| UTIL_DEC(count), __VA_ARGS__ \ |
| ) \ |
| ) |
| #define UTIL_REPEAT_INDIRECT() UTIL_REPEAT |
| |
| /** |
| * Generates a sequence of code. |
| * Useful for generating code like; |
| * |
| * NRF_PWM0, NRF_PWM1, NRF_PWM2, |
| * |
| * @arg LEN: The length of the sequence. Must be defined and less than |
| * 20. |
| * |
| * @arg F(i, F_ARG): A macro function that accepts two arguments. |
| * F is called repeatedly, the first argument |
| * is the index in the sequence, and the second argument is the third |
| * argument given to UTIL_LISTIFY. |
| * |
| * Example: |
| * |
| * \#define FOO(i, _) NRF_PWM ## i , |
| * { UTIL_LISTIFY(PWM_COUNT, FOO) } |
| * // The above two lines will generate the below: |
| * { NRF_PWM0 , NRF_PWM1 , } |
| * |
| * @note Calling UTIL_LISTIFY with undefined arguments has undefined |
| * behaviour. |
| */ |
| #define UTIL_LISTIFY(LEN, F, F_ARG) UTIL_EVAL(UTIL_REPEAT(LEN, F, F_ARG)) |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif /* _UTIL__H_ */ |