blob: bd5d8b2faf0467e088d8cc9c22008a6abd092f96 [file] [log] [blame]
/* ST Microelectronics LIS2DU12 3-axis accelerometer sensor driver
*
* Copyright (c) 2023 STMicroelectronics
*
* SPDX-License-Identifier: Apache-2.0
*
* Datasheet:
* https://www.st.com/resource/en/datasheet/lis2du12.pdf
*/
#define DT_DRV_COMPAT st_lis2du12
#include <zephyr/drivers/sensor.h>
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <string.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/sys/__assert.h>
#include <zephyr/logging/log.h>
#include "lis2du12.h"
LOG_MODULE_REGISTER(LIS2DU12, CONFIG_SENSOR_LOG_LEVEL);
static const float lis2du12_odr_map[14] = {
0.0f, 1.6f, 3.0f, 6.0f, 6.0f, 12.5f, 25.0f,
50.0f, 100.0f, 200.0f, 400.0f, 800.0f, 0.0f, 0.0f};
static int lis2du12_freq_to_odr_val(const struct device *dev, uint16_t freq)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lis2du12_odr_map); i++) {
if (freq <= lis2du12_odr_map[i]) {
return i;
}
}
return -EINVAL;
}
static const uint16_t lis2du12_accel_fs_map[] = {2, 4, 8, 16};
static int lis2du12_accel_range_to_fs_val(int32_t range)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(lis2du12_accel_fs_map); i++) {
if (range == lis2du12_accel_fs_map[i]) {
return i;
}
}
return -EINVAL;
}
static inline int lis2du12_reboot(const struct device *dev)
{
const struct lis2du12_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
lis2du12_status_t status;
uint8_t tries = 10;
if (lis2du12_init_set(ctx, LIS2DU12_RESET) < 0) {
return -EIO;
}
do {
if (!--tries) {
LOG_ERR("sw reset timed out");
return -ETIMEDOUT;
}
k_usleep(50);
if (lis2du12_status_get(ctx, &status) < 0) {
return -EIO;
}
} while (status.sw_reset != 0);
if (lis2du12_init_set(ctx, LIS2DU12_DRV_RDY) < 0) {
return -EIO;
}
return 0;
}
static int lis2du12_accel_set_fs_raw(const struct device *dev, uint8_t fs)
{
const struct lis2du12_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lis2du12_data *data = dev->data;
lis2du12_md_t mode;
if (lis2du12_mode_get(ctx, &mode) < 0) {
return -EIO;
}
mode.fs = fs;
if (lis2du12_mode_set(ctx, &mode) < 0) {
return -EIO;
}
data->accel_fs = fs;
return 0;
}
static int lis2du12_accel_set_odr_raw(const struct device *dev, uint8_t odr)
{
const struct lis2du12_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lis2du12_data *data = dev->data;
lis2du12_md_t mode;
if (lis2du12_mode_get(ctx, &mode) < 0) {
return -EIO;
}
mode.odr = odr;
if (lis2du12_mode_set(ctx, &mode) < 0) {
return -EIO;
}
data->accel_freq = odr;
return 0;
}
static int lis2du12_accel_odr_set(const struct device *dev, uint16_t freq)
{
int odr;
odr = lis2du12_freq_to_odr_val(dev, freq);
if (odr < 0) {
return odr;
}
if (lis2du12_accel_set_odr_raw(dev, odr) < 0) {
LOG_ERR("failed to set accelerometer sampling rate");
return -EIO;
}
return 0;
}
static int lis2du12_accel_range_set(const struct device *dev, int32_t range)
{
int fs;
struct lis2du12_data *data = dev->data;
fs = lis2du12_accel_range_to_fs_val(range);
if (fs < 0) {
return fs;
}
if (lis2du12_accel_set_fs_raw(dev, fs) < 0) {
LOG_ERR("failed to set accelerometer full-scale");
return -EIO;
}
data->acc_gain = lis2du12_accel_fs_map[fs] * GAIN_UNIT_XL / 2;
return 0;
}
static int lis2du12_accel_config(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (attr) {
case SENSOR_ATTR_FULL_SCALE:
return lis2du12_accel_range_set(dev, sensor_ms2_to_g(val));
case SENSOR_ATTR_SAMPLING_FREQUENCY:
return lis2du12_accel_odr_set(dev, val->val1);
default:
LOG_WRN("Accel attribute %d not supported.", attr);
return -ENOTSUP;
}
return 0;
}
static int lis2du12_attr_set(const struct device *dev,
enum sensor_channel chan,
enum sensor_attribute attr,
const struct sensor_value *val)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
return lis2du12_accel_config(dev, chan, attr, val);
default:
LOG_WRN("attribute %d not supported on this channel.", chan);
return -ENOTSUP;
}
return 0;
}
static int lis2du12_sample_fetch_accel(const struct device *dev)
{
const struct lis2du12_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lis2du12_data *data = dev->data;
lis2du12_data_t xl_data;
lis2du12_md_t md;
md.fs = cfg->accel_range;
if (lis2du12_data_get(ctx, &md, &xl_data) < 0) {
LOG_ERR("Failed to read sample");
return -EIO;
}
data->acc[0] = xl_data.xl.raw[0];
data->acc[1] = xl_data.xl.raw[1];
data->acc[2] = xl_data.xl.raw[2];
return 0;
}
static int lis2du12_sample_fetch(const struct device *dev,
enum sensor_channel chan)
{
switch (chan) {
case SENSOR_CHAN_ACCEL_XYZ:
lis2du12_sample_fetch_accel(dev);
break;
case SENSOR_CHAN_ALL:
lis2du12_sample_fetch_accel(dev);
break;
default:
return -ENOTSUP;
}
return 0;
}
static inline void lis2du12_accel_convert(struct sensor_value *val, int raw_val,
uint32_t sensitivity)
{
int64_t dval;
/* Sensitivity is exposed in ug/LSB */
/* Convert to m/s^2 */
dval = (int64_t)(raw_val) * sensitivity * SENSOR_G_DOUBLE;
val->val1 = (int32_t)(dval / 1000000);
val->val2 = (int32_t)(dval % 1000000);
}
static inline int lis2du12_accel_get_channel(enum sensor_channel chan,
struct sensor_value *val,
struct lis2du12_data *data,
uint32_t sensitivity)
{
uint8_t i;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
lis2du12_accel_convert(val, data->acc[0], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Y:
lis2du12_accel_convert(val, data->acc[1], sensitivity);
break;
case SENSOR_CHAN_ACCEL_Z:
lis2du12_accel_convert(val, data->acc[2], sensitivity);
break;
case SENSOR_CHAN_ACCEL_XYZ:
for (i = 0; i < 3; i++) {
lis2du12_accel_convert(val++, data->acc[i], sensitivity);
}
break;
default:
return -ENOTSUP;
}
return 0;
}
static int lis2du12_accel_channel_get(enum sensor_channel chan,
struct sensor_value *val,
struct lis2du12_data *data)
{
return lis2du12_accel_get_channel(chan, val, data, data->acc_gain);
}
static int lis2du12_channel_get(const struct device *dev,
enum sensor_channel chan,
struct sensor_value *val)
{
struct lis2du12_data *data = dev->data;
switch (chan) {
case SENSOR_CHAN_ACCEL_X:
case SENSOR_CHAN_ACCEL_Y:
case SENSOR_CHAN_ACCEL_Z:
case SENSOR_CHAN_ACCEL_XYZ:
lis2du12_accel_channel_get(chan, val, data);
break;
default:
return -ENOTSUP;
}
return 0;
}
static const struct sensor_driver_api lis2du12_driver_api = {
.attr_set = lis2du12_attr_set,
#if CONFIG_LIS2DU12_TRIGGER
.trigger_set = lis2du12_trigger_set,
#endif
.sample_fetch = lis2du12_sample_fetch,
.channel_get = lis2du12_channel_get,
};
static int lis2du12_init_chip(const struct device *dev)
{
const struct lis2du12_config *cfg = dev->config;
stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx;
struct lis2du12_data *lis2du12 = dev->data;
lis2du12_id_t chip_id;
uint8_t odr, fs;
if (lis2du12_id_get(ctx, &chip_id) < 0) {
LOG_ERR("Failed reading chip id");
return -EIO;
}
LOG_INF("chip id 0x%x", chip_id.whoami);
if (chip_id.whoami != LIS2DU12_ID) {
LOG_ERR("Invalid chip id 0x%x", chip_id.whoami);
return -EIO;
}
/* reboot device */
if (lis2du12_reboot(dev) < 0) {
return -EIO;
}
/* set FS from DT */
fs = cfg->accel_range;
LOG_DBG("accel range is %d", fs);
if (lis2du12_accel_set_fs_raw(dev, fs) < 0) {
LOG_ERR("failed to set accelerometer range %d", fs);
return -EIO;
}
lis2du12->acc_gain = lis2du12_accel_fs_map[fs] * GAIN_UNIT_XL / 2;
/* set odr from DT (the only way to go in high performance) */
odr = cfg->accel_odr;
LOG_DBG("accel odr is %d", odr);
if (lis2du12_accel_set_odr_raw(dev, odr) < 0) {
LOG_ERR("failed to set accelerometer odr %d", odr);
return -EIO;
}
return 0;
}
static int lis2du12_init(const struct device *dev)
{
#ifdef CONFIG_LIS2DU12_TRIGGER
const struct lis2du12_config *cfg = dev->config;
#endif
struct lis2du12_data *data = dev->data;
LOG_INF("Initialize device %s", dev->name);
data->dev = dev;
if (lis2du12_init_chip(dev) < 0) {
LOG_ERR("failed to initialize chip");
return -EIO;
}
#ifdef CONFIG_LIS2DU12_TRIGGER
if (cfg->trig_enabled) {
if (lis2du12_init_interrupt(dev) < 0) {
LOG_ERR("Failed to initialize interrupt.");
return -EIO;
}
}
#endif
return 0;
}
/*
* Device creation macro, shared by LIS2DU12_DEFINE_SPI() and
* LIS2DU12_DEFINE_I2C().
*/
#define LIS2DU12_DEVICE_INIT(inst) \
SENSOR_DEVICE_DT_INST_DEFINE(inst, \
lis2du12_init, \
NULL, \
&lis2du12_data_##inst, \
&lis2du12_config_##inst, \
POST_KERNEL, \
CONFIG_SENSOR_INIT_PRIORITY, \
&lis2du12_driver_api);
/*
* Instantiation macros used when a device is on a SPI bus.
*/
#ifdef CONFIG_LIS2DU12_TRIGGER
#define LIS2DU12_CFG_IRQ(inst) \
.trig_enabled = true, \
.int1_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int1_gpios, { 0 }), \
.int2_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int2_gpios, { 0 }), \
.drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \
.drdy_pin = DT_INST_PROP(inst, drdy_pin)
#else
#define LIS2DU12_CFG_IRQ(inst)
#endif /* CONFIG_LIS2DU12_TRIGGER */
#define LIS2DU12_SPI_OP (SPI_WORD_SET(8) | \
SPI_OP_MODE_MASTER | \
SPI_MODE_CPOL | \
SPI_MODE_CPHA) \
#define LIS2DU12_CONFIG_COMMON(inst) \
.accel_odr = DT_INST_PROP(inst, accel_odr), \
.accel_range = DT_INST_PROP(inst, accel_range), \
IF_ENABLED(UTIL_OR(DT_INST_NODE_HAS_PROP(inst, int1_gpios), \
DT_INST_NODE_HAS_PROP(inst, int2_gpios)), \
(LIS2DU12_CFG_IRQ(inst)))
/*
* Instantiation macros used when a device is on a SPI bus.
*/
#define LIS2DU12_CONFIG_SPI(inst) \
{ \
STMEMSC_CTX_SPI(&lis2du12_config_##inst.stmemsc_cfg), \
.stmemsc_cfg = { \
.spi = SPI_DT_SPEC_INST_GET(inst, \
LIS2DU12_SPI_OP, \
0), \
}, \
LIS2DU12_CONFIG_COMMON(inst) \
}
/*
* Instantiation macros used when a device is on an I2C bus.
*/
#define LIS2DU12_CONFIG_I2C(inst) \
{ \
STMEMSC_CTX_I2C(&lis2du12_config_##inst.stmemsc_cfg), \
.stmemsc_cfg = { \
.i2c = I2C_DT_SPEC_INST_GET(inst), \
}, \
LIS2DU12_CONFIG_COMMON(inst) \
}
/*
* Main instantiation macro. Use of COND_CODE_1() selects the right
* bus-specific macro at preprocessor time.
*/
#define LIS2DU12_DEFINE(inst) \
static struct lis2du12_data lis2du12_data_##inst; \
static const struct lis2du12_config lis2du12_config_##inst = \
COND_CODE_1(DT_INST_ON_BUS(inst, spi), \
(LIS2DU12_CONFIG_SPI(inst)), \
(LIS2DU12_CONFIG_I2C(inst))); \
LIS2DU12_DEVICE_INIT(inst)
DT_INST_FOREACH_STATUS_OKAY(LIS2DU12_DEFINE)