|  | /* | 
|  | * Copyright (c) 2018 Intel Corporation | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | #include <kernel.h> | 
|  | #include <string.h> | 
|  | #include <sys/__assert.h> | 
|  | #include <sys/mempool_base.h> | 
|  | #include <sys/mempool.h> | 
|  |  | 
|  | #ifdef CONFIG_MISRA_SANE | 
|  | #define LVL_ARRAY_SZ(n) (8 * sizeof(void *) / 2) | 
|  | #else | 
|  | #define LVL_ARRAY_SZ(n) (n) | 
|  | #endif | 
|  |  | 
|  | static void *block_ptr(struct sys_mem_pool_base *p, size_t lsz, int block) | 
|  | { | 
|  | return (u8_t *)p->buf + lsz * block; | 
|  | } | 
|  |  | 
|  | static int block_num(struct sys_mem_pool_base *p, void *block, int sz) | 
|  | { | 
|  | return ((u8_t *)block - (u8_t *)p->buf) / sz; | 
|  | } | 
|  |  | 
|  | /* Places a 32 bit output pointer in word, and an integer bit index | 
|  | * within that word as the return value | 
|  | */ | 
|  | static int get_bit_ptr(struct sys_mem_pool_base *p, int level, int bn, | 
|  | u32_t **word) | 
|  | { | 
|  | u32_t *bitarray = level <= p->max_inline_level ? | 
|  | p->levels[level].bits : p->levels[level].bits_p; | 
|  |  | 
|  | *word = &bitarray[bn / 32]; | 
|  |  | 
|  | return bn & 0x1f; | 
|  | } | 
|  |  | 
|  | static void set_free_bit(struct sys_mem_pool_base *p, int level, int bn) | 
|  | { | 
|  | u32_t *word; | 
|  | int bit = get_bit_ptr(p, level, bn, &word); | 
|  |  | 
|  | *word |= (1<<bit); | 
|  | } | 
|  |  | 
|  | static void clear_free_bit(struct sys_mem_pool_base *p, int level, int bn) | 
|  | { | 
|  | u32_t *word; | 
|  | int bit = get_bit_ptr(p, level, bn, &word); | 
|  |  | 
|  | *word &= ~(1<<bit); | 
|  | } | 
|  |  | 
|  | /* Returns all four of the free bits for the specified blocks | 
|  | * "partners" in the bottom 4 bits of the return value | 
|  | */ | 
|  | static int partner_bits(struct sys_mem_pool_base *p, int level, int bn) | 
|  | { | 
|  | u32_t *word; | 
|  | int bit = get_bit_ptr(p, level, bn, &word); | 
|  |  | 
|  | return (*word >> (4*(bit / 4))) & 0xf; | 
|  | } | 
|  |  | 
|  | void z_sys_mem_pool_base_init(struct sys_mem_pool_base *p) | 
|  | { | 
|  | int i; | 
|  | size_t buflen = p->n_max * p->max_sz, sz = p->max_sz; | 
|  | u32_t *bits = (u32_t *)((u8_t *)p->buf + buflen); | 
|  |  | 
|  | p->max_inline_level = -1; | 
|  |  | 
|  | for (i = 0; i < p->n_levels; i++) { | 
|  | int nblocks = buflen / sz; | 
|  |  | 
|  | sys_dlist_init(&p->levels[i].free_list); | 
|  |  | 
|  | if (nblocks <= sizeof(p->levels[i].bits)*8) { | 
|  | p->max_inline_level = i; | 
|  | } else { | 
|  | p->levels[i].bits_p = bits; | 
|  | bits += (nblocks + 31)/32; | 
|  | } | 
|  |  | 
|  | sz = WB_DN(sz / 4); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < p->n_max; i++) { | 
|  | void *block = block_ptr(p, p->max_sz, i); | 
|  |  | 
|  | sys_dlist_append(&p->levels[0].free_list, block); | 
|  | set_free_bit(p, 0, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A note on synchronization: | 
|  | * | 
|  | * For k_mem_pools which are interrupt safe, all manipulation of the actual | 
|  | * pool data happens in one of alloc_block()/free_block() or break_block(). | 
|  | * All of these transition between a state where the caller "holds" a block | 
|  | * pointer that is marked used in the store and one where she doesn't (or else | 
|  | * they will fail, e.g. if there isn't a free block).  So that is the basic | 
|  | * operation that needs synchronization, which we can do piecewise as needed in | 
|  | * small one-block chunks to preserve latency.  At most (in free_block) a | 
|  | * single locked operation consists of four bit sets and dlist removals. If the | 
|  | * overall allocation operation fails, we just free the block we have (putting | 
|  | * a block back into the list cannot fail) and return failure. | 
|  | * | 
|  | * For user mode compatible sys_mem_pool pools, a semaphore is used at the API | 
|  | * level since using that does not introduce latency issues like locking | 
|  | * interrupts does. | 
|  | */ | 
|  |  | 
|  | static inline int pool_irq_lock(struct sys_mem_pool_base *p) | 
|  | { | 
|  | if (p->flags & SYS_MEM_POOL_KERNEL) { | 
|  | return irq_lock(); | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void pool_irq_unlock(struct sys_mem_pool_base *p, int key) | 
|  | { | 
|  | if (p->flags & SYS_MEM_POOL_KERNEL) { | 
|  | irq_unlock(key); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void *block_alloc(struct sys_mem_pool_base *p, int l, size_t lsz) | 
|  | { | 
|  | sys_dnode_t *block; | 
|  |  | 
|  | block = sys_dlist_get(&p->levels[l].free_list); | 
|  | if (block != NULL) { | 
|  | clear_free_bit(p, l, block_num(p, block, lsz)); | 
|  | } | 
|  | return block; | 
|  | } | 
|  |  | 
|  | /* Called with lock held */ | 
|  | static unsigned int bfree_recombine(struct sys_mem_pool_base *p, int level, | 
|  | size_t *lsizes, int bn, unsigned int key) | 
|  | { | 
|  | while (level >= 0) { | 
|  | int i, lsz = lsizes[level]; | 
|  | void *block = block_ptr(p, lsz, bn); | 
|  |  | 
|  | /* Put it back */ | 
|  | set_free_bit(p, level, bn); | 
|  | sys_dlist_append(&p->levels[level].free_list, block); | 
|  |  | 
|  | /* Relax the lock (might result in it being taken, which is OK!) */ | 
|  | pool_irq_unlock(p, key); | 
|  | key = pool_irq_lock(p); | 
|  |  | 
|  | /* Check if we can recombine its superblock, and repeat */ | 
|  | if (level == 0 || partner_bits(p, level, bn) != 0xf) { | 
|  | return key; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | int b = (bn & ~3) + i; | 
|  |  | 
|  | clear_free_bit(p, level, b); | 
|  | sys_dlist_remove(block_ptr(p, lsz, b)); | 
|  | } | 
|  |  | 
|  | /* Free the larger block */ | 
|  | level = level - 1; | 
|  | bn = bn / 4; | 
|  | } | 
|  | __ASSERT(0, "out of levels"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void block_free(struct sys_mem_pool_base *p, int level, | 
|  | size_t *lsizes, int bn) | 
|  | { | 
|  | unsigned int key = pool_irq_lock(p); | 
|  |  | 
|  | key = bfree_recombine(p, level, lsizes, bn, key); | 
|  | pool_irq_unlock(p, key); | 
|  | } | 
|  |  | 
|  | /* Takes a block of a given level, splits it into four blocks of the | 
|  | * next smaller level, puts three into the free list as in | 
|  | * block_free() but without the need to check adjacent bits or | 
|  | * recombine, and returns the remaining smaller block. | 
|  | */ | 
|  | static void *block_break(struct sys_mem_pool_base *p, void *block, int l, | 
|  | size_t *lsizes) | 
|  | { | 
|  | int i, bn; | 
|  |  | 
|  | bn = block_num(p, block, lsizes[l]); | 
|  |  | 
|  | for (i = 1; i < 4; i++) { | 
|  | int lbn = 4*bn + i; | 
|  | int lsz = lsizes[l + 1]; | 
|  | void *block2 = (lsz * i) + (char *)block; | 
|  |  | 
|  | set_free_bit(p, l + 1, lbn); | 
|  | sys_dlist_append(&p->levels[l + 1].free_list, block2); | 
|  | } | 
|  |  | 
|  | return block; | 
|  | } | 
|  |  | 
|  | int z_sys_mem_pool_block_alloc(struct sys_mem_pool_base *p, size_t size, | 
|  | u32_t *level_p, u32_t *block_p, void **data_p) | 
|  | { | 
|  | int i, from_l, alloc_l = -1; | 
|  | unsigned int key; | 
|  | void *data = NULL; | 
|  | size_t lsizes[LVL_ARRAY_SZ(p->n_levels)]; | 
|  |  | 
|  | /* Walk down through levels, finding the one from which we | 
|  | * want to allocate and the smallest one with a free entry | 
|  | * from which we can split an allocation if needed.  Along the | 
|  | * way, we populate an array of sizes for each level so we | 
|  | * don't need to waste RAM storing it. | 
|  | */ | 
|  | lsizes[0] = p->max_sz; | 
|  | for (i = 0; i < p->n_levels; i++) { | 
|  | if (i > 0) { | 
|  | lsizes[i] = WB_DN(lsizes[i-1] / 4); | 
|  | } | 
|  |  | 
|  | if (lsizes[i] < size) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | alloc_l = i; | 
|  | } | 
|  |  | 
|  | if (alloc_l < 0) { | 
|  | *data_p = NULL; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Now walk back down the levels (i.e. toward bigger sizes) | 
|  | * looking for an available block.  Start at the smallest | 
|  | * enclosing block found above (note that because that loop | 
|  | * was done without synchronization, it may no longer be | 
|  | * available!) as a useful optimization.  Note that the | 
|  | * removal of the block from the list and the re-addition of | 
|  | * its the three unused children needs to be performed | 
|  | * atomically, otherwise we open up a situation where we can | 
|  | * "steal" the top level block of the whole heap, causing a | 
|  | * spurious -ENOMEM. | 
|  | */ | 
|  | key = pool_irq_lock(p); | 
|  | for (i = alloc_l; i >= 0; i--) { | 
|  | data = block_alloc(p, i, lsizes[i]); | 
|  |  | 
|  | /* Found one.  Iteratively break it down to the size | 
|  | * we need.  Note that we relax the lock to allow a | 
|  | * pending interrupt to fire so we don't hurt latency | 
|  | * by locking the full loop. | 
|  | */ | 
|  | if (data != NULL) { | 
|  | for (from_l = i; from_l < alloc_l; from_l++) { | 
|  | data = block_break(p, data, from_l, lsizes); | 
|  | pool_irq_unlock(p, key); | 
|  | key = pool_irq_lock(p); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | pool_irq_unlock(p, key); | 
|  |  | 
|  | *data_p = data; | 
|  |  | 
|  | if (data == NULL) { | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | *level_p = alloc_l; | 
|  | *block_p = block_num(p, data, lsizes[alloc_l]); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void z_sys_mem_pool_block_free(struct sys_mem_pool_base *p, u32_t level, | 
|  | u32_t block) | 
|  | { | 
|  | size_t lsizes[LVL_ARRAY_SZ(p->n_levels)]; | 
|  | int i; | 
|  |  | 
|  | /* As in z_sys_mem_pool_block_alloc(), we build a table of level sizes | 
|  | * to avoid having to store it in precious RAM bytes. | 
|  | * Overhead here is somewhat higher because block_free() | 
|  | * doesn't inherently need to traverse all the larger | 
|  | * sublevels. | 
|  | */ | 
|  | lsizes[0] = p->max_sz; | 
|  | for (i = 1; i <= level; i++) { | 
|  | lsizes[i] = WB_DN(lsizes[i-1] / 4); | 
|  | } | 
|  |  | 
|  | block_free(p, level, lsizes, block); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Functions specific to user-mode blocks | 
|  | */ | 
|  |  | 
|  | void *sys_mem_pool_alloc(struct sys_mem_pool *p, size_t size) | 
|  | { | 
|  | struct sys_mem_pool_block *blk; | 
|  | u32_t level, block; | 
|  | char *ret; | 
|  |  | 
|  | sys_mutex_lock(&p->mutex, K_FOREVER); | 
|  |  | 
|  | size += WB_UP(sizeof(struct sys_mem_pool_block)); | 
|  | if (z_sys_mem_pool_block_alloc(&p->base, size, &level, &block, | 
|  | (void **)&ret)) { | 
|  | ret = NULL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | blk = (struct sys_mem_pool_block *)ret; | 
|  | blk->level = level; | 
|  | blk->block = block; | 
|  | blk->pool = p; | 
|  | ret += WB_UP(sizeof(struct sys_mem_pool_block)); | 
|  | out: | 
|  | sys_mutex_unlock(&p->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void sys_mem_pool_free(void *ptr) | 
|  | { | 
|  | struct sys_mem_pool_block *blk; | 
|  | struct sys_mem_pool *p; | 
|  |  | 
|  | if (ptr == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | ptr = (char *)ptr - WB_UP(sizeof(struct sys_mem_pool_block)); | 
|  | blk = (struct sys_mem_pool_block *)ptr; | 
|  | p = blk->pool; | 
|  |  | 
|  | sys_mutex_lock(&p->mutex, K_FOREVER); | 
|  | z_sys_mem_pool_block_free(&p->base, blk->level, blk->block); | 
|  | sys_mutex_unlock(&p->mutex); | 
|  | } | 
|  |  |