| /* |
| * Copyright (c) 2018, NXP |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT nxp_imx_lpspi |
| |
| #include <errno.h> |
| #include <zephyr/drivers/spi.h> |
| #include <zephyr/drivers/clock_control.h> |
| #include <fsl_lpspi.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| #include <zephyr/drivers/dma.h> |
| #endif |
| #include <zephyr/drivers/pinctrl.h> |
| #ifdef CONFIG_SPI_RTIO |
| #include <zephyr/rtio/rtio.h> |
| #include <zephyr/spinlock.h> |
| #endif |
| |
| LOG_MODULE_REGISTER(spi_mcux_lpspi, CONFIG_SPI_LOG_LEVEL); |
| |
| #include "spi_context.h" |
| |
| #define CHIP_SELECT_COUNT 4 |
| #define MAX_DATA_WIDTH 4096 |
| |
| /* Required by DEVICE_MMIO_NAMED_* macros */ |
| #define DEV_CFG(_dev) \ |
| ((const struct spi_mcux_config *)(_dev)->config) |
| #define DEV_DATA(_dev) ((struct spi_mcux_data *)(_dev)->data) |
| |
| struct spi_mcux_config { |
| DEVICE_MMIO_NAMED_ROM(reg_base); |
| const struct device *clock_dev; |
| clock_control_subsys_t clock_subsys; |
| void (*irq_config_func)(const struct device *dev); |
| uint32_t pcs_sck_delay; |
| uint32_t sck_pcs_delay; |
| uint32_t transfer_delay; |
| const struct pinctrl_dev_config *pincfg; |
| lpspi_pin_config_t data_pin_config; |
| }; |
| |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| #define SPI_MCUX_LPSPI_DMA_ERROR_FLAG 0x01 |
| #define SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG 0x02 |
| #define SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG 0x04 |
| #define SPI_MCUX_LPSPI_DMA_DONE_FLAG \ |
| (SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG | SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG) |
| |
| struct stream { |
| const struct device *dma_dev; |
| uint32_t channel; /* stores the channel for dma */ |
| struct dma_config dma_cfg; |
| struct dma_block_config dma_blk_cfg; |
| }; |
| #endif |
| |
| struct spi_mcux_data { |
| DEVICE_MMIO_NAMED_RAM(reg_base); |
| const struct device *dev; |
| lpspi_master_handle_t handle; |
| struct spi_context ctx; |
| size_t transfer_len; |
| |
| #ifdef CONFIG_SPI_RTIO |
| struct rtio *r; |
| struct rtio_iodev iodev; |
| struct rtio_iodev_sqe *txn_head; |
| struct rtio_iodev_sqe *txn_curr; |
| struct spi_dt_spec dt_spec; |
| struct k_spinlock lock; |
| #endif |
| |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| volatile uint32_t status_flags; |
| struct stream dma_rx; |
| struct stream dma_tx; |
| /* dummy value used for transferring NOP when tx buf is null */ |
| uint32_t dummy_tx_buffer; |
| /* dummy value used to read RX data into when rx buf is null */ |
| uint32_t dummy_rx_buffer; |
| #endif |
| }; |
| |
| static int spi_mcux_transfer_next_packet(const struct device *dev) |
| { |
| /* const struct spi_mcux_config *config = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| struct spi_context *ctx = &data->ctx; |
| lpspi_transfer_t transfer; |
| status_t status; |
| |
| if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) { |
| /* nothing left to rx or tx, we're done! */ |
| spi_context_cs_control(&data->ctx, false); |
| spi_context_complete(&data->ctx, dev, 0); |
| return 0; |
| } |
| |
| transfer.configFlags = kLPSPI_MasterPcsContinuous | |
| (ctx->config->slave << LPSPI_MASTER_PCS_SHIFT); |
| |
| if (ctx->tx_len == 0) { |
| /* rx only, nothing to tx */ |
| transfer.txData = NULL; |
| transfer.rxData = ctx->rx_buf; |
| transfer.dataSize = ctx->rx_len; |
| } else if (ctx->rx_len == 0) { |
| /* tx only, nothing to rx */ |
| transfer.txData = (uint8_t *) ctx->tx_buf; |
| transfer.rxData = NULL; |
| transfer.dataSize = ctx->tx_len; |
| } else if (ctx->tx_len == ctx->rx_len) { |
| /* rx and tx are the same length */ |
| transfer.txData = (uint8_t *) ctx->tx_buf; |
| transfer.rxData = ctx->rx_buf; |
| transfer.dataSize = ctx->tx_len; |
| } else if (ctx->tx_len > ctx->rx_len) { |
| /* Break up the tx into multiple transfers so we don't have to |
| * rx into a longer intermediate buffer. Leave chip select |
| * active between transfers. |
| */ |
| transfer.txData = (uint8_t *) ctx->tx_buf; |
| transfer.rxData = ctx->rx_buf; |
| transfer.dataSize = ctx->rx_len; |
| transfer.configFlags |= kLPSPI_MasterPcsContinuous; |
| } else { |
| /* Break up the rx into multiple transfers so we don't have to |
| * tx from a longer intermediate buffer. Leave chip select |
| * active between transfers. |
| */ |
| transfer.txData = (uint8_t *) ctx->tx_buf; |
| transfer.rxData = ctx->rx_buf; |
| transfer.dataSize = ctx->tx_len; |
| transfer.configFlags |= kLPSPI_MasterPcsContinuous; |
| } |
| |
| if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) { |
| transfer.configFlags |= kLPSPI_MasterPcsContinuous; |
| } |
| |
| data->transfer_len = transfer.dataSize; |
| |
| status = LPSPI_MasterTransferNonBlocking(base, &data->handle, |
| &transfer); |
| if (status != kStatus_Success) { |
| LOG_ERR("Transfer could not start on %s: %d", dev->name, status); |
| return status == kStatus_LPSPI_Busy ? -EBUSY : -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void spi_mcux_isr(const struct device *dev) |
| { |
| /* const struct spi_mcux_config *config = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| |
| LPSPI_MasterTransferHandleIRQ(base, &data->handle); |
| } |
| |
| #ifdef CONFIG_SPI_RTIO |
| static void spi_mcux_iodev_complete(const struct device *dev, int status); |
| #endif |
| |
| static void spi_mcux_master_transfer_callback(LPSPI_Type *base, |
| lpspi_master_handle_t *handle, status_t status, void *userData) |
| { |
| struct spi_mcux_data *data = userData; |
| |
| #ifdef CONFIG_SPI_RTIO |
| if (data->txn_head != NULL) { |
| spi_mcux_iodev_complete(data->dev, status); |
| return; |
| } |
| #endif |
| spi_context_update_tx(&data->ctx, 1, data->transfer_len); |
| spi_context_update_rx(&data->ctx, 1, data->transfer_len); |
| |
| spi_mcux_transfer_next_packet(data->dev); |
| } |
| |
| static int spi_mcux_configure(const struct device *dev, |
| const struct spi_config *spi_cfg) |
| { |
| const struct spi_mcux_config *config = dev->config; |
| struct spi_mcux_data *data = dev->data; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| lpspi_master_config_t master_config; |
| uint32_t clock_freq; |
| uint32_t word_size; |
| |
| if (spi_context_configured(&data->ctx, spi_cfg)) { |
| /* This configuration is already in use */ |
| return 0; |
| } |
| |
| if (spi_cfg->operation & SPI_HALF_DUPLEX) { |
| LOG_ERR("Half-duplex not supported"); |
| return -ENOTSUP; |
| } |
| |
| LPSPI_MasterGetDefaultConfig(&master_config); |
| |
| if (spi_cfg->slave > CHIP_SELECT_COUNT) { |
| LOG_ERR("Slave %d is greater than %d", |
| spi_cfg->slave, |
| CHIP_SELECT_COUNT); |
| return -EINVAL; |
| } |
| |
| word_size = SPI_WORD_SIZE_GET(spi_cfg->operation); |
| if (word_size > MAX_DATA_WIDTH) { |
| LOG_ERR("Word size %d is greater than %d", |
| word_size, MAX_DATA_WIDTH); |
| return -EINVAL; |
| } |
| |
| master_config.bitsPerFrame = word_size; |
| |
| master_config.cpol = |
| (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) |
| ? kLPSPI_ClockPolarityActiveLow |
| : kLPSPI_ClockPolarityActiveHigh; |
| |
| master_config.cpha = |
| (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) |
| ? kLPSPI_ClockPhaseSecondEdge |
| : kLPSPI_ClockPhaseFirstEdge; |
| |
| master_config.direction = |
| (spi_cfg->operation & SPI_TRANSFER_LSB) |
| ? kLPSPI_LsbFirst |
| : kLPSPI_MsbFirst; |
| |
| master_config.baudRate = spi_cfg->frequency; |
| |
| master_config.pcsToSckDelayInNanoSec = config->pcs_sck_delay; |
| master_config.lastSckToPcsDelayInNanoSec = config->sck_pcs_delay; |
| master_config.betweenTransferDelayInNanoSec = config->transfer_delay; |
| |
| master_config.pinCfg = config->data_pin_config; |
| |
| if (!device_is_ready(config->clock_dev)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| if (clock_control_get_rate(config->clock_dev, config->clock_subsys, |
| &clock_freq)) { |
| return -EINVAL; |
| } |
| |
| if (data->ctx.config != NULL) { |
| /* Setting the baud rate in LPSPI_MasterInit requires module to be disabled. Only |
| * disable if already configured, otherwise the clock is not enabled and the |
| * CR register cannot be written. |
| */ |
| LPSPI_Enable(base, false); |
| while ((base->CR & LPSPI_CR_MEN_MASK) != 0U) { |
| /* Wait until LPSPI is disabled. Datasheet: |
| * After writing 0, MEN (Module Enable) remains set until the LPSPI has |
| * completed the current transfer and is idle. |
| */ |
| } |
| } |
| |
| LPSPI_MasterInit(base, &master_config, clock_freq); |
| |
| LPSPI_MasterTransferCreateHandle(base, &data->handle, |
| spi_mcux_master_transfer_callback, |
| data); |
| |
| LPSPI_SetDummyData(base, 0); |
| |
| data->ctx.config = spi_cfg; |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| static int spi_mcux_dma_rxtx_load(const struct device *dev, |
| size_t *dma_size); |
| |
| /* This function is executed in the interrupt context */ |
| static void spi_mcux_dma_callback(const struct device *dev, void *arg, |
| uint32_t channel, int status) |
| { |
| /* arg directly holds the spi device */ |
| const struct device *spi_dev = arg; |
| struct spi_mcux_data *data = (struct spi_mcux_data *)spi_dev->data; |
| |
| if (status < 0) { |
| LOG_ERR("DMA callback error with channel %d.", channel); |
| data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG; |
| } else { |
| /* identify the origin of this callback */ |
| if (channel == data->dma_tx.channel) { |
| /* this part of the transfer ends */ |
| data->status_flags |= SPI_MCUX_LPSPI_DMA_TX_DONE_FLAG; |
| LOG_DBG("DMA TX Block Complete"); |
| } else if (channel == data->dma_rx.channel) { |
| /* this part of the transfer ends */ |
| data->status_flags |= SPI_MCUX_LPSPI_DMA_RX_DONE_FLAG; |
| LOG_DBG("DMA RX Block Complete"); |
| } else { |
| LOG_ERR("DMA callback channel %d is not valid.", |
| channel); |
| data->status_flags |= SPI_MCUX_LPSPI_DMA_ERROR_FLAG; |
| } |
| } |
| #if CONFIG_SPI_ASYNC |
| if (data->ctx.asynchronous && |
| ((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) == |
| SPI_MCUX_LPSPI_DMA_DONE_FLAG)) { |
| /* Load dma blocks of equal length */ |
| size_t dma_size = MIN(data->ctx.tx_len, data->ctx.rx_len); |
| |
| if (dma_size == 0) { |
| dma_size = MAX(data->ctx.tx_len, data->ctx.rx_len); |
| } |
| |
| spi_context_update_tx(&data->ctx, 1, dma_size); |
| spi_context_update_rx(&data->ctx, 1, dma_size); |
| |
| if (data->ctx.tx_len == 0 && data->ctx.rx_len == 0) { |
| spi_context_complete(&data->ctx, spi_dev, 0); |
| } |
| return; |
| } |
| #endif |
| spi_context_complete(&data->ctx, spi_dev, 0); |
| } |
| |
| static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf, size_t len) |
| { |
| /* const struct spi_mcux_config *cfg = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| struct dma_block_config *blk_cfg; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| |
| /* remember active TX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_tx; |
| |
| blk_cfg = &stream->dma_blk_cfg; |
| |
| /* prepare the block for this TX DMA channel */ |
| memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
| |
| if (buf == NULL) { |
| /* Treat the transfer as a peripheral to peripheral one, so that DMA |
| * reads from this address each time |
| */ |
| blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer; |
| stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL; |
| } else { |
| /* tx direction has memory as source and periph as dest. */ |
| blk_cfg->source_address = (uint32_t)buf; |
| stream->dma_cfg.channel_direction = MEMORY_TO_PERIPHERAL; |
| } |
| /* Enable scatter/gather */ |
| blk_cfg->source_gather_en = 1; |
| /* Dest is LPSPI tx fifo */ |
| blk_cfg->dest_address = LPSPI_GetTxRegisterAddress(base); |
| blk_cfg->block_size = len; |
| /* Transfer 1 byte each DMA loop */ |
| stream->dma_cfg.source_burst_length = 1; |
| |
| stream->dma_cfg.head_block = &stream->dma_blk_cfg; |
| /* give the client dev as arg, as the callback comes from the dma */ |
| stream->dma_cfg.user_data = (struct device *)dev; |
| /* pass our client origin to the dma: data->dma_tx.dma_channel */ |
| return dma_config(data->dma_tx.dma_dev, data->dma_tx.channel, |
| &stream->dma_cfg); |
| } |
| |
| static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf, |
| size_t len) |
| { |
| /*const struct spi_mcux_config *cfg = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| struct dma_block_config *blk_cfg; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| |
| /* retrieve active RX DMA channel (used in callback) */ |
| struct stream *stream = &data->dma_rx; |
| |
| blk_cfg = &stream->dma_blk_cfg; |
| |
| /* prepare the block for this RX DMA channel */ |
| memset(blk_cfg, 0, sizeof(struct dma_block_config)); |
| |
| if (buf == NULL) { |
| /* Treat the transfer as a peripheral to peripheral one, so that DMA |
| * reads from this address each time |
| */ |
| blk_cfg->dest_address = (uint32_t)&data->dummy_rx_buffer; |
| stream->dma_cfg.channel_direction = PERIPHERAL_TO_PERIPHERAL; |
| } else { |
| /* rx direction has periph as source and mem as dest. */ |
| blk_cfg->dest_address = (uint32_t)buf; |
| stream->dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; |
| } |
| blk_cfg->block_size = len; |
| /* Enable scatter/gather */ |
| blk_cfg->dest_scatter_en = 1; |
| /* Source is LPSPI rx fifo */ |
| blk_cfg->source_address = LPSPI_GetRxRegisterAddress(base); |
| stream->dma_cfg.source_burst_length = 1; |
| |
| stream->dma_cfg.head_block = blk_cfg; |
| stream->dma_cfg.user_data = (struct device *)dev; |
| |
| /* pass our client origin to the dma: data->dma_rx.channel */ |
| return dma_config(data->dma_rx.dma_dev, data->dma_rx.channel, |
| &stream->dma_cfg); |
| } |
| |
| static int wait_dma_rx_tx_done(const struct device *dev) |
| { |
| struct spi_mcux_data *data = dev->data; |
| int ret = -1; |
| |
| while (1) { |
| ret = spi_context_wait_for_completion(&data->ctx); |
| if (ret) { |
| LOG_DBG("Timed out waiting for SPI context to complete"); |
| return ret; |
| } |
| if (data->status_flags & SPI_MCUX_LPSPI_DMA_ERROR_FLAG) { |
| return -EIO; |
| } |
| |
| if ((data->status_flags & SPI_MCUX_LPSPI_DMA_DONE_FLAG) == |
| SPI_MCUX_LPSPI_DMA_DONE_FLAG) { |
| LOG_DBG("DMA block completed"); |
| return 0; |
| } |
| } |
| } |
| |
| static inline int spi_mcux_dma_rxtx_load(const struct device *dev, |
| size_t *dma_size) |
| { |
| struct spi_mcux_data *lpspi_data = dev->data; |
| int ret = 0; |
| |
| /* Clear status flags */ |
| lpspi_data->status_flags = 0U; |
| /* Load dma blocks of equal length */ |
| *dma_size = MIN(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len); |
| if (*dma_size == 0) { |
| *dma_size = MAX(lpspi_data->ctx.tx_len, lpspi_data->ctx.rx_len); |
| } |
| |
| ret = spi_mcux_dma_tx_load(dev, lpspi_data->ctx.tx_buf, |
| *dma_size); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = spi_mcux_dma_rx_load(dev, lpspi_data->ctx.rx_buf, |
| *dma_size); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| /* Start DMA */ |
| ret = dma_start(lpspi_data->dma_tx.dma_dev, |
| lpspi_data->dma_tx.channel); |
| if (ret != 0) { |
| return ret; |
| } |
| |
| ret = dma_start(lpspi_data->dma_rx.dma_dev, |
| lpspi_data->dma_rx.channel); |
| return ret; |
| |
| } |
| |
| static int transceive_dma(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| /* const struct spi_mcux_config *config = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| int ret; |
| size_t dma_size; |
| |
| if (!asynchronous) { |
| spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg); |
| } |
| |
| ret = spi_mcux_configure(dev, spi_cfg); |
| if (ret) { |
| if (!asynchronous) { |
| spi_context_release(&data->ctx, ret); |
| } |
| return ret; |
| } |
| |
| /* DMA is fast enough watermarks are not required */ |
| LPSPI_SetFifoWatermarks(base, 0U, 0U); |
| |
| if (!asynchronous) { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| spi_context_cs_control(&data->ctx, true); |
| |
| /* Send each spi buf via DMA, updating context as DMA completes */ |
| while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) { |
| /* Load dma block */ |
| ret = spi_mcux_dma_rxtx_load(dev, &dma_size); |
| if (ret != 0) { |
| goto out; |
| } |
| /* Enable DMA Requests */ |
| LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable); |
| |
| /* Wait for DMA to finish */ |
| ret = wait_dma_rx_tx_done(dev); |
| if (ret != 0) { |
| goto out; |
| } |
| while ((LPSPI_GetStatusFlags(base) & kLPSPI_ModuleBusyFlag)) { |
| /* wait until module is idle */ |
| } |
| |
| /* Disable DMA */ |
| LPSPI_DisableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable); |
| |
| /* Update SPI contexts with amount of data we just sent */ |
| spi_context_update_tx(&data->ctx, 1, dma_size); |
| spi_context_update_rx(&data->ctx, 1, dma_size); |
| } |
| spi_context_cs_control(&data->ctx, false); |
| |
| out: |
| spi_context_release(&data->ctx, ret); |
| } |
| #if CONFIG_SPI_ASYNC |
| else { |
| data->ctx.asynchronous = asynchronous; |
| data->ctx.callback = cb; |
| data->ctx.callback_data = userdata; |
| |
| ret = spi_mcux_dma_rxtx_load(dev, &dma_size); |
| if (ret != 0) { |
| goto out; |
| } |
| |
| /* Enable DMA Requests */ |
| LPSPI_EnableDMA(base, kLPSPI_TxDmaEnable | kLPSPI_RxDmaEnable); |
| } |
| #endif |
| |
| return ret; |
| } |
| #endif |
| |
| static int transceive(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| bool asynchronous, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| struct spi_mcux_data *data = dev->data; |
| int ret; |
| |
| spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg); |
| |
| ret = spi_mcux_configure(dev, spi_cfg); |
| if (ret) { |
| goto out; |
| } |
| |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| |
| spi_context_cs_control(&data->ctx, true); |
| |
| ret = spi_mcux_transfer_next_packet(dev); |
| if (ret) { |
| goto out; |
| } |
| |
| ret = spi_context_wait_for_completion(&data->ctx); |
| out: |
| spi_context_release(&data->ctx, ret); |
| |
| return ret; |
| } |
| |
| |
| static int spi_mcux_transceive(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| const struct spi_mcux_data *data = dev->data; |
| |
| if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) { |
| return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); |
| } |
| #endif /* CONFIG_SPI_MCUX_LPSPI_DMA */ |
| |
| return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); |
| } |
| |
| #ifdef CONFIG_SPI_ASYNC |
| static int spi_mcux_transceive_async(const struct device *dev, |
| const struct spi_config *spi_cfg, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| struct spi_mcux_data *data = dev->data; |
| |
| if (data->dma_rx.dma_dev && data->dma_tx.dma_dev) { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| } |
| |
| return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); |
| #else |
| return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); |
| #endif /* CONFIG_SPI_MCUX_LPSPI_DMA */ |
| } |
| #endif /* CONFIG_SPI_ASYNC */ |
| |
| static int spi_mcux_release(const struct device *dev, |
| const struct spi_config *spi_cfg) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static int spi_mcux_init(const struct device *dev) |
| { |
| int err; |
| const struct spi_mcux_config *config = dev->config; |
| struct spi_mcux_data *data = dev->data; |
| |
| DEVICE_MMIO_NAMED_MAP(dev, reg_base, K_MEM_CACHE_NONE | K_MEM_DIRECT_MAP); |
| |
| config->irq_config_func(dev); |
| |
| err = spi_context_cs_configure_all(&data->ctx); |
| if (err < 0) { |
| return err; |
| } |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| data->dev = dev; |
| |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| if (data->dma_tx.dma_dev && data->dma_rx.dma_dev) { |
| if (!device_is_ready(data->dma_tx.dma_dev)) { |
| LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name); |
| return -ENODEV; |
| } |
| |
| if (!device_is_ready(data->dma_rx.dma_dev)) { |
| LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name); |
| return -ENODEV; |
| } |
| } |
| #endif /* CONFIG_SPI_MCUX_LPSPI_DMA */ |
| |
| #ifdef CONFIG_SPI_RTIO |
| data->dt_spec.bus = dev; |
| data->iodev.api = &spi_iodev_api; |
| data->iodev.data = &data->dt_spec; |
| rtio_mpsc_init(&data->iodev.iodev_sq); |
| #endif |
| |
| err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); |
| if (err) { |
| return err; |
| } |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_SPI_RTIO |
| static inline k_spinlock_key_t spi_spin_lock(const struct device *dev) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| return k_spin_lock(&data->lock); |
| } |
| |
| static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| k_spin_unlock(&data->lock, key); |
| } |
| |
| |
| static void spi_mcux_iodev_next(const struct device *dev, bool completion); |
| |
| static void spi_mcux_iodev_start(const struct device *dev) |
| { |
| /* const struct spi_mcux_config *config = dev->config; */ |
| struct spi_mcux_data *data = dev->data; |
| struct rtio_sqe *sqe = &data->txn_curr->sqe; |
| struct spi_dt_spec *spi_dt_spec = sqe->iodev->data; |
| struct spi_config *spi_cfg = &spi_dt_spec->config; |
| struct rtio_iodev_sqe *txn_head = data->txn_head; |
| |
| LPSPI_Type *base = (LPSPI_Type *)DEVICE_MMIO_NAMED_GET(dev, reg_base); |
| lpspi_transfer_t transfer; |
| status_t status; |
| |
| transfer.configFlags = kLPSPI_MasterPcsContinuous | |
| (spi_cfg->slave << LPSPI_MASTER_PCS_SHIFT); |
| |
| switch (sqe->op) { |
| case RTIO_OP_RX: |
| transfer.txData = NULL; |
| transfer.rxData = sqe->buf; |
| transfer.dataSize = sqe->buf_len; |
| break; |
| case RTIO_OP_TX: |
| transfer.rxData = NULL; |
| transfer.txData = sqe->buf; |
| transfer.dataSize = sqe->buf_len; |
| break; |
| case RTIO_OP_TINY_TX: |
| transfer.rxData = NULL; |
| transfer.txData = sqe->tiny_buf; |
| transfer.dataSize = sqe->tiny_buf_len; |
| break; |
| case RTIO_OP_TXRX: |
| transfer.txData = sqe->tx_buf; |
| transfer.rxData = sqe->rx_buf; |
| transfer.dataSize = sqe->txrx_buf_len; |
| break; |
| default: |
| LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe); |
| |
| spi_mcux_iodev_next(dev, true); |
| rtio_iodev_sqe_err(txn_head, -EINVAL); |
| spi_mcux_iodev_complete(dev, 0); |
| return; |
| } |
| |
| data->transfer_len = transfer.dataSize; |
| |
| k_spinlock_key_t key = spi_spin_lock(dev); |
| |
| status = LPSPI_MasterTransferNonBlocking(base, &data->handle, |
| &transfer); |
| spi_spin_unlock(dev, key); |
| if (status != kStatus_Success) { |
| LOG_ERR("Transfer could not start"); |
| rtio_iodev_sqe_err(txn_head, -EIO); |
| } |
| } |
| |
| static void spi_mcux_iodev_next(const struct device *dev, bool completion) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| k_spinlock_key_t key = spi_spin_lock(dev); |
| |
| if (!completion && data->txn_curr != NULL) { |
| spi_spin_unlock(dev, key); |
| return; |
| } |
| |
| struct rtio_mpsc_node *next = rtio_mpsc_pop(&data->iodev.iodev_sq); |
| |
| if (next != NULL) { |
| struct rtio_iodev_sqe *next_sqe = CONTAINER_OF(next, struct rtio_iodev_sqe, q); |
| |
| data->txn_head = next_sqe; |
| data->txn_curr = next_sqe; |
| } else { |
| data->txn_head = NULL; |
| data->txn_curr = NULL; |
| } |
| |
| spi_spin_unlock(dev, key); |
| |
| if (data->txn_curr != NULL) { |
| struct spi_dt_spec *spi_dt_spec = data->txn_curr->sqe.iodev->data; |
| struct spi_config *spi_cfg = &spi_dt_spec->config; |
| |
| spi_mcux_configure(dev, spi_cfg); |
| spi_context_cs_control(&data->ctx, true); |
| spi_mcux_iodev_start(dev); |
| } |
| } |
| |
| static void spi_mcux_iodev_submit(const struct device *dev, |
| struct rtio_iodev_sqe *iodev_sqe) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| rtio_mpsc_push(&data->iodev.iodev_sq, &iodev_sqe->q); |
| spi_mcux_iodev_next(dev, false); |
| } |
| |
| static void spi_mcux_iodev_complete(const struct device *dev, int status) |
| { |
| struct spi_mcux_data *data = dev->data; |
| |
| if (data->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) { |
| data->txn_curr = rtio_txn_next(data->txn_curr); |
| spi_mcux_iodev_start(dev); |
| } else { |
| struct rtio_iodev_sqe *txn_head = data->txn_head; |
| |
| spi_context_cs_control(&data->ctx, false); |
| spi_mcux_iodev_next(dev, true); |
| rtio_iodev_sqe_ok(txn_head, status); |
| } |
| } |
| |
| |
| #endif |
| |
| |
| static const struct spi_driver_api spi_mcux_driver_api = { |
| .transceive = spi_mcux_transceive, |
| #ifdef CONFIG_SPI_ASYNC |
| .transceive_async = spi_mcux_transceive_async, |
| #endif |
| #ifdef CONFIG_SPI_RTIO |
| .iodev_submit = spi_mcux_iodev_submit, |
| #endif |
| .release = spi_mcux_release, |
| }; |
| |
| |
| #define SPI_MCUX_RTIO_DEFINE(n) RTIO_DEFINE(spi_mcux_rtio_##n, CONFIG_SPI_MCUX_RTIO_SQ_SIZE, \ |
| CONFIG_SPI_MCUX_RTIO_SQ_SIZE) |
| |
| #ifdef CONFIG_SPI_MCUX_LPSPI_DMA |
| #define SPI_DMA_CHANNELS(n) \ |
| IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, tx), \ |
| ( \ |
| .dma_tx = { \ |
| .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \ |
| .channel = \ |
| DT_INST_DMAS_CELL_BY_NAME(n, tx, mux), \ |
| .dma_cfg = { \ |
| .channel_direction = MEMORY_TO_PERIPHERAL, \ |
| .dma_callback = spi_mcux_dma_callback, \ |
| .source_data_size = 1, \ |
| .dest_data_size = 1, \ |
| .block_count = 1, \ |
| .dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, tx, source) \ |
| } \ |
| }, \ |
| )) \ |
| IF_ENABLED(DT_INST_DMAS_HAS_NAME(n, rx), \ |
| ( \ |
| .dma_rx = { \ |
| .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, rx)), \ |
| .channel = \ |
| DT_INST_DMAS_CELL_BY_NAME(n, rx, mux), \ |
| .dma_cfg = { \ |
| .channel_direction = PERIPHERAL_TO_MEMORY, \ |
| .dma_callback = spi_mcux_dma_callback, \ |
| .source_data_size = 1, \ |
| .dest_data_size = 1, \ |
| .block_count = 1, \ |
| .dma_slot = DT_INST_DMAS_CELL_BY_NAME(n, rx, source) \ |
| } \ |
| }, \ |
| )) |
| #else |
| #define SPI_DMA_CHANNELS(n) |
| #endif /* CONFIG_SPI_MCUX_LPSPI_DMA */ |
| |
| #define SPI_MCUX_LPSPI_INIT(n) \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| COND_CODE_1(CONFIG_SPI_RTIO, (SPI_MCUX_RTIO_DEFINE(n)), ()); \ |
| \ |
| static void spi_mcux_config_func_##n(const struct device *dev); \ |
| \ |
| static const struct spi_mcux_config spi_mcux_config_##n = { \ |
| DEVICE_MMIO_NAMED_ROM_INIT(reg_base, DT_DRV_INST(n)), \ |
| .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \ |
| .clock_subsys = \ |
| (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \ |
| .irq_config_func = spi_mcux_config_func_##n, \ |
| .pcs_sck_delay = UTIL_AND( \ |
| DT_INST_NODE_HAS_PROP(n, pcs_sck_delay), \ |
| DT_INST_PROP(n, pcs_sck_delay)), \ |
| .sck_pcs_delay = UTIL_AND( \ |
| DT_INST_NODE_HAS_PROP(n, sck_pcs_delay), \ |
| DT_INST_PROP(n, sck_pcs_delay)), \ |
| .transfer_delay = UTIL_AND( \ |
| DT_INST_NODE_HAS_PROP(n, transfer_delay), \ |
| DT_INST_PROP(n, transfer_delay)), \ |
| .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| .data_pin_config = DT_INST_ENUM_IDX(n, data_pin_config),\ |
| }; \ |
| \ |
| static struct spi_mcux_data spi_mcux_data_##n = { \ |
| SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx), \ |
| SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx), \ |
| SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ |
| SPI_DMA_CHANNELS(n) \ |
| IF_ENABLED(CONFIG_SPI_RTIO, \ |
| (.r = &spi_mcux_rtio_##n,)) \ |
| \ |
| }; \ |
| \ |
| DEVICE_DT_INST_DEFINE(n, &spi_mcux_init, NULL, \ |
| &spi_mcux_data_##n, \ |
| &spi_mcux_config_##n, POST_KERNEL, \ |
| CONFIG_SPI_INIT_PRIORITY, \ |
| &spi_mcux_driver_api); \ |
| \ |
| static void spi_mcux_config_func_##n(const struct device *dev) \ |
| { \ |
| IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ |
| spi_mcux_isr, DEVICE_DT_INST_GET(n), 0); \ |
| \ |
| irq_enable(DT_INST_IRQN(n)); \ |
| } |
| |
| DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_LPSPI_INIT) |