blob: 34e21b57d47762051af26373e8198e883e1205d0 [file] [log] [blame]
/*
* Copyright (c) 2020 Intel Corporation
* Copyright (c) 2021 Antmicro <www.antmicro.com>
* Copyright (c) 2022 Meta
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <zephyr/device.h>
#include <zephyr/shell/shell.h>
#include <zephyr/sys/byteorder.h>
#ifdef CONFIG_ARCH_POSIX
#include <unistd.h>
#else
#include <zephyr/posix/unistd.h>
#endif
static inline bool is_ascii(uint8_t data)
{
return (data >= 0x30 && data <= 0x39) || (data >= 0x61 && data <= 0x66) ||
(data >= 0x41 && data <= 0x46);
}
static unsigned char *bytes;
static uint32_t *data;
static int sum;
static int chunk_element;
static char chunk[2];
static bool littleendian;
#define CHAR_CAN 0x18
#define CHAR_DC1 0x11
#ifndef BITS_PER_BYTE
#define BITS_PER_BYTE 8
#endif
static int memory_dump(const struct shell *sh, mem_addr_t phys_addr, size_t size, uint8_t width)
{
uint32_t value;
size_t data_offset;
mm_reg_t addr;
const size_t vsize = width / BITS_PER_BYTE;
uint8_t data[SHELL_HEXDUMP_BYTES_IN_LINE];
#if defined(CONFIG_MMU) || defined(CONFIG_PCIE)
device_map((mm_reg_t *)&addr, phys_addr, size, K_MEM_CACHE_NONE);
shell_print(sh, "Mapped 0x%lx to 0x%lx\n", phys_addr, addr);
#else
addr = phys_addr;
#endif /* defined(CONFIG_MMU) || defined(CONFIG_PCIE) */
for (; size > 0;
addr += SHELL_HEXDUMP_BYTES_IN_LINE, size -= MIN(size, SHELL_HEXDUMP_BYTES_IN_LINE)) {
for (data_offset = 0;
size >= vsize && data_offset + vsize <= SHELL_HEXDUMP_BYTES_IN_LINE;
data_offset += vsize) {
switch (width) {
case 8:
value = sys_read8(addr + data_offset);
data[data_offset] = value;
break;
case 16:
value = sys_read16(addr + data_offset);
if (IS_ENABLED(CONFIG_BIG_ENDIAN)) {
value = __bswap_16(value);
}
data[data_offset] = (uint8_t)value;
value >>= 8;
data[data_offset + 1] = (uint8_t)value;
break;
case 32:
value = sys_read32(addr + data_offset);
if (IS_ENABLED(CONFIG_BIG_ENDIAN)) {
value = __bswap_32(value);
}
data[data_offset] = (uint8_t)value;
value >>= 8;
data[data_offset + 1] = (uint8_t)value;
value >>= 8;
data[data_offset + 2] = (uint8_t)value;
value >>= 8;
data[data_offset + 3] = (uint8_t)value;
break;
default:
shell_fprintf(sh, SHELL_NORMAL, "Incorrect data width\n");
return -EINVAL;
}
}
shell_hexdump_line(sh, addr, data, MIN(size, SHELL_HEXDUMP_BYTES_IN_LINE));
}
return 0;
}
static int cmd_dump(const struct shell *sh, size_t argc, char **argv)
{
int rv;
size_t size = -1;
size_t width = 32;
mem_addr_t addr = -1;
optind = 1;
while ((rv = getopt(argc, argv, "a:s:w:")) != -1) {
switch (rv) {
case 'a':
addr = (mem_addr_t)strtoul(optarg, NULL, 16);
if (addr == 0 && errno == EINVAL) {
shell_error(sh, "invalid addr '%s'", optarg);
return -EINVAL;
}
break;
case 's':
size = (size_t)strtoul(optarg, NULL, 0);
if (size == 0 && errno == EINVAL) {
shell_error(sh, "invalid size '%s'", optarg);
return -EINVAL;
}
break;
case 'w':
width = (size_t)strtoul(optarg, NULL, 0);
if (width == 0 && errno == EINVAL) {
shell_error(sh, "invalid width '%s'", optarg);
return -EINVAL;
}
break;
case '?':
default:
return -EINVAL;
}
}
if (addr == -1) {
shell_error(sh, "'-a <address>' is mandatory");
return -EINVAL;
}
if (size == -1) {
shell_error(sh, "'-s <size>' is mandatory");
return -EINVAL;
}
return memory_dump(sh, addr, size, width);
}
static int set_bypass(const struct shell *sh, shell_bypass_cb_t bypass)
{
static bool in_use;
if (bypass && in_use) {
shell_error(sh, "devmem load supports setting bypass on a single instance.");
return -EBUSY;
}
in_use = !in_use;
if (in_use) {
shell_print(sh, "Loading...\npress ctrl-x ctrl-q to escape");
in_use = true;
}
shell_set_bypass(sh, bypass);
return 0;
}
static void bypass_cb(const struct shell *sh, uint8_t *recv, size_t len)
{
bool escape = false;
static uint8_t tail;
uint8_t byte;
if (tail == CHAR_CAN && recv[0] == CHAR_DC1) {
escape = true;
} else {
for (int i = 0; i < (len - 1); i++) {
if (recv[i] == CHAR_CAN && recv[i + 1] == CHAR_DC1) {
escape = true;
break;
}
}
}
if (escape) {
shell_print(sh, "Number of bytes read: %d", sum);
set_bypass(sh, NULL);
if (!littleendian) {
while (sum > 4) {
*data = __bswap_32(*data);
data++;
sum = sum - 4;
}
if (sum % 4 == 0) {
*data = __bswap_32(*data);
} else if (sum % 4 == 2) {
*data = __bswap_16(*data);
} else if (sum % 4 == 3) {
*data = __bswap_24(*data);
}
}
return;
}
tail = recv[len - 1];
if (is_ascii(*recv)) {
chunk[chunk_element] = *recv;
chunk_element++;
}
if (chunk_element == 2) {
byte = (uint8_t)strtoul(chunk, NULL, 16);
*bytes = byte;
bytes++;
sum++;
chunk_element = 0;
}
}
static int cmd_load(const struct shell *sh, size_t argc, char **argv)
{
littleendian = false;
char *arg;
chunk_element = 0;
sum = 0;
while (argc >= 2) {
arg = argv[1] + (!strncmp(argv[1], "--", 2) && argv[1][2]);
if (!strncmp(arg, "-e", 2)) {
littleendian = true;
} else if (!strcmp(arg, "--")) {
argv++;
argc--;
break;
} else if (arg[0] == '-' && arg[1]) {
shell_print(sh, "Unknown option \"%s\"", arg);
} else {
break;
}
argv++;
argc--;
}
bytes = (unsigned char *)strtol(argv[1], NULL, 0);
data = (uint32_t *)strtol(argv[1], NULL, 0);
set_bypass(sh, bypass_cb);
return 0;
}
static int memory_read(const struct shell *sh, mem_addr_t addr, uint8_t width)
{
uint32_t value;
int err = 0;
switch (width) {
case 8:
value = sys_read8(addr);
break;
case 16:
value = sys_read16(addr);
break;
case 32:
value = sys_read32(addr);
break;
default:
shell_fprintf(sh, SHELL_NORMAL, "Incorrect data width\n");
err = -EINVAL;
break;
}
if (err == 0) {
shell_fprintf(sh, SHELL_NORMAL, "Read value 0x%x\n", value);
}
return err;
}
static int memory_write(const struct shell *sh, mem_addr_t addr, uint8_t width, uint64_t value)
{
int err = 0;
switch (width) {
case 8:
sys_write8(value, addr);
break;
case 16:
sys_write16(value, addr);
break;
case 32:
sys_write32(value, addr);
break;
default:
shell_fprintf(sh, SHELL_NORMAL, "Incorrect data width\n");
err = -EINVAL;
break;
}
return err;
}
/* The syntax of the command is similar to busybox's devmem */
static int cmd_devmem(const struct shell *sh, size_t argc, char **argv)
{
mem_addr_t phys_addr, addr;
uint32_t value = 0;
uint8_t width;
if (argc < 2 || argc > 4) {
return -EINVAL;
}
phys_addr = strtoul(argv[1], NULL, 16);
#if defined(CONFIG_MMU) || defined(CONFIG_PCIE)
device_map((mm_reg_t *)&addr, phys_addr, 0x100, K_MEM_CACHE_NONE);
shell_print(sh, "Mapped 0x%lx to 0x%lx\n", phys_addr, addr);
#else
addr = phys_addr;
#endif /* defined(CONFIG_MMU) || defined(CONFIG_PCIE) */
if (argc < 3) {
width = 32;
} else {
width = strtoul(argv[2], NULL, 10);
}
shell_fprintf(sh, SHELL_NORMAL, "Using data width %d\n", width);
if (argc <= 3) {
return memory_read(sh, addr, width);
}
/* If there are more then 3 arguments, that means we are going to write
* this value at the address provided
*/
value = strtoul(argv[3], NULL, 16);
shell_fprintf(sh, SHELL_NORMAL, "Writing value 0x%x\n", value);
return memory_write(sh, addr, width, value);
}
SHELL_STATIC_SUBCMD_SET_CREATE(sub_devmem,
SHELL_CMD_ARG(dump, NULL,
"Usage:\n"
"devmem dump -a <address> -s <size> [-w <width>]\n",
cmd_dump, 4, 6),
SHELL_CMD_ARG(load, NULL,
"Usage:\n"
"devmem load [options] [address]\n"
"Options:\n"
"-e\tlittle-endian parse",
cmd_load, 2, 1),
SHELL_SUBCMD_SET_END);
SHELL_CMD_REGISTER(devmem, &sub_devmem,
"Read/write physical memory\n"
"Usage:\n"
"Read memory at address with optional width:\n"
"devmem address [width]\n"
"Write memory at address with mandatory width and value:\n"
"devmem address <width> <value>",
cmd_devmem);