| /* |
| * Copyright (c) 2019 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/sys/sys_heap.h> |
| #include <zephyr/sys/util.h> |
| #include <zephyr/kernel.h> |
| #include "heap.h" |
| |
| /* White-box sys_heap validation code. Uses internal data structures. |
| * Not expected to be useful in production apps. This checks every |
| * header field of every chunk and returns true if the totality of the |
| * data structure is a valid heap. It doesn't necessarily tell you |
| * that it is the CORRECT heap given the history of alloc/free calls |
| * that it can't inspect. In a pathological case, you can imagine |
| * something scribbling a copy of a previously-valid heap on top of a |
| * running one and corrupting it. YMMV. |
| */ |
| |
| #define VALIDATE(cond) do { if (!(cond)) { return false; } } while (0) |
| |
| static bool in_bounds(struct z_heap *h, chunkid_t c) |
| { |
| VALIDATE(c >= right_chunk(h, 0)); |
| VALIDATE(c < h->end_chunk); |
| VALIDATE(chunk_size(h, c) < h->end_chunk); |
| return true; |
| } |
| |
| static bool valid_chunk(struct z_heap *h, chunkid_t c) |
| { |
| VALIDATE(chunk_size(h, c) > 0); |
| VALIDATE(c + chunk_size(h, c) <= h->end_chunk); |
| VALIDATE(in_bounds(h, c)); |
| VALIDATE(right_chunk(h, left_chunk(h, c)) == c); |
| VALIDATE(left_chunk(h, right_chunk(h, c)) == c); |
| if (chunk_used(h, c)) { |
| VALIDATE(!solo_free_header(h, c)); |
| } else { |
| VALIDATE(chunk_used(h, left_chunk(h, c))); |
| VALIDATE(chunk_used(h, right_chunk(h, c))); |
| if (!solo_free_header(h, c)) { |
| VALIDATE(in_bounds(h, prev_free_chunk(h, c))); |
| VALIDATE(in_bounds(h, next_free_chunk(h, c))); |
| } |
| } |
| return true; |
| } |
| |
| /* Validate multiple state dimensions for the bucket "next" pointer |
| * and see that they match. Probably should unify the design a |
| * bit... |
| */ |
| static inline void check_nexts(struct z_heap *h, int bidx) |
| { |
| struct z_heap_bucket *b = &h->buckets[bidx]; |
| |
| bool emptybit = (h->avail_buckets & BIT(bidx)) == 0; |
| bool emptylist = b->next == 0; |
| bool empties_match = emptybit == emptylist; |
| |
| (void)empties_match; |
| CHECK(empties_match); |
| |
| if (b->next != 0) { |
| CHECK(valid_chunk(h, b->next)); |
| } |
| } |
| |
| static void get_alloc_info(struct z_heap *h, size_t *alloc_bytes, |
| size_t *free_bytes) |
| { |
| chunkid_t c; |
| |
| *alloc_bytes = 0; |
| *free_bytes = 0; |
| |
| for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) { |
| if (chunk_used(h, c)) { |
| *alloc_bytes += chunksz_to_bytes(h, chunk_size(h, c)); |
| } else if (!solo_free_header(h, c)) { |
| *free_bytes += chunksz_to_bytes(h, chunk_size(h, c)); |
| } |
| } |
| } |
| |
| bool sys_heap_validate(struct sys_heap *heap) |
| { |
| struct z_heap *h = heap->heap; |
| chunkid_t c; |
| |
| /* |
| * Walk through the chunks linearly, verifying sizes and end pointer. |
| */ |
| for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) { |
| if (!valid_chunk(h, c)) { |
| return false; |
| } |
| } |
| if (c != h->end_chunk) { |
| return false; /* Should have exactly consumed the buffer */ |
| } |
| |
| #ifdef CONFIG_SYS_HEAP_RUNTIME_STATS |
| /* |
| * Validate sys_heap_runtime_stats_get API. |
| * Iterate all chunks in sys_heap to get total allocated bytes and |
| * free bytes, then compare with the results of |
| * sys_heap_runtime_stats_get function. |
| */ |
| size_t allocated_bytes, free_bytes; |
| struct sys_memory_stats stat; |
| |
| get_alloc_info(h, &allocated_bytes, &free_bytes); |
| sys_heap_runtime_stats_get(heap, &stat); |
| if ((stat.allocated_bytes != allocated_bytes) || |
| (stat.free_bytes != free_bytes)) { |
| return false; |
| } |
| #endif |
| |
| /* Check the free lists: entry count should match, empty bit |
| * should be correct, and all chunk entries should point into |
| * valid unused chunks. Mark those chunks USED, temporarily. |
| */ |
| for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) { |
| chunkid_t c0 = h->buckets[b].next; |
| uint32_t n = 0; |
| |
| check_nexts(h, b); |
| |
| for (c = c0; c != 0 && (n == 0 || c != c0); |
| n++, c = next_free_chunk(h, c)) { |
| if (!valid_chunk(h, c)) { |
| return false; |
| } |
| set_chunk_used(h, c, true); |
| } |
| |
| bool empty = (h->avail_buckets & BIT(b)) == 0; |
| bool zero = n == 0; |
| |
| if (empty != zero) { |
| return false; |
| } |
| |
| if (empty && h->buckets[b].next != 0) { |
| return false; |
| } |
| } |
| |
| /* |
| * Walk through the chunks linearly again, verifying that all chunks |
| * but solo headers are now USED (i.e. all free blocks were found |
| * during enumeration). Mark all such blocks UNUSED and solo headers |
| * USED. |
| */ |
| chunkid_t prev_chunk = 0; |
| for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) { |
| if (!chunk_used(h, c) && !solo_free_header(h, c)) { |
| return false; |
| } |
| if (left_chunk(h, c) != prev_chunk) { |
| return false; |
| } |
| prev_chunk = c; |
| |
| set_chunk_used(h, c, solo_free_header(h, c)); |
| } |
| if (c != h->end_chunk) { |
| return false; /* Should have exactly consumed the buffer */ |
| } |
| |
| /* Go through the free lists again checking that the linear |
| * pass caught all the blocks and that they now show UNUSED. |
| * Mark them USED. |
| */ |
| for (int b = 0; b <= bucket_idx(h, h->end_chunk); b++) { |
| chunkid_t c0 = h->buckets[b].next; |
| int n = 0; |
| |
| if (c0 == 0) { |
| continue; |
| } |
| |
| for (c = c0; n == 0 || c != c0; n++, c = next_free_chunk(h, c)) { |
| if (chunk_used(h, c)) { |
| return false; |
| } |
| set_chunk_used(h, c, true); |
| } |
| } |
| |
| /* Now we are valid, but have managed to invert all the in-use |
| * fields. One more linear pass to fix them up |
| */ |
| for (c = right_chunk(h, 0); c < h->end_chunk; c = right_chunk(h, c)) { |
| set_chunk_used(h, c, !chunk_used(h, c)); |
| } |
| return true; |
| } |
| |
| struct z_heap_stress_rec { |
| void *(*alloc_fn)(void *arg, size_t bytes); |
| void (*free_fn)(void *arg, void *p); |
| void *arg; |
| size_t total_bytes; |
| struct z_heap_stress_block *blocks; |
| size_t nblocks; |
| size_t blocks_alloced; |
| size_t bytes_alloced; |
| uint32_t target_percent; |
| }; |
| |
| struct z_heap_stress_block { |
| void *ptr; |
| size_t sz; |
| }; |
| |
| /* Very simple LCRNG (from https://nuclear.llnl.gov/CNP/rng/rngman/node4.html) |
| * |
| * Here to guarantee cross-platform test repeatability. |
| */ |
| static uint32_t rand32(void) |
| { |
| static uint64_t state = 123456789; /* seed */ |
| |
| state = state * 2862933555777941757UL + 3037000493UL; |
| |
| return (uint32_t)(state >> 32); |
| } |
| |
| static bool rand_alloc_choice(struct z_heap_stress_rec *sr) |
| { |
| /* Edge cases: no blocks allocated, and no space for a new one */ |
| if (sr->blocks_alloced == 0) { |
| return true; |
| } else if (sr->blocks_alloced >= sr->nblocks) { |
| return false; |
| } else { |
| |
| /* The way this works is to scale the chance of choosing to |
| * allocate vs. free such that it's even odds when the heap is |
| * at the target percent, with linear tapering on the low |
| * slope (i.e. we choose to always allocate with an empty |
| * heap, allocate 50% of the time when the heap is exactly at |
| * the target, and always free when above the target). In |
| * practice, the operations aren't quite symmetric (you can |
| * always free, but your allocation might fail), and the units |
| * aren't matched (we're doing math based on bytes allocated |
| * and ignoring the overhead) but this is close enough. And |
| * yes, the math here is coarse (in units of percent), but |
| * that's good enough and fits well inside 32 bit quantities. |
| * (Note precision issue when heap size is above 40MB |
| * though!). |
| */ |
| __ASSERT(sr->total_bytes < 0xffffffffU / 100, "too big for u32!"); |
| uint32_t full_pct = (100 * sr->bytes_alloced) / sr->total_bytes; |
| uint32_t target = sr->target_percent ? sr->target_percent : 1; |
| uint32_t free_chance = 0xffffffffU; |
| |
| if (full_pct < sr->target_percent) { |
| free_chance = full_pct * (0x80000000U / target); |
| } |
| |
| return rand32() > free_chance; |
| } |
| } |
| |
| /* Chooses a size of block to allocate, logarithmically favoring |
| * smaller blocks (i.e. blocks twice as large are half as frequent |
| */ |
| static size_t rand_alloc_size(struct z_heap_stress_rec *sr) |
| { |
| ARG_UNUSED(sr); |
| |
| /* Min scale of 4 means that the half of the requests in the |
| * smallest size have an average size of 8 |
| */ |
| int scale = 4 + __builtin_clz(rand32()); |
| |
| return rand32() & BIT_MASK(scale); |
| } |
| |
| /* Returns the index of a randomly chosen block to free */ |
| static size_t rand_free_choice(struct z_heap_stress_rec *sr) |
| { |
| return rand32() % sr->blocks_alloced; |
| } |
| |
| /* General purpose heap stress test. Takes function pointers to allow |
| * for testing multiple heap APIs with the same rig. The alloc and |
| * free functions are passed back the argument as a context pointer. |
| * The "log" function is for readable user output. The total_bytes |
| * argument should reflect the size of the heap being tested. The |
| * scratch array is used to store temporary state and should be sized |
| * about half as large as the heap itself. Returns true on success. |
| */ |
| void sys_heap_stress(void *(*alloc_fn)(void *arg, size_t bytes), |
| void (*free_fn)(void *arg, void *p), |
| void *arg, size_t total_bytes, |
| uint32_t op_count, |
| void *scratch_mem, size_t scratch_bytes, |
| int target_percent, |
| struct z_heap_stress_result *result) |
| { |
| struct z_heap_stress_rec sr = { |
| .alloc_fn = alloc_fn, |
| .free_fn = free_fn, |
| .arg = arg, |
| .total_bytes = total_bytes, |
| .blocks = scratch_mem, |
| .nblocks = scratch_bytes / sizeof(struct z_heap_stress_block), |
| .target_percent = target_percent, |
| }; |
| |
| *result = (struct z_heap_stress_result) {0}; |
| |
| for (uint32_t i = 0; i < op_count; i++) { |
| if (rand_alloc_choice(&sr)) { |
| size_t sz = rand_alloc_size(&sr); |
| void *p = sr.alloc_fn(sr.arg, sz); |
| |
| result->total_allocs++; |
| if (p != NULL) { |
| result->successful_allocs++; |
| sr.blocks[sr.blocks_alloced].ptr = p; |
| sr.blocks[sr.blocks_alloced].sz = sz; |
| sr.blocks_alloced++; |
| sr.bytes_alloced += sz; |
| } |
| } else { |
| int b = rand_free_choice(&sr); |
| void *p = sr.blocks[b].ptr; |
| size_t sz = sr.blocks[b].sz; |
| |
| result->total_frees++; |
| sr.blocks[b] = sr.blocks[sr.blocks_alloced - 1]; |
| sr.blocks_alloced--; |
| sr.bytes_alloced -= sz; |
| sr.free_fn(sr.arg, p); |
| } |
| result->accumulated_in_use_bytes += sr.bytes_alloced; |
| } |
| } |
| |
| /* |
| * Print heap info for debugging / analysis purpose |
| */ |
| void heap_print_info(struct z_heap *h, bool dump_chunks) |
| { |
| int i, nb_buckets = bucket_idx(h, h->end_chunk) + 1; |
| size_t free_bytes, allocated_bytes, total, overhead; |
| |
| printk("Heap at %p contains %d units in %d buckets\n\n", |
| chunk_buf(h), h->end_chunk, nb_buckets); |
| |
| printk(" bucket# min units total largest largest\n" |
| " threshold chunks (units) (bytes)\n" |
| " -----------------------------------------------------------\n"); |
| for (i = 0; i < nb_buckets; i++) { |
| chunkid_t first = h->buckets[i].next; |
| chunksz_t largest = 0; |
| int count = 0; |
| |
| if (first) { |
| chunkid_t curr = first; |
| do { |
| count++; |
| largest = MAX(largest, chunk_size(h, curr)); |
| curr = next_free_chunk(h, curr); |
| } while (curr != first); |
| } |
| if (count) { |
| printk("%9d %12d %12d %12d %12zd\n", |
| i, (1 << i) - 1 + min_chunk_size(h), count, |
| largest, chunksz_to_bytes(h, largest)); |
| } |
| } |
| |
| if (dump_chunks) { |
| printk("\nChunk dump:\n"); |
| for (chunkid_t c = 0; ; c = right_chunk(h, c)) { |
| printk("chunk %4d: [%c] size=%-4d left=%-4d right=%d\n", |
| c, |
| chunk_used(h, c) ? '*' |
| : solo_free_header(h, c) ? '.' |
| : '-', |
| chunk_size(h, c), |
| left_chunk(h, c), |
| right_chunk(h, c)); |
| if (c == h->end_chunk) { |
| break; |
| } |
| } |
| } |
| |
| get_alloc_info(h, &allocated_bytes, &free_bytes); |
| /* The end marker chunk has a header. It is part of the overhead. */ |
| total = h->end_chunk * CHUNK_UNIT + chunk_header_bytes(h); |
| overhead = total - free_bytes - allocated_bytes; |
| printk("\n%zd free bytes, %zd allocated bytes, overhead = %zd bytes (%zd.%zd%%)\n", |
| free_bytes, allocated_bytes, overhead, |
| (1000 * overhead + total/2) / total / 10, |
| (1000 * overhead + total/2) / total % 10); |
| } |
| |
| void sys_heap_print_info(struct sys_heap *heap, bool dump_chunks) |
| { |
| heap_print_info(heap->heap, dump_chunks); |
| } |
| |
| #ifdef CONFIG_SYS_HEAP_RUNTIME_STATS |
| |
| int sys_heap_runtime_stats_get(struct sys_heap *heap, |
| struct sys_memory_stats *stats) |
| { |
| if ((heap == NULL) || (stats == NULL)) { |
| return -EINVAL; |
| } |
| |
| stats->free_bytes = heap->heap->free_bytes; |
| stats->allocated_bytes = heap->heap->allocated_bytes; |
| stats->max_allocated_bytes = heap->heap->max_allocated_bytes; |
| |
| return 0; |
| } |
| |
| int sys_heap_runtime_stats_reset_max(struct sys_heap *heap) |
| { |
| if (heap == NULL) { |
| return -EINVAL; |
| } |
| |
| heap->heap->max_allocated_bytes = heap->heap->allocated_bytes; |
| |
| return 0; |
| } |
| |
| #endif |