blob: a071b16e5340750a6c740c98b2343728c9210090 [file] [log] [blame]
/*
* Copyright (c) 2024, STRIM, ALC
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_flexio_spi
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_flexio_spi.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/misc/nxp_flexio/nxp_flexio.h>
LOG_MODULE_REGISTER(spi_mcux_flexio_spi, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
struct spi_mcux_flexio_config {
FLEXIO_SPI_Type *flexio_spi;
const struct device *flexio_dev;
const struct pinctrl_dev_config *pincfg;
const struct nxp_flexio_child *child;
};
struct spi_mcux_flexio_data {
const struct device *dev;
flexio_spi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
uint8_t transfer_flags;
};
static void spi_mcux_transfer_next_packet(const struct device *dev)
{
const struct spi_mcux_flexio_config *config = dev->config;
struct spi_mcux_flexio_data *data = dev->data;
struct spi_context *ctx = &data->ctx;
flexio_spi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
return;
}
transfer.flags = kFLEXIO_SPI_csContinuous | data->transfer_flags;
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
}
data->transfer_len = transfer.dataSize;
status = FLEXIO_SPI_MasterTransferNonBlocking(config->flexio_spi, &data->handle,
&transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
}
}
static int spi_mcux_flexio_isr(void *user_data)
{
const struct device *dev = (const struct device *)user_data;
const struct spi_mcux_flexio_config *config = dev->config;
struct spi_mcux_flexio_data *data = dev->data;
#if defined(CONFIG_SOC_SERIES_KE1XZ)
/* Wait until data transfer complete. */
WAIT_FOR((0U == (FLEXIO_SPI_GetStatusFlags(config->flexio_spi)
& (uint32_t)kFLEXIO_SPI_TxBufferEmptyFlag)), 100, NULL);
#endif
FLEXIO_SPI_MasterTransferHandleIRQ(config->flexio_spi, &data->handle);
return 0;
}
static void spi_mcux_master_transfer_callback(FLEXIO_SPI_Type *flexio_spi,
flexio_spi_master_handle_t *handle, status_t status, void *userData)
{
struct spi_mcux_flexio_data *data = userData;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(data->dev);
}
static void spi_flexio_master_init(FLEXIO_SPI_Type *base, flexio_spi_master_config_t *masterConfig,
uint8_t pol, uint32_t srcClock_Hz)
{
assert(base != NULL);
assert(masterConfig != NULL);
flexio_shifter_config_t shifterConfig;
flexio_timer_config_t timerConfig;
uint32_t ctrlReg = 0;
uint16_t timerDiv = 0;
uint16_t timerCmp = 0;
/* Clear the shifterConfig & timerConfig struct. */
(void)memset(&shifterConfig, 0, sizeof(shifterConfig));
(void)memset(&timerConfig, 0, sizeof(timerConfig));
/* Configure FLEXIO SPI Master */
ctrlReg = base->flexioBase->CTRL;
ctrlReg &= ~(FLEXIO_CTRL_DOZEN_MASK | FLEXIO_CTRL_DBGE_MASK |
FLEXIO_CTRL_FASTACC_MASK | FLEXIO_CTRL_FLEXEN_MASK);
ctrlReg |= (FLEXIO_CTRL_DBGE(masterConfig->enableInDebug) |
FLEXIO_CTRL_FASTACC(masterConfig->enableFastAccess) |
FLEXIO_CTRL_FLEXEN(masterConfig->enableMaster));
if (!masterConfig->enableInDoze) {
ctrlReg |= FLEXIO_CTRL_DOZEN_MASK;
}
base->flexioBase->CTRL = ctrlReg;
/* Do hardware configuration. */
/* 1. Configure the shifter 0 for tx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutput;
shifterConfig.pinSelect = base->SDOPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeTransmit;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge) {
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
} else {
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitLow;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnShift;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[0], &shifterConfig);
/* 2. Configure the shifter 1 for rx. */
shifterConfig.timerSelect = base->timerIndex[0];
shifterConfig.pinConfig = kFLEXIO_PinConfigOutputDisabled;
shifterConfig.pinSelect = base->SDIPinIndex;
shifterConfig.pinPolarity = kFLEXIO_PinActiveHigh;
shifterConfig.shifterMode = kFLEXIO_ShifterModeReceive;
shifterConfig.inputSource = kFLEXIO_ShifterInputFromPin;
shifterConfig.shifterStop = kFLEXIO_ShifterStopBitDisable;
shifterConfig.shifterStart = kFLEXIO_ShifterStartBitDisabledLoadDataOnEnable;
if (masterConfig->phase == kFLEXIO_SPI_ClockPhaseFirstEdge) {
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnPositive;
} else {
shifterConfig.timerPolarity = kFLEXIO_ShifterTimerPolarityOnNegitive;
}
FLEXIO_SetShifterConfig(base->flexioBase, base->shifterIndex[1], &shifterConfig);
/*3. Configure the timer 0 for SCK. */
timerConfig.triggerSelect = FLEXIO_TIMER_TRIGGER_SEL_SHIFTnSTAT(base->shifterIndex[0]);
timerConfig.triggerPolarity = kFLEXIO_TimerTriggerPolarityActiveLow;
timerConfig.triggerSource = kFLEXIO_TimerTriggerSourceInternal;
timerConfig.pinConfig = kFLEXIO_PinConfigOutput;
timerConfig.pinSelect = base->SCKPinIndex;
timerConfig.pinPolarity = pol ? kFLEXIO_PinActiveLow : kFLEXIO_PinActiveHigh;
timerConfig.timerMode = kFLEXIO_TimerModeDual8BitBaudBit;
timerConfig.timerOutput = kFLEXIO_TimerOutputZeroNotAffectedByReset;
timerConfig.timerDecrement = kFLEXIO_TimerDecSrcOnFlexIOClockShiftTimerOutput;
timerConfig.timerReset = kFLEXIO_TimerResetNever;
timerConfig.timerDisable = kFLEXIO_TimerDisableOnTimerCompare;
timerConfig.timerEnable = kFLEXIO_TimerEnableOnTriggerHigh;
timerConfig.timerStop = kFLEXIO_TimerStopBitEnableOnTimerDisable;
timerConfig.timerStart = kFLEXIO_TimerStartBitEnabled;
/* Low 8-bits are used to configure baudrate. */
timerDiv = (uint16_t)(srcClock_Hz / masterConfig->baudRate_Bps);
timerDiv = timerDiv / 2U - 1U;
/* High 8-bits are used to configure shift clock edges(transfer width). */
timerCmp = ((uint16_t)masterConfig->dataMode * 2U - 1U) << 8U;
timerCmp |= timerDiv;
timerConfig.timerCompare = timerCmp;
FLEXIO_SetTimerConfig(base->flexioBase, base->timerIndex[0], &timerConfig);
}
static int spi_mcux_flexio_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_flexio_config *config = dev->config;
struct spi_mcux_flexio_data *data = dev->data;
flexio_spi_master_config_t master_config;
uint32_t clock_freq;
uint32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Mode Slave not supported");
return -ENOTSUP;
}
FLEXIO_SPI_MasterGetDefaultConfig(&master_config);
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if ((word_size != 8) && (word_size != 16) && (word_size != 32)) {
LOG_ERR("Word size %d must be 8, 16 or 32", word_size);
return -EINVAL;
}
master_config.dataMode = word_size;
if (spi_cfg->operation & SPI_TRANSFER_LSB) {
if (word_size == 8) {
data->transfer_flags = kFLEXIO_SPI_8bitLsb;
} else if (word_size == 16) {
data->transfer_flags = kFLEXIO_SPI_16bitLsb;
} else {
data->transfer_flags = kFLEXIO_SPI_32bitLsb;
}
} else {
if (word_size == 8) {
data->transfer_flags = kFLEXIO_SPI_8bitMsb;
} else if (word_size == 16) {
data->transfer_flags = kFLEXIO_SPI_16bitMsb;
} else {
data->transfer_flags = kFLEXIO_SPI_32bitMsb;
}
}
if (nxp_flexio_get_rate(config->flexio_dev, &clock_freq)) {
return -EINVAL;
}
master_config.phase =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kFLEXIO_SPI_ClockPhaseSecondEdge
: kFLEXIO_SPI_ClockPhaseFirstEdge;
master_config.baudRate_Bps = spi_cfg->frequency;
spi_flexio_master_init(config->flexio_spi, &master_config,
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL), clock_freq);
FLEXIO_SPI_MasterTransferCreateHandle(config->flexio_spi, &data->handle,
spi_mcux_master_transfer_callback,
data);
/* No SetDummyData() for FlexIO_SPI */
data->ctx.config = spi_cfg;
return 0;
}
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_mcux_flexio_config *config = dev->config;
struct spi_mcux_flexio_data *data = dev->data;
int ret;
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
nxp_flexio_lock(config->flexio_dev);
ret = spi_mcux_flexio_configure(dev, spi_cfg);
nxp_flexio_unlock(config->flexio_dev);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
nxp_flexio_lock(config->flexio_dev);
nxp_flexio_irq_disable(config->flexio_dev);
spi_mcux_transfer_next_packet(dev);
nxp_flexio_irq_enable(config->flexio_dev);
nxp_flexio_unlock(config->flexio_dev);
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_flexio_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(const struct device *dev)
{
const struct spi_mcux_flexio_config *config = dev->config;
struct spi_mcux_flexio_data *data = dev->data;
int err;
err = nxp_flexio_child_attach(config->flexio_dev, config->child);
if (err < 0) {
return err;
}
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
data->dev = dev;
/* TODO: DMA */
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_mcux_release,
};
#define SPI_MCUX_FLEXIO_SPI_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
\
static FLEXIO_SPI_Type flexio_spi_##n = { \
.flexioBase = (FLEXIO_Type *)DT_REG_ADDR(DT_INST_PARENT(n)), \
.SDOPinIndex = DT_INST_PROP(n, sdo_pin), \
.SDIPinIndex = DT_INST_PROP(n, sdi_pin), \
.SCKPinIndex = DT_INST_PROP(n, sck_pin), \
}; \
\
static const struct nxp_flexio_child nxp_flexio_spi_child_##n = { \
.isr = spi_mcux_flexio_isr, \
.user_data = (void *)DEVICE_DT_INST_GET(n), \
.res = { \
.shifter_index = flexio_spi_##n.shifterIndex, \
.shifter_count = ARRAY_SIZE(flexio_spi_##n.shifterIndex), \
.timer_index = flexio_spi_##n.timerIndex, \
.timer_count = ARRAY_SIZE(flexio_spi_##n.timerIndex) \
} \
}; \
\
static const struct spi_mcux_flexio_config spi_mcux_flexio_config_##n = { \
.flexio_spi = &flexio_spi_##n, \
.flexio_dev = DEVICE_DT_GET(DT_INST_PARENT(n)), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.child = &nxp_flexio_spi_child_##n, \
}; \
\
static struct spi_mcux_flexio_data spi_mcux_flexio_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_flexio_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_flexio_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \
}; \
\
DEVICE_DT_INST_DEFINE(n, spi_mcux_init, NULL, \
&spi_mcux_flexio_data_##n, \
&spi_mcux_flexio_config_##n, POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_mcux_driver_api); \
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXIO_SPI_INIT)