blob: 06db6d11aa153e6a8814e2b7b30e14811608736c [file] [log] [blame]
/*
* Copyright (c) 2024 Nuvoton Technology Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nuvoton_npcx_spip
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(spi_npcx_spip, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
/* Transfer this NOP value when tx buf is null */
#define SPI_NPCX_SPIP_TX_NOP 0x00
#define SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US 1000
/* The max allowed prescaler divider */
#define SPI_NPCX_MAX_PRESCALER_DIV INT8_MAX
struct spi_npcx_spip_data {
struct spi_context ctx;
uint32_t src_clock_freq;
uint8_t bytes_per_frame;
};
struct spi_npcx_spip_cfg {
struct spip_reg *reg_base;
struct npcx_clk_cfg clk_cfg;
#ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT
/* routine for configuring SPIP ISR */
void (*irq_cfg_func)(const struct device *dev);
#endif
const struct pinctrl_dev_config *pcfg;
};
static int spi_npcx_spip_configure(const struct device *dev, const struct spi_config *spi_cfg)
{
uint8_t prescaler_divider;
const struct spi_npcx_spip_cfg *const config = dev->config;
struct spi_npcx_spip_data *const data = dev->data;
struct spip_reg *const reg_base = config->reg_base;
spi_operation_t operation = spi_cfg->operation;
uint8_t frame_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half duplex mode is not supported");
return -ENOTSUP;
}
if (SPI_OP_MODE_GET(operation) != SPI_OP_MODE_MASTER) {
LOG_ERR("Only SPI controller mode is supported");
return -ENOTSUP;
}
if (operation & SPI_MODE_LOOP) {
LOG_ERR("Loopback mode is not supported");
return -ENOTSUP;
}
/*
* If the GPIO CS configuration is not present, return error because the hardware CS is
* not supported.
*/
if (!spi_cs_is_gpio(spi_cfg)) {
LOG_ERR("Only GPIO CS is supported");
return -ENOTSUP;
}
/* Get the frame length */
frame_size = SPI_WORD_SIZE_GET(operation);
if (frame_size == 8) {
data->bytes_per_frame = 1;
reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_MOD);
} else if (frame_size == 16) {
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_MOD);
data->bytes_per_frame = 2;
} else {
LOG_ERR("Only support word sizes either 8 or 16 bits");
return -ENOTSUP;
}
if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) &&
(operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
LOG_ERR("Only single line mode is supported");
return -ENOTSUP;
}
/* Set the endianness */
if (operation & SPI_TRANSFER_LSB) {
LOG_ERR("Shift out with LSB is not supported");
return -ENOTSUP;
}
/*
* Set CPOL and CPHA.
* The following is how to map npcx spip control register to CPOL and CPHA
* CPOL CPHA | SCIDL SCM
* -----------------------------
* 0 0 | 0 0
* 0 1 | 0 1
* 1 0 | 1 1
* 1 1 | 1 0
*/
if (operation & SPI_MODE_CPOL) {
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SCIDL);
} else {
reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_SCIDL);
}
if (((operation & SPI_MODE_CPOL) == SPI_MODE_CPOL) !=
((operation & SPI_MODE_CPHA) == SPI_MODE_CPHA)) {
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SCM);
} else {
reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_SCM);
}
/* Set the SPI frequency */
prescaler_divider = data->src_clock_freq / 2 / spi_cfg->frequency;
if (prescaler_divider >= 1) {
prescaler_divider -= 1;
}
if (prescaler_divider >= SPI_NPCX_MAX_PRESCALER_DIV) {
LOG_ERR("SPI divider %d exceeds the max allowed value %d.", prescaler_divider,
SPI_NPCX_MAX_PRESCALER_DIV);
return -ENOTSUP;
}
SET_FIELD(reg_base->SPIP_CTL1, NPCX_SPIP_CTL1_SCDV, prescaler_divider);
data->ctx.config = spi_cfg;
return 0;
}
static void spi_npcx_spip_process_tx_buf(struct spi_npcx_spip_data *const data, uint16_t *tx_frame)
{
/* Get the tx_frame from tx_buf only when tx_buf != NULL */
if (spi_context_tx_buf_on(&data->ctx)) {
if (data->bytes_per_frame == 1) {
*tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
} else {
*tx_frame = UNALIGNED_GET((uint16_t *)(data->ctx.tx_buf));
}
}
/*
* The update is ignored if TX is off (tx_len == 0).
* Note: if tx_buf == NULL && tx_len != 0, the update still counts.
*/
spi_context_update_tx(&data->ctx, data->bytes_per_frame, 1);
}
static void spi_npcx_spip_process_rx_buf(struct spi_npcx_spip_data *const data, uint16_t rx_frame)
{
if (spi_context_rx_buf_on(&data->ctx)) {
if (data->bytes_per_frame == 1) {
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
} else {
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
}
}
spi_context_update_rx(&data->ctx, data->bytes_per_frame, 1);
}
#ifndef CONFIG_SPI_NPCX_SPIP_INTERRUPT
static int spi_npcx_spip_xfer_frame(const struct device *dev)
{
const struct spi_npcx_spip_cfg *const config = dev->config;
struct spip_reg *const reg_base = config->reg_base;
struct spi_npcx_spip_data *const data = dev->data;
uint16_t tx_frame = SPI_NPCX_SPIP_TX_NOP;
uint16_t rx_frame;
spi_npcx_spip_process_tx_buf(data, &tx_frame);
if (WAIT_FOR(!IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_BSY),
SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US, NULL) == false) {
LOG_ERR("Check Status BSY Timeout");
return -ETIMEDOUT;
}
reg_base->SPIP_DATA = tx_frame;
if (WAIT_FOR(IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_RBF),
SPI_NPCX_SPIP_WAIT_STATUS_TIMEOUT_US, NULL) == false) {
LOG_ERR("Check Status RBF Timeout");
return -ETIMEDOUT;
}
rx_frame = reg_base->SPIP_DATA;
spi_npcx_spip_process_rx_buf(data, rx_frame);
return 0;
}
#endif
static bool spi_npcx_spip_transfer_ongoing(struct spi_npcx_spip_data *data)
{
return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx);
}
#ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT
static void spi_npcx_spip_isr(const struct device *dev)
{
const struct spi_npcx_spip_cfg *const config = dev->config;
struct spip_reg *const reg_base = config->reg_base;
struct spi_npcx_spip_data *const data = dev->data;
struct spi_context *ctx = &data->ctx;
uint16_t tx_frame = SPI_NPCX_SPIP_TX_NOP;
uint16_t rx_frame;
uint8_t status;
status = reg_base->SPIP_STAT;
if (!IS_BIT_SET(status, NPCX_SPIP_STAT_BSY) && !IS_BIT_SET(status, NPCX_SPIP_STAT_RBF)) {
reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_EIW);
spi_npcx_spip_process_tx_buf(data, &tx_frame);
reg_base->SPIP_DATA = tx_frame;
} else if (IS_BIT_SET(status, NPCX_SPIP_STAT_RBF)) {
rx_frame = reg_base->SPIP_DATA;
spi_npcx_spip_process_rx_buf(data, rx_frame);
if (!spi_npcx_spip_transfer_ongoing(data)) {
reg_base->SPIP_CTL1 &= ~BIT(NPCX_SPIP_CTL1_EIR);
/*
* The CS might not de-assert if SPI_HOLD_ON_CS is configured.
* In this case, CS de-assertion reles on the caller to explicitly call
* spi_release() API.
*/
spi_context_cs_control(ctx, false);
spi_context_complete(ctx, dev, 0);
} else {
spi_npcx_spip_process_tx_buf(data, &tx_frame);
reg_base->SPIP_DATA = tx_frame;
}
}
}
#endif
static int transceive(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs,
bool asynchronous, spi_callback_t cb, void *userdata)
{
const struct spi_npcx_spip_cfg *const config = dev->config;
struct spip_reg *const reg_base = config->reg_base;
struct spi_npcx_spip_data *const data = dev->data;
struct spi_context *ctx = &data->ctx;
int rc;
if (!tx_bufs && !rx_bufs) {
return 0;
}
#ifndef CONFIG_SPI_NPCX_SPIP_INTERRUPT
if (asynchronous) {
return -ENOTSUP;
}
#endif
/* Lock the SPI Context */
spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg);
rc = spi_npcx_spip_configure(dev, spi_cfg);
if (rc < 0) {
spi_context_release(ctx, rc);
return rc;
}
spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, data->bytes_per_frame);
if (!spi_npcx_spip_transfer_ongoing(data)) {
spi_context_release(ctx, 0);
return 0;
}
/* Enable SPIP module */
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SPIEN);
/* Cleaning junk data in the buffer */
while (IS_BIT_SET(reg_base->SPIP_STAT, NPCX_SPIP_STAT_RBF)) {
uint8_t unused __attribute__((unused));
unused = reg_base->SPIP_DATA;
}
/* Assert the CS line */
spi_context_cs_control(ctx, true);
#ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_EIR) | BIT(NPCX_SPIP_CTL1_EIW);
rc = spi_context_wait_for_completion(&data->ctx);
#else
do {
rc = spi_npcx_spip_xfer_frame(dev);
if (rc < 0) {
break;
}
} while (spi_npcx_spip_transfer_ongoing(data));
/*
* The CS might not de-assert if SPI_HOLD_ON_CS is configured.
* In this case, CS de-assertion reles on the caller to explicitly call spi_release() API.
*/
spi_context_cs_control(ctx, false);
#endif
spi_context_release(ctx, rc);
return rc;
}
static int spi_npcx_spip_transceive(const struct device *dev, const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_npcx_spip_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs, spi_callback_t cb,
void *userdata)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif
static int spi_npcx_spip_release(const struct device *dev, const struct spi_config *spi_cfg)
{
struct spi_npcx_spip_data *const data = dev->data;
struct spi_context *ctx = &data->ctx;
if (!spi_context_configured(ctx, spi_cfg)) {
return -EINVAL;
}
spi_context_unlock_unconditionally(ctx);
return 0;
}
static int spi_npcx_spip_init(const struct device *dev)
{
int ret;
struct spi_npcx_spip_data *const data = dev->data;
const struct spi_npcx_spip_cfg *const config = dev->config;
struct spip_reg *const reg_base = config->reg_base;
const struct device *const clk_dev = DEVICE_DT_GET(NPCX_CLK_CTRL_NODE);
if (!device_is_ready(clk_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
ret = clock_control_on(clk_dev, (clock_control_subsys_t)&config->clk_cfg);
if (ret < 0) {
LOG_ERR("Turn on SPIP clock fail %d", ret);
return ret;
}
ret = clock_control_get_rate(clk_dev, (clock_control_subsys_t)&config->clk_cfg,
&data->src_clock_freq);
if (ret < 0) {
LOG_ERR("Get SPIP clock source rate error %d", ret);
return ret;
}
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* Make sure the context is unlocked */
spi_context_unlock_unconditionally(&data->ctx);
#ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT
config->irq_cfg_func(dev);
#endif
/* Enable SPIP module */
reg_base->SPIP_CTL1 |= BIT(NPCX_SPIP_CTL1_SPIEN);
return 0;
}
static struct spi_driver_api spi_npcx_spip_api = {
.transceive = spi_npcx_spip_transceive,
.release = spi_npcx_spip_release,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_npcx_spip_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
};
#ifdef CONFIG_SPI_NPCX_SPIP_INTERRUPT
#define NPCX_SPIP_IRQ_HANDLER(n) \
static void spi_npcx_spip_irq_cfg_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), spi_npcx_spip_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}
#define NPCX_SPIP_IRQ_HANDLER_FUNC(n) .irq_cfg_func = spi_npcx_spip_irq_cfg_func_##n,
#else
#define NPCX_SPIP_IRQ_HANDLER_FUNC(n)
#define NPCX_SPIP_IRQ_HANDLER(n)
#endif
#define NPCX_SPI_INIT(n) \
PINCTRL_DT_INST_DEFINE(n); \
NPCX_SPIP_IRQ_HANDLER(n) \
\
static struct spi_npcx_spip_data spi_npcx_spip_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_npcx_spip_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_npcx_spip_data_##n, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx)}; \
\
static struct spi_npcx_spip_cfg spi_npcx_spip_cfg_##n = { \
.reg_base = (struct spip_reg *)DT_INST_REG_ADDR(n), \
.clk_cfg = NPCX_DT_CLK_CFG_ITEM(n), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
NPCX_SPIP_IRQ_HANDLER_FUNC(n)}; \
\
DEVICE_DT_INST_DEFINE(n, spi_npcx_spip_init, NULL, &spi_npcx_spip_data_##n, \
&spi_npcx_spip_cfg_##n, POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_npcx_spip_api);
DT_INST_FOREACH_STATUS_OKAY(NPCX_SPI_INIT)