| /* |
| * Copyright (c) 2017 Google LLC. |
| * Copyright (c) 2018 qianfan Zhao. |
| * Copyright (c) 2023 Gerson Fernando Budke. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT atmel_sam_spi |
| |
| #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL |
| #include <zephyr/logging/log.h> |
| LOG_MODULE_REGISTER(spi_sam); |
| |
| #include "spi_context.h" |
| #include <errno.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/device.h> |
| #include <zephyr/drivers/spi.h> |
| #include <zephyr/drivers/spi/rtio.h> |
| #include <zephyr/drivers/dma.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/drivers/clock_control/atmel_sam_pmc.h> |
| #include <zephyr/rtio/rtio.h> |
| #include <zephyr/sys/__assert.h> |
| #include <zephyr/sys/util.h> |
| #include <soc.h> |
| |
| #define SAM_SPI_CHIP_SELECT_COUNT 4 |
| |
| /* Number of bytes in transfer before using DMA if available */ |
| #define SAM_SPI_DMA_THRESHOLD 32 |
| |
| /* Device constant configuration parameters */ |
| struct spi_sam_config { |
| Spi *regs; |
| const struct atmel_sam_pmc_config clock_cfg; |
| const struct pinctrl_dev_config *pcfg; |
| bool loopback; |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| const struct device *dma_dev; |
| const uint32_t dma_tx_channel; |
| const uint32_t dma_tx_perid; |
| const uint32_t dma_rx_channel; |
| const uint32_t dma_rx_perid; |
| #endif /* CONFIG_SPI_SAM_DMA */ |
| }; |
| |
| /* Device run time data */ |
| struct spi_sam_data { |
| struct spi_context ctx; |
| struct k_spinlock lock; |
| |
| #ifdef CONFIG_SPI_RTIO |
| struct spi_rtio *rtio_ctx; |
| #endif |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| struct k_sem dma_sem; |
| #endif /* CONFIG_SPI_SAM_DMA */ |
| }; |
| |
| static inline k_spinlock_key_t spi_spin_lock(const struct device *dev) |
| { |
| struct spi_sam_data *data = dev->data; |
| |
| return k_spin_lock(&data->lock); |
| } |
| |
| static inline void spi_spin_unlock(const struct device *dev, k_spinlock_key_t key) |
| { |
| struct spi_sam_data *data = dev->data; |
| |
| k_spin_unlock(&data->lock, key); |
| } |
| |
| static int spi_slave_to_mr_pcs(int slave) |
| { |
| int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7}; |
| |
| /* SPI worked in fixed peripheral mode(SPI_MR.PS = 0) and disabled chip |
| * select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based |
| * Flash MCU DATASHEET 40.8.2 SPI Mode Register: |
| * PCS = xxx0 NPCS[3:0] = 1110 |
| * PCS = xx01 NPCS[3:0] = 1101 |
| * PCS = x011 NPCS[3:0] = 1011 |
| * PCS = 0111 NPCS[3:0] = 0111 |
| */ |
| |
| return pcs[slave]; |
| } |
| |
| static int spi_sam_configure(const struct device *dev, |
| const struct spi_config *config) |
| { |
| const struct spi_sam_config *cfg = dev->config; |
| struct spi_sam_data *data = dev->data; |
| Spi *regs = cfg->regs; |
| uint32_t spi_mr = 0U, spi_csr = 0U; |
| uint16_t spi_csr_idx = spi_cs_is_gpio(config) ? 0 : config->slave; |
| int div; |
| |
| if (spi_context_configured(&data->ctx, config)) { |
| return 0; |
| } |
| |
| if (config->operation & SPI_HALF_DUPLEX) { |
| LOG_ERR("Half-duplex not supported"); |
| return -ENOTSUP; |
| } |
| |
| if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { |
| /* Slave mode is not implemented. */ |
| return -ENOTSUP; |
| } |
| |
| if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) { |
| LOG_ERR("Slave %d is greater than %d", |
| config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1); |
| return -EINVAL; |
| } |
| |
| /* Set master mode, disable mode fault detection, set fixed peripheral |
| * select mode. |
| */ |
| spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS); |
| spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(spi_csr_idx)); |
| |
| if (cfg->loopback) { |
| spi_mr |= SPI_MR_LLB; |
| } |
| |
| if ((config->operation & SPI_MODE_CPOL) != 0U) { |
| spi_csr |= SPI_CSR_CPOL; |
| } |
| |
| if ((config->operation & SPI_MODE_CPHA) == 0U) { |
| spi_csr |= SPI_CSR_NCPHA; |
| } |
| |
| if (SPI_WORD_SIZE_GET(config->operation) != 8) { |
| return -ENOTSUP; |
| } else { |
| spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT); |
| } |
| |
| /* Use the requested or next highest possible frequency */ |
| div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency; |
| div = CLAMP(div, 1, UINT8_MAX); |
| spi_csr |= SPI_CSR_SCBR(div); |
| |
| regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */ |
| regs->SPI_MR = spi_mr; |
| regs->SPI_CSR[spi_csr_idx] = spi_csr; |
| regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */ |
| |
| data->ctx.config = config; |
| |
| return 0; |
| } |
| |
| /* Finish any ongoing writes and drop any remaining read data */ |
| static void spi_sam_finish(Spi *regs) |
| { |
| while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) { |
| } |
| |
| while (regs->SPI_SR & SPI_SR_RDRF) { |
| (void)regs->SPI_RDR; |
| } |
| } |
| |
| /* Fast path that transmits a buf */ |
| static void spi_sam_fast_tx(Spi *regs, const uint8_t *tx_buf, const uint32_t tx_buf_len) |
| { |
| const uint8_t *p = tx_buf; |
| const uint8_t *pend = (uint8_t *)tx_buf + tx_buf_len; |
| uint8_t ch; |
| |
| while (p != pend) { |
| ch = *p++; |
| |
| while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { |
| } |
| |
| regs->SPI_TDR = SPI_TDR_TD(ch); |
| } |
| } |
| |
| /* Fast path that reads into a buf */ |
| static void spi_sam_fast_rx(Spi *regs, uint8_t *rx_buf, const uint32_t rx_buf_len) |
| { |
| uint8_t *rx = rx_buf; |
| int len = rx_buf_len; |
| |
| if (len <= 0) { |
| return; |
| } |
| |
| /* Write the first byte */ |
| regs->SPI_TDR = SPI_TDR_TD(0); |
| len--; |
| |
| while (len) { |
| while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { |
| } |
| |
| /* Read byte N+0 from the receive register */ |
| while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { |
| } |
| |
| *rx = (uint8_t)regs->SPI_RDR; |
| rx++; |
| |
| /* Load byte N+1 into the transmit register */ |
| regs->SPI_TDR = SPI_TDR_TD(0); |
| len--; |
| } |
| |
| /* Read the final incoming byte */ |
| while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { |
| } |
| |
| *rx = (uint8_t)regs->SPI_RDR; |
| } |
| |
| /* Fast path that writes and reads bufs of the same length */ |
| static void spi_sam_fast_txrx(Spi *regs, |
| const uint8_t *tx_buf, |
| const uint8_t *rx_buf, |
| const uint32_t len) |
| { |
| const uint8_t *tx = tx_buf; |
| const uint8_t *txend = tx_buf + len; |
| uint8_t *rx = (uint8_t *)rx_buf; |
| |
| if (len == 0) { |
| return; |
| } |
| |
| /* |
| * The code below interleaves the transmit writes with the |
| * receive reads to keep the bus fully utilised. The code is |
| * equivalent to: |
| * |
| * Transmit byte 0 |
| * Loop: |
| * - Transmit byte n+1 |
| * - Receive byte n |
| * Receive the final byte |
| */ |
| |
| /* Write the first byte */ |
| regs->SPI_TDR = SPI_TDR_TD(*tx++); |
| |
| while (tx != txend) { |
| while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { |
| } |
| |
| /* Load byte N+1 into the transmit register. TX is |
| * single buffered and we have at most one byte in |
| * flight so skip the DRE check. |
| */ |
| regs->SPI_TDR = SPI_TDR_TD(*tx++); |
| |
| /* Read byte N+0 from the receive register */ |
| while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { |
| } |
| |
| *rx++ = (uint8_t)regs->SPI_RDR; |
| } |
| |
| /* Read the final incoming byte */ |
| while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { |
| } |
| |
| *rx = (uint8_t)regs->SPI_RDR; |
| |
| } |
| |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| |
| static __aligned(4) uint32_t tx_dummy; |
| static __aligned(4) uint32_t rx_dummy; |
| |
| #ifdef CONFIG_SPI_RTIO |
| static void spi_sam_iodev_complete(const struct device *dev, int status); |
| #endif |
| |
| static void dma_callback(const struct device *dma_dev, void *user_data, |
| uint32_t channel, int status) |
| { |
| ARG_UNUSED(dma_dev); |
| ARG_UNUSED(channel); |
| ARG_UNUSED(status); |
| |
| const struct device *dev = user_data; |
| struct spi_sam_data *drv_data = dev->data; |
| |
| #ifdef CONFIG_SPI_RTIO |
| struct spi_rtio *rtio_ctx = drv_data->rtio_ctx; |
| |
| if (rtio_ctx->txn_head != NULL) { |
| spi_sam_iodev_complete(dev, status); |
| return; |
| } |
| #endif |
| k_sem_give(&drv_data->dma_sem); |
| } |
| |
| |
| /* DMA transceive path */ |
| static int spi_sam_dma_txrx(const struct device *dev, |
| Spi *regs, |
| const uint8_t *tx_buf, |
| const uint8_t *rx_buf, |
| const uint32_t len) |
| { |
| const struct spi_sam_config *drv_cfg = dev->config; |
| struct spi_sam_data *drv_data = dev->data; |
| #ifdef CONFIG_SPI_RTIO |
| struct spi_rtio *rtio_ctx = drv_data->rtio_ctx; |
| bool blocking = rtio_ctx->txn_head == NULL; |
| #else |
| bool blocking = true; |
| #endif |
| |
| int res = 0; |
| |
| __ASSERT_NO_MSG(rx_buf != NULL || tx_buf != NULL); |
| |
| struct dma_config rx_dma_cfg = { |
| .source_data_size = 1, |
| .dest_data_size = 1, |
| .block_count = 1, |
| .dma_slot = drv_cfg->dma_rx_perid, |
| .channel_direction = PERIPHERAL_TO_MEMORY, |
| .source_burst_length = 1, |
| .dest_burst_length = 1, |
| .complete_callback_en = true, |
| .dma_callback = NULL, |
| .user_data = (void *)dev, |
| }; |
| |
| uint32_t dest_address, dest_addr_adjust; |
| |
| if (rx_buf != NULL) { |
| dest_address = (uint32_t)rx_buf; |
| dest_addr_adjust = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| dest_address = (uint32_t)&rx_dummy; |
| dest_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| struct dma_block_config rx_block_cfg = { |
| .dest_addr_adj = dest_addr_adjust, |
| .block_size = len, |
| .source_address = (uint32_t)®s->SPI_RDR, |
| .dest_address = dest_address |
| }; |
| |
| rx_dma_cfg.head_block = &rx_block_cfg; |
| |
| struct dma_config tx_dma_cfg = { |
| .source_data_size = 1, |
| .dest_data_size = 1, |
| .block_count = 1, |
| .dma_slot = drv_cfg->dma_tx_perid, |
| .channel_direction = MEMORY_TO_PERIPHERAL, |
| .source_burst_length = 1, |
| .dest_burst_length = 1, |
| .complete_callback_en = true, |
| .dma_callback = dma_callback, |
| .user_data = (void *)dev, |
| }; |
| |
| uint32_t source_address, source_addr_adjust; |
| |
| if (tx_buf != NULL) { |
| source_address = (uint32_t)tx_buf; |
| source_addr_adjust = DMA_ADDR_ADJ_INCREMENT; |
| } else { |
| source_address = (uint32_t)&tx_dummy; |
| source_addr_adjust = DMA_ADDR_ADJ_NO_CHANGE; |
| } |
| |
| struct dma_block_config tx_block_cfg = { |
| .source_addr_adj = source_addr_adjust, |
| .block_size = len, |
| .source_address = source_address, |
| .dest_address = (uint32_t)®s->SPI_TDR |
| }; |
| |
| tx_dma_cfg.head_block = &tx_block_cfg; |
| |
| res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_rx_channel, &rx_dma_cfg); |
| if (res != 0) { |
| LOG_ERR("failed to configure SPI DMA RX"); |
| goto out; |
| } |
| |
| res = dma_config(drv_cfg->dma_dev, drv_cfg->dma_tx_channel, &tx_dma_cfg); |
| if (res != 0) { |
| LOG_ERR("failed to configure SPI DMA TX"); |
| goto out; |
| } |
| |
| /* Clocking begins on tx, so start rx first */ |
| res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); |
| if (res != 0) { |
| LOG_ERR("failed to start SPI DMA RX"); |
| goto out; |
| } |
| |
| res = dma_start(drv_cfg->dma_dev, drv_cfg->dma_tx_channel); |
| if (res != 0) { |
| LOG_ERR("failed to start SPI DMA TX"); |
| dma_stop(drv_cfg->dma_dev, drv_cfg->dma_rx_channel); |
| } |
| |
| /* Move up a level or wrap in branch when blocking */ |
| if (blocking) { |
| k_sem_take(&drv_data->dma_sem, K_FOREVER); |
| spi_sam_finish(regs); |
| } else { |
| res = -EWOULDBLOCK; |
| } |
| |
| out: |
| return res; |
| } |
| |
| #endif /* CONFIG_SPI_SAM_DMA */ |
| |
| |
| static inline int spi_sam_rx(const struct device *dev, |
| Spi *regs, |
| uint8_t *rx_buf, |
| uint32_t rx_buf_len) |
| { |
| k_spinlock_key_t key; |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| const struct spi_sam_config *cfg = dev->config; |
| |
| if ((rx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && |
| !IS_ENABLED(CONFIG_SPI_RTIO)) { |
| key = spi_spin_lock(dev); |
| spi_sam_fast_rx(regs, rx_buf, rx_buf_len); |
| } else { |
| /* RTIO Transfers should always fall here */ |
| return spi_sam_dma_txrx(dev, regs, NULL, rx_buf, rx_buf_len); |
| } |
| #else |
| key = spi_spin_lock(dev); |
| spi_sam_fast_rx(regs, rx_buf, rx_buf_len); |
| #endif |
| spi_sam_finish(regs); |
| |
| spi_spin_unlock(dev, key); |
| return 0; |
| } |
| |
| static inline int spi_sam_tx(const struct device *dev, |
| Spi *regs, |
| const uint8_t *tx_buf, |
| uint32_t tx_buf_len) |
| { |
| k_spinlock_key_t key; |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| const struct spi_sam_config *cfg = dev->config; |
| |
| if ((tx_buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && |
| !IS_ENABLED(CONFIG_SPI_RTIO)) { |
| key = spi_spin_lock(dev); |
| spi_sam_fast_tx(regs, tx_buf, tx_buf_len); |
| } else { |
| /* RTIO Transfers should always fall here */ |
| return spi_sam_dma_txrx(dev, regs, tx_buf, NULL, tx_buf_len); |
| } |
| #else |
| key = spi_spin_lock(dev); |
| spi_sam_fast_tx(regs, tx_buf, tx_buf_len); |
| #endif |
| spi_sam_finish(regs); |
| spi_spin_unlock(dev, key); |
| return 0; |
| } |
| |
| |
| static inline int spi_sam_txrx(const struct device *dev, |
| Spi *regs, |
| const uint8_t *tx_buf, |
| const uint8_t *rx_buf, |
| uint32_t buf_len) |
| { |
| k_spinlock_key_t key; |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| const struct spi_sam_config *cfg = dev->config; |
| |
| if ((buf_len < SAM_SPI_DMA_THRESHOLD || cfg->dma_dev == NULL) && |
| !IS_ENABLED(CONFIG_SPI_RTIO)) { |
| key = spi_spin_lock(dev); |
| spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); |
| } else { |
| /* RTIO Transfers should always fall here */ |
| return spi_sam_dma_txrx(dev, regs, tx_buf, rx_buf, buf_len); |
| } |
| #else |
| key = spi_spin_lock(dev); |
| spi_sam_fast_txrx(regs, tx_buf, rx_buf, buf_len); |
| #endif |
| spi_sam_finish(regs); |
| spi_spin_unlock(dev, key); |
| return 0; |
| } |
| |
| #ifndef CONFIG_SPI_RTIO |
| |
| /* Fast path where every overlapping tx and rx buffer is the same length */ |
| static void spi_sam_fast_transceive(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| const struct spi_sam_config *cfg = dev->config; |
| size_t tx_count = 0; |
| size_t rx_count = 0; |
| Spi *regs = cfg->regs; |
| const struct spi_buf *tx = NULL; |
| const struct spi_buf *rx = NULL; |
| |
| if (tx_bufs) { |
| tx = tx_bufs->buffers; |
| tx_count = tx_bufs->count; |
| } |
| |
| if (rx_bufs) { |
| rx = rx_bufs->buffers; |
| rx_count = rx_bufs->count; |
| } |
| |
| while (tx_count != 0 && rx_count != 0) { |
| if (tx->buf == NULL) { |
| spi_sam_rx(dev, regs, rx->buf, rx->len); |
| } else if (rx->buf == NULL) { |
| spi_sam_tx(dev, regs, tx->buf, tx->len); |
| } else if (rx->len == tx->len) { |
| spi_sam_txrx(dev, regs, tx->buf, rx->buf, rx->len); |
| } else { |
| __ASSERT_NO_MSG("Invalid fast transceive configuration"); |
| } |
| |
| tx++; |
| tx_count--; |
| rx++; |
| rx_count--; |
| } |
| |
| for (; tx_count != 0; tx_count--) { |
| spi_sam_tx(dev, regs, tx->buf, tx->len); |
| tx++; |
| } |
| |
| for (; rx_count != 0; rx_count--) { |
| spi_sam_rx(dev, regs, rx->buf, rx->len); |
| rx++; |
| } |
| } |
| |
| static bool spi_sam_transfer_ongoing(struct spi_sam_data *data) |
| { |
| return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); |
| } |
| |
| static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data) |
| { |
| uint8_t tx; |
| uint8_t rx; |
| |
| if (spi_context_tx_buf_on(&data->ctx)) { |
| tx = *(uint8_t *)(data->ctx.tx_buf); |
| } else { |
| tx = 0U; |
| } |
| |
| while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { |
| } |
| |
| regs->SPI_TDR = SPI_TDR_TD(tx); |
| spi_context_update_tx(&data->ctx, 1, 1); |
| |
| while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { |
| } |
| |
| rx = (uint8_t)regs->SPI_RDR; |
| |
| if (spi_context_rx_buf_on(&data->ctx)) { |
| *data->ctx.rx_buf = rx; |
| } |
| spi_context_update_rx(&data->ctx, 1, 1); |
| } |
| |
| /* Returns true if the request is suitable for the fast |
| * path. Specifically, the bufs are a sequence of: |
| * |
| * - Zero or more RX and TX buf pairs where each is the same length. |
| * - Zero or more trailing RX only bufs |
| * - Zero or more trailing TX only bufs |
| */ |
| static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| const struct spi_buf *tx = NULL; |
| const struct spi_buf *rx = NULL; |
| size_t tx_count = 0; |
| size_t rx_count = 0; |
| |
| if (tx_bufs) { |
| tx = tx_bufs->buffers; |
| tx_count = tx_bufs->count; |
| } |
| |
| if (rx_bufs) { |
| rx = rx_bufs->buffers; |
| rx_count = rx_bufs->count; |
| } |
| |
| if (!tx || !rx) { |
| return true; |
| } |
| |
| while (tx_count != 0 && rx_count != 0) { |
| if (tx->len != rx->len) { |
| return false; |
| } |
| |
| tx++; |
| tx_count--; |
| rx++; |
| rx_count--; |
| } |
| |
| return true; |
| } |
| |
| #else |
| |
| static void spi_sam_iodev_complete(const struct device *dev, int status); |
| |
| static void spi_sam_iodev_start(const struct device *dev) |
| { |
| const struct spi_sam_config *cfg = dev->config; |
| struct spi_sam_data *data = dev->data; |
| struct spi_rtio *rtio_ctx = data->rtio_ctx; |
| struct rtio_sqe *sqe = &rtio_ctx->txn_curr->sqe; |
| int ret = 0; |
| |
| switch (sqe->op) { |
| case RTIO_OP_RX: |
| ret = spi_sam_rx(dev, cfg->regs, sqe->rx.buf, sqe->rx.buf_len); |
| break; |
| case RTIO_OP_TX: |
| ret = spi_sam_tx(dev, cfg->regs, sqe->tx.buf, sqe->tx.buf_len); |
| break; |
| case RTIO_OP_TINY_TX: |
| ret = spi_sam_tx(dev, cfg->regs, sqe->tiny_tx.buf, sqe->tiny_tx.buf_len); |
| break; |
| case RTIO_OP_TXRX: |
| ret = spi_sam_txrx(dev, cfg->regs, sqe->txrx.tx_buf, sqe->txrx.rx_buf, |
| sqe->txrx.buf_len); |
| break; |
| default: |
| LOG_ERR("Invalid op code %d for submission %p\n", sqe->op, (void *)sqe); |
| spi_sam_iodev_complete(dev, -EINVAL); |
| return; |
| } |
| |
| /** Completion of the RTIO transfer should come through the DMA |
| * callback when successful, otherwise complete it here as an error. |
| */ |
| if (ret != 0 && ret != -EWOULDBLOCK) { |
| spi_sam_iodev_complete(dev, ret); |
| } |
| } |
| |
| static inline void spi_sam_iodev_prepare_start(const struct device *dev) |
| { |
| struct spi_sam_data *data = dev->data; |
| struct spi_rtio *rtio_ctx = data->rtio_ctx; |
| struct spi_dt_spec *spi_dt_spec = rtio_ctx->txn_curr->sqe.iodev->data; |
| struct spi_config *spi_config = &spi_dt_spec->config; |
| int err; |
| |
| err = spi_sam_configure(dev, spi_config); |
| __ASSERT(!err, "%d", err); |
| |
| spi_context_cs_control(&data->ctx, true); |
| } |
| |
| static void spi_sam_iodev_complete(const struct device *dev, int status) |
| { |
| struct spi_sam_data *data = dev->data; |
| struct spi_rtio *rtio_ctx = data->rtio_ctx; |
| |
| if (!status && rtio_ctx->txn_curr->sqe.flags & RTIO_SQE_TRANSACTION) { |
| rtio_ctx->txn_curr = rtio_txn_next(rtio_ctx->txn_curr); |
| spi_sam_iodev_start(dev); |
| } else { |
| /** De-assert CS-line to space from next transaction */ |
| spi_context_cs_control(&data->ctx, false); |
| |
| if (spi_rtio_complete(rtio_ctx, status)) { |
| spi_sam_iodev_prepare_start(dev); |
| spi_sam_iodev_start(dev); |
| } |
| } |
| } |
| |
| static void spi_sam_iodev_submit(const struct device *dev, |
| struct rtio_iodev_sqe *iodev_sqe) |
| { |
| struct spi_sam_data *data = dev->data; |
| struct spi_rtio *rtio_ctx = data->rtio_ctx; |
| |
| if (spi_rtio_submit(rtio_ctx, iodev_sqe)) { |
| spi_sam_iodev_prepare_start(dev); |
| spi_sam_iodev_start(dev); |
| } |
| } |
| #endif |
| |
| static int spi_sam_transceive(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| struct spi_sam_data *data = dev->data; |
| int err = 0; |
| |
| spi_context_lock(&data->ctx, false, NULL, NULL, config); |
| |
| #if CONFIG_SPI_RTIO |
| struct spi_rtio *rtio_ctx = data->rtio_ctx; |
| |
| err = spi_rtio_transceive(rtio_ctx, config, tx_bufs, rx_bufs); |
| #else |
| const struct spi_sam_config *cfg = dev->config; |
| |
| err = spi_sam_configure(dev, config); |
| if (err != 0) { |
| goto done; |
| } |
| |
| spi_context_cs_control(&data->ctx, true); |
| |
| if (spi_sam_is_regular(tx_bufs, rx_bufs)) { |
| spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs); |
| } else { |
| spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); |
| |
| do { |
| spi_sam_shift_master(cfg->regs, data); |
| } while (spi_sam_transfer_ongoing(data)); |
| } |
| |
| spi_context_cs_control(&data->ctx, false); |
| done: |
| #endif |
| spi_context_release(&data->ctx, err); |
| return err; |
| } |
| |
| static int spi_sam_transceive_sync(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs) |
| { |
| return spi_sam_transceive(dev, config, tx_bufs, rx_bufs); |
| } |
| |
| #ifdef CONFIG_SPI_ASYNC |
| static int spi_sam_transceive_async(const struct device *dev, |
| const struct spi_config *config, |
| const struct spi_buf_set *tx_bufs, |
| const struct spi_buf_set *rx_bufs, |
| spi_callback_t cb, |
| void *userdata) |
| { |
| /* TODO: implement async transceive */ |
| return -ENOTSUP; |
| } |
| #endif /* CONFIG_SPI_ASYNC */ |
| |
| static int spi_sam_release(const struct device *dev, |
| const struct spi_config *config) |
| { |
| struct spi_sam_data *data = dev->data; |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| return 0; |
| } |
| |
| static int spi_sam_init(const struct device *dev) |
| { |
| int err; |
| const struct spi_sam_config *cfg = dev->config; |
| struct spi_sam_data *data = dev->data; |
| |
| /* Enable SPI clock in PMC */ |
| (void)clock_control_on(SAM_DT_PMC_CONTROLLER, |
| (clock_control_subsys_t)&cfg->clock_cfg); |
| |
| err = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (err < 0) { |
| return err; |
| } |
| |
| err = spi_context_cs_configure_all(&data->ctx); |
| if (err < 0) { |
| return err; |
| } |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| k_sem_init(&data->dma_sem, 0, K_SEM_MAX_LIMIT); |
| #endif |
| |
| #ifdef CONFIG_SPI_RTIO |
| spi_rtio_init(data->rtio_ctx, dev); |
| #endif |
| |
| spi_context_unlock_unconditionally(&data->ctx); |
| |
| /* The device will be configured and enabled when transceive |
| * is called. |
| */ |
| |
| return 0; |
| } |
| |
| static const struct spi_driver_api spi_sam_driver_api = { |
| .transceive = spi_sam_transceive_sync, |
| #ifdef CONFIG_SPI_ASYNC |
| .transceive_async = spi_sam_transceive_async, |
| #endif |
| #ifdef CONFIG_SPI_RTIO |
| .iodev_submit = spi_sam_iodev_submit, |
| #endif |
| .release = spi_sam_release, |
| }; |
| |
| #define SPI_DMA_INIT(n) \ |
| .dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(n, tx)), \ |
| .dma_tx_channel = DT_INST_DMAS_CELL_BY_NAME(n, tx, channel), \ |
| .dma_tx_perid = DT_INST_DMAS_CELL_BY_NAME(n, tx, perid), \ |
| .dma_rx_channel = DT_INST_DMAS_CELL_BY_NAME(n, rx, channel), \ |
| .dma_rx_perid = DT_INST_DMAS_CELL_BY_NAME(n, rx, perid), |
| |
| #ifdef CONFIG_SPI_SAM_DMA |
| #define SPI_SAM_USE_DMA(n) DT_INST_DMAS_HAS_NAME(n, tx) |
| #else |
| #define SPI_SAM_USE_DMA(n) 0 |
| #endif |
| |
| #define SPI_SAM_DEFINE_CONFIG(n) \ |
| static const struct spi_sam_config spi_sam_config_##n = { \ |
| .regs = (Spi *)DT_INST_REG_ADDR(n), \ |
| .clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(n), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ |
| .loopback = DT_INST_PROP(n, loopback), \ |
| COND_CODE_1(SPI_SAM_USE_DMA(n), (SPI_DMA_INIT(n)), ()) \ |
| } |
| |
| #define SPI_SAM_RTIO_DEFINE(n) SPI_RTIO_DEFINE(spi_sam_rtio_##n, \ |
| CONFIG_SPI_SAM_RTIO_SQ_SIZE, \ |
| CONFIG_SPI_SAM_RTIO_SQ_SIZE) |
| |
| #define SPI_SAM_DEVICE_INIT(n) \ |
| PINCTRL_DT_INST_DEFINE(n); \ |
| SPI_SAM_DEFINE_CONFIG(n); \ |
| COND_CODE_1(CONFIG_SPI_RTIO, (SPI_SAM_RTIO_DEFINE(n)), ()); \ |
| static struct spi_sam_data spi_sam_dev_data_##n = { \ |
| SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx), \ |
| SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx), \ |
| SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(n), ctx) \ |
| IF_ENABLED(CONFIG_SPI_RTIO, (.rtio_ctx = &spi_sam_rtio_##n)) \ |
| }; \ |
| DEVICE_DT_INST_DEFINE(n, &spi_sam_init, NULL, \ |
| &spi_sam_dev_data_##n, \ |
| &spi_sam_config_##n, POST_KERNEL, \ |
| CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT) |