blob: f2fe7f1bd5c7a815dcf6980f452e5cfb7c82ac0e [file] [log] [blame]
.. zephyr:board:: stm32h757i_eval
Overview
********
The evaluation kit enables a wide diversity of applications taking benefit
from audio, multi-sensor support, graphics, security, video,
and high-speed connectivity features.
The STM32H7X7I-eval board comes with both the STM32H757XI SoC and the STM32H747XI SoC.
But in the following documentation, we will focus on the STM32H757XI SoC, but both should work.
The board includes an STM32H757XI SoC with a high-performance DSP, Arm Cortex-M7 + Cortex-M4 MCU,
with 2MBytes of Flash memory, 1MB RAM, 480 MHz CPU, Art Accelerator, L1 cache, external memory interface,
large set of peripherals, SMPS, and MIPI-DSI.
Additionally, the board features:
- On-board ST-LINK/V3E supporting USB reenumeration capability
- USB ST-LINK functions: virtual COM port, mass storage, debug port
- Flexible power-supply options:
- ST-LINK USB VBUS, USB OTG HS connector, or external sources
- 4” capacitive touch LCD display module with MIPI® DSI interface
- Ethernet compliant with IEEE802.3-2002
- USB OTG HS and OTG FS
- I2C compatible serial interface
- RTC with rechargeable backup battery
- SAI audio DAC
- ST-MEMS digital microphones
- 8-Gbyte (or more) SDIO 3.0 interface microSD card
- 8 M×32bit SDRAM, 1 M×16bit SDRAM and 8 M×16bit NOR flash memory
- 1-Gbit twin Quad-SPI NOR flash memory or two 512-Mbit Quad-SPI NOR flash memories
- Potentiometer
- 4 color user LEDs
- Reset, wakeup, tamper, or key buttons
- Joystick with 4-direction control and selector
More information about the board can be found at the `STM32H757I-EVAL website`_.
More information about STM32H757XIH6 can be found here:
- `STM32H757XI on www.st.com`_
- `STM32H757xx reference manual`_
- `STM32H757xx datasheet`_
Supported Features
==================
.. zephyr:board-supported-hw::
Pin Mapping
===========
STM32H757I Discovery kit has 9 GPIO controllers. These controllers are responsible for pin muxing,
input/output, pull-up, etc.
For more details please refer to `STM32H757I-EVAL website`_.
Default Zephyr Peripheral Mapping:
----------------------------------
- UART_1 TX/RX : PA9/PA10 (ST-Link Virtual Port Com)
- SDMMC_1 D0/D1/D2/D3/CK/CMD: PC8/PC9/PC10/PC11/PC12/PD2
- LD1 : PK3
- LD2 : PK4
- LD3 : PK5
- LD4 : PK6
- W-UP : PA0
- J-CENTER : PB0
- J-DOWN : PB1
- J-LEFT : PB2
- J-RIGHT : PB3
- J-UP : PB4
System Clock
============
The STM32H757I System Clock can be driven by an internal or external oscillator,
as well as by the main PLL clock. By default, the CPU1 (Cortex-M7) System clock
is driven by the PLL clock at 400MHz, and the CPU2 (Cortex-M4) System clock
is driven at 200MHz. PLL clock is feed by a 25MHz high speed external clock.
Serial Port
===========
Default configuration assigns USART1 to the CPU1. The Zephyr console
output is assigned to UART1 which connected to the onboard ST-LINK/V3.0. Virtual
COM port interface. Default communication settings are 115200 8N1.
Display
=======
The STM32H757I Eval kit has a dedicated DSI LCD connector **CN15**, where
the MB1166 (B-LCD40-DSI1) display extension board can be mounted. Enable display
support in Zephyr by adding the shield ``st_b_lcd40_dsi1_mb1166`` or
``st_b_lcd40_dsi1_mb1166_a09`` to your build command, for example:
.. zephyr-app-commands::
:zephyr-app: samples/drivers/display
:board: stm32h757i_eval/stm32h757xx/m7
:shield: st_b_lcd40_dsi1_mb1166
:goals: build flash
.. note::
The shield comes in different hardware revisions, the MB1166-A09
is utilizing a NT35510 panel controller and shall specifically
use ``st_b_lcd40_dsi1_mb1166_a09`` as SHIELD when building.
Prior versions are utilizing an OTM8009a controller and shall
use shield name without postfix, that is: ``st_b_lcd40_dsi1_mb1166``.
Shield version is printed on a sticker placed below the two bottom
mounting holes and has the format: MB1166-Axx.
Resources sharing
=================
The dual core nature of STM32H757 SoC requires sharing HW resources between the
two cores. This is done in 3 ways:
- **Compilation**: Clock configuration is only accessible to M7 core. M4 core only
has access to bus clock activation and deactivation.
- **Static pre-compilation assignment**: Peripherals such as a UART are assigned in
devicetree before compilation. The user must ensure peripherals are not assigned
to both cores at the same time.
- **Run time protection**: Interrupt-controller and GPIO configurations could be
accessed by both cores at run time. Accesses are protected by a hardware semaphore
to avoid potential concurrent access issues.
Programming and Debugging
*************************
.. zephyr:board-supported-runners::
STM32H757I-EVAL board includes an ST-LINK/V3 embedded debug tool interface.
Applications for the ``stm32h757i_disco`` board should be built per core target,
using either ``stm32h757i_eval/stm32h757xx/m7`` or ``stm32h757i_eval/stm32h757xx/m4``
as the target.
See :ref:`build_an_application` for more information about application builds.
.. note::
Check if the board's ST-LINK V3 has the newest FW version. It can be updated
using `STM32CubeProgrammer`_.
.. note::
With OpenOCD, sometimes, flashing does not work. It is necessary to
erase the flash (with STM32CubeProgrammer for example) to make it work again.
Debugging with OpenOCD is currently working for this board only with Cortex M7,
not Cortex M4.
Flashing
========
Flashing operation will depend on the target to be flashed and the SoC
option bytes configuration.
The board is configured to be flashed using west `STM32CubeProgrammer`_ runner
for both cores, so its :ref:`installation <stm32cubeprog-flash-host-tools>` is required.
The target core is detected automatically.
Alternatively, OpenOCD or JLink can also be used to flash the board using
the ``--runner`` (or ``-r``) option:
.. code-block:: console
$ west flash --runner openocd
$ west flash --runner jlink
It is advised to use `STM32CubeProgrammer`_ to check and update option bytes
configuration.
By default:
- CPU1 (Cortex-M7) boot address is set to 0x80000000 (OB: BOOT_CM7_ADD0)
- CPU2 (Cortex-M4) boot address is set to 0x81000000 (OB: BOOT_CM4_ADD0)
Also, default out of the box board configuration enables CM7 and CM4 boot when
board is powered (Option bytes BCM7 and BCM4 are checked).
It is possible to change Option Bytes so that CM7 boots first in stand alone,
and CM7 will wakeup CM4 after clock initialization.
Drivers are able to take into account both Option Bytes configurations
automatically.
Zephyr flash configuration has been set to meet these default settings.
Flashing an application to STM32H757I M7 Core
---------------------------------------------
First, connect the STM32H757I Eval kit to your host computer using
the USB port to prepare it for flashing. Then build and flash your application.
Here is an example for the :zephyr:code-sample:`hello_world` application.
.. zephyr-app-commands::
:zephyr-app: samples/hello_world
:board: stm32h757i_eval/stm32h757xx/m7
:goals: build flash
Run a serial host program to connect with your board:
.. code-block:: console
$ minicom -D /dev/ttyACM0
You should see the following message on the console:
.. code-block:: console
Hello World! stm32h757i_disco
.. note::
Sometimes, flashing is not working. It is necessary to erase the flash
(with STM32CubeProgrammer for example) to make it work again.
Similarly, you can build and flash samples on the M4 target. For this, please
take care of the resource sharing (UART port used for console for instance).
Here is an example for the :zephyr:code-sample:`blinky` application on M4 core.
.. zephyr-app-commands::
:zephyr-app: samples/basic/blinky
:board: stm32h757i_eval/stm32h757xx/m7
:goals: build flash
Debugging
=========
You can debug an application on Cortex M7 side in the usual way. Here is an example
for the :zephyr:code-sample:`hello_world` application.
.. zephyr-app-commands::
:zephyr-app: samples/hello_world
:board: stm32h757i_eval/stm32h757xx/m7
:goals: debug
Debugging a Zephyr application on Cortex M4 side with west is currently not available.
As a workaround, you can use `STM32CubeIDE`_.
.. _STM32H757I-EVAL website:
https://www.st.com/en/evaluation-tools/stm32h757i-eval.html
.. _STM32H757XI on www.st.com:
https://www.st.com/en/microcontrollers-microprocessors/stm32h757xi.html
.. _STM32H757xx reference manual:
https://www.st.com/resource/en/reference_manual/rm0399-stm32h745755-and-stm32h747757-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
.. _STM32H757xx datasheet:
https://www.st.com/resource/en/datasheet/stm32h757xi.pdf
.. _STM32CubeProgrammer:
https://www.st.com/en/development-tools/stm32cubeprog.html
.. _STM32CubeIDE:
https://www.st.com/en/development-tools/stm32cubeide.html