| /* |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <zephyr/kernel.h> |
| #include <ksched.h> |
| #include <zephyr/spinlock.h> |
| #include <zephyr/kernel/sched_priq.h> |
| #include <zephyr/wait_q.h> |
| #include <kswap.h> |
| #include <kernel_arch_func.h> |
| #include <zephyr/syscall_handler.h> |
| #include <zephyr/drivers/timer/system_timer.h> |
| #include <stdbool.h> |
| #include <kernel_internal.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/sys/atomic.h> |
| #include <zephyr/sys/math_extras.h> |
| #include <zephyr/timing/timing.h> |
| |
| LOG_MODULE_DECLARE(os, CONFIG_KERNEL_LOG_LEVEL); |
| |
| #if defined(CONFIG_SCHED_DUMB) |
| #define _priq_run_add z_priq_dumb_add |
| #define _priq_run_remove z_priq_dumb_remove |
| # if defined(CONFIG_SCHED_CPU_MASK) |
| # define _priq_run_best _priq_dumb_mask_best |
| # else |
| # define _priq_run_best z_priq_dumb_best |
| # endif |
| #elif defined(CONFIG_SCHED_SCALABLE) |
| #define _priq_run_add z_priq_rb_add |
| #define _priq_run_remove z_priq_rb_remove |
| #define _priq_run_best z_priq_rb_best |
| #elif defined(CONFIG_SCHED_MULTIQ) |
| #define _priq_run_add z_priq_mq_add |
| #define _priq_run_remove z_priq_mq_remove |
| #define _priq_run_best z_priq_mq_best |
| static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq, |
| struct k_thread *thread); |
| static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq, |
| struct k_thread *thread); |
| #endif |
| |
| #if defined(CONFIG_WAITQ_SCALABLE) |
| #define z_priq_wait_add z_priq_rb_add |
| #define _priq_wait_remove z_priq_rb_remove |
| #define _priq_wait_best z_priq_rb_best |
| #elif defined(CONFIG_WAITQ_DUMB) |
| #define z_priq_wait_add z_priq_dumb_add |
| #define _priq_wait_remove z_priq_dumb_remove |
| #define _priq_wait_best z_priq_dumb_best |
| #endif |
| |
| struct k_spinlock sched_spinlock; |
| |
| static void update_cache(int preempt_ok); |
| static void end_thread(struct k_thread *thread); |
| |
| |
| static inline int is_preempt(struct k_thread *thread) |
| { |
| /* explanation in kernel_struct.h */ |
| return thread->base.preempt <= _PREEMPT_THRESHOLD; |
| } |
| |
| static inline int is_metairq(struct k_thread *thread) |
| { |
| #if CONFIG_NUM_METAIRQ_PRIORITIES > 0 |
| return (thread->base.prio - K_HIGHEST_THREAD_PRIO) |
| < CONFIG_NUM_METAIRQ_PRIORITIES; |
| #else |
| return 0; |
| #endif |
| } |
| |
| #if CONFIG_ASSERT |
| static inline bool is_thread_dummy(struct k_thread *thread) |
| { |
| return (thread->base.thread_state & _THREAD_DUMMY) != 0U; |
| } |
| #endif |
| |
| /* |
| * Return value same as e.g. memcmp |
| * > 0 -> thread 1 priority > thread 2 priority |
| * = 0 -> thread 1 priority == thread 2 priority |
| * < 0 -> thread 1 priority < thread 2 priority |
| * Do not rely on the actual value returned aside from the above. |
| * (Again, like memcmp.) |
| */ |
| int32_t z_sched_prio_cmp(struct k_thread *thread_1, |
| struct k_thread *thread_2) |
| { |
| /* `prio` is <32b, so the below cannot overflow. */ |
| int32_t b1 = thread_1->base.prio; |
| int32_t b2 = thread_2->base.prio; |
| |
| if (b1 != b2) { |
| return b2 - b1; |
| } |
| |
| #ifdef CONFIG_SCHED_DEADLINE |
| /* If we assume all deadlines live within the same "half" of |
| * the 32 bit modulus space (this is a documented API rule), |
| * then the latest deadline in the queue minus the earliest is |
| * guaranteed to be (2's complement) non-negative. We can |
| * leverage that to compare the values without having to check |
| * the current time. |
| */ |
| uint32_t d1 = thread_1->base.prio_deadline; |
| uint32_t d2 = thread_2->base.prio_deadline; |
| |
| if (d1 != d2) { |
| /* Sooner deadline means higher effective priority. |
| * Doing the calculation with unsigned types and casting |
| * to signed isn't perfect, but at least reduces this |
| * from UB on overflow to impdef. |
| */ |
| return (int32_t) (d2 - d1); |
| } |
| #endif |
| return 0; |
| } |
| |
| static ALWAYS_INLINE bool should_preempt(struct k_thread *thread, |
| int preempt_ok) |
| { |
| /* Preemption is OK if it's being explicitly allowed by |
| * software state (e.g. the thread called k_yield()) |
| */ |
| if (preempt_ok != 0) { |
| return true; |
| } |
| |
| __ASSERT(_current != NULL, ""); |
| |
| /* Or if we're pended/suspended/dummy (duh) */ |
| if (z_is_thread_prevented_from_running(_current)) { |
| return true; |
| } |
| |
| /* Edge case on ARM where a thread can be pended out of an |
| * interrupt handler before the "synchronous" swap starts |
| * context switching. Platforms with atomic swap can never |
| * hit this. |
| */ |
| if (IS_ENABLED(CONFIG_SWAP_NONATOMIC) |
| && z_is_thread_timeout_active(thread)) { |
| return true; |
| } |
| |
| /* Otherwise we have to be running a preemptible thread or |
| * switching to a metairq |
| */ |
| if (is_preempt(_current) || is_metairq(thread)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_SCHED_CPU_MASK |
| static ALWAYS_INLINE struct k_thread *_priq_dumb_mask_best(sys_dlist_t *pq) |
| { |
| /* With masks enabled we need to be prepared to walk the list |
| * looking for one we can run |
| */ |
| struct k_thread *thread; |
| |
| SYS_DLIST_FOR_EACH_CONTAINER(pq, thread, base.qnode_dlist) { |
| if ((thread->base.cpu_mask & BIT(_current_cpu->id)) != 0) { |
| return thread; |
| } |
| } |
| return NULL; |
| } |
| #endif |
| |
| static ALWAYS_INLINE void z_priq_dumb_add(sys_dlist_t *pq, |
| struct k_thread *thread) |
| { |
| struct k_thread *t; |
| |
| __ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
| |
| SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) { |
| if (z_sched_prio_cmp(thread, t) > 0) { |
| sys_dlist_insert(&t->base.qnode_dlist, |
| &thread->base.qnode_dlist); |
| return; |
| } |
| } |
| |
| sys_dlist_append(pq, &thread->base.qnode_dlist); |
| } |
| |
| static ALWAYS_INLINE void *thread_runq(struct k_thread *thread) |
| { |
| #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
| int cpu, m = thread->base.cpu_mask; |
| |
| /* Edge case: it's legal per the API to "make runnable" a |
| * thread with all CPUs masked off (i.e. one that isn't |
| * actually runnable!). Sort of a wart in the API and maybe |
| * we should address this in docs/assertions instead to avoid |
| * the extra test. |
| */ |
| cpu = m == 0 ? 0 : u32_count_trailing_zeros(m); |
| |
| return &_kernel.cpus[cpu].ready_q.runq; |
| #else |
| return &_kernel.ready_q.runq; |
| #endif |
| } |
| |
| static ALWAYS_INLINE void *curr_cpu_runq(void) |
| { |
| #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
| return &arch_curr_cpu()->ready_q.runq; |
| #else |
| return &_kernel.ready_q.runq; |
| #endif |
| } |
| |
| static ALWAYS_INLINE void runq_add(struct k_thread *thread) |
| { |
| _priq_run_add(thread_runq(thread), thread); |
| } |
| |
| static ALWAYS_INLINE void runq_remove(struct k_thread *thread) |
| { |
| _priq_run_remove(thread_runq(thread), thread); |
| } |
| |
| static ALWAYS_INLINE struct k_thread *runq_best(void) |
| { |
| return _priq_run_best(curr_cpu_runq()); |
| } |
| |
| /* _current is never in the run queue until context switch on |
| * SMP configurations, see z_requeue_current() |
| */ |
| static inline bool should_queue_thread(struct k_thread *th) |
| { |
| return !IS_ENABLED(CONFIG_SMP) || th != _current; |
| } |
| |
| static ALWAYS_INLINE void queue_thread(struct k_thread *thread) |
| { |
| thread->base.thread_state |= _THREAD_QUEUED; |
| if (should_queue_thread(thread)) { |
| runq_add(thread); |
| } |
| #ifdef CONFIG_SMP |
| if (thread == _current) { |
| /* add current to end of queue means "yield" */ |
| _current_cpu->swap_ok = true; |
| } |
| #endif |
| } |
| |
| static ALWAYS_INLINE void dequeue_thread(struct k_thread *thread) |
| { |
| thread->base.thread_state &= ~_THREAD_QUEUED; |
| if (should_queue_thread(thread)) { |
| runq_remove(thread); |
| } |
| } |
| |
| static void signal_pending_ipi(void) |
| { |
| /* Synchronization note: you might think we need to lock these |
| * two steps, but an IPI is idempotent. It's OK if we do it |
| * twice. All we require is that if a CPU sees the flag true, |
| * it is guaranteed to send the IPI, and if a core sets |
| * pending_ipi, the IPI will be sent the next time through |
| * this code. |
| */ |
| #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) |
| if (arch_num_cpus() > 1) { |
| if (_kernel.pending_ipi) { |
| _kernel.pending_ipi = false; |
| arch_sched_ipi(); |
| } |
| } |
| #endif |
| } |
| |
| #ifdef CONFIG_SMP |
| /* Called out of z_swap() when CONFIG_SMP. The current thread can |
| * never live in the run queue until we are inexorably on the context |
| * switch path on SMP, otherwise there is a deadlock condition where a |
| * set of CPUs pick a cycle of threads to run and wait for them all to |
| * context switch forever. |
| */ |
| void z_requeue_current(struct k_thread *curr) |
| { |
| if (z_is_thread_queued(curr)) { |
| runq_add(curr); |
| } |
| signal_pending_ipi(); |
| } |
| |
| static inline bool is_aborting(struct k_thread *thread) |
| { |
| return (thread->base.thread_state & _THREAD_ABORTING) != 0U; |
| } |
| #endif |
| |
| static ALWAYS_INLINE struct k_thread *next_up(void) |
| { |
| struct k_thread *thread = runq_best(); |
| |
| #if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0) |
| /* MetaIRQs must always attempt to return back to a |
| * cooperative thread they preempted and not whatever happens |
| * to be highest priority now. The cooperative thread was |
| * promised it wouldn't be preempted (by non-metairq threads)! |
| */ |
| struct k_thread *mirqp = _current_cpu->metairq_preempted; |
| |
| if (mirqp != NULL && (thread == NULL || !is_metairq(thread))) { |
| if (!z_is_thread_prevented_from_running(mirqp)) { |
| thread = mirqp; |
| } else { |
| _current_cpu->metairq_preempted = NULL; |
| } |
| } |
| #endif |
| |
| #ifndef CONFIG_SMP |
| /* In uniprocessor mode, we can leave the current thread in |
| * the queue (actually we have to, otherwise the assembly |
| * context switch code for all architectures would be |
| * responsible for putting it back in z_swap and ISR return!), |
| * which makes this choice simple. |
| */ |
| return (thread != NULL) ? thread : _current_cpu->idle_thread; |
| #else |
| /* Under SMP, the "cache" mechanism for selecting the next |
| * thread doesn't work, so we have more work to do to test |
| * _current against the best choice from the queue. Here, the |
| * thread selected above represents "the best thread that is |
| * not current". |
| * |
| * Subtle note on "queued": in SMP mode, _current does not |
| * live in the queue, so this isn't exactly the same thing as |
| * "ready", it means "is _current already added back to the |
| * queue such that we don't want to re-add it". |
| */ |
| if (is_aborting(_current)) { |
| end_thread(_current); |
| } |
| |
| bool queued = z_is_thread_queued(_current); |
| bool active = !z_is_thread_prevented_from_running(_current); |
| |
| if (thread == NULL) { |
| thread = _current_cpu->idle_thread; |
| } |
| |
| if (active) { |
| int32_t cmp = z_sched_prio_cmp(_current, thread); |
| |
| /* Ties only switch if state says we yielded */ |
| if ((cmp > 0) || ((cmp == 0) && !_current_cpu->swap_ok)) { |
| thread = _current; |
| } |
| |
| if (!should_preempt(thread, _current_cpu->swap_ok)) { |
| thread = _current; |
| } |
| } |
| |
| /* Put _current back into the queue */ |
| if (thread != _current && active && |
| !z_is_idle_thread_object(_current) && !queued) { |
| queue_thread(_current); |
| } |
| |
| /* Take the new _current out of the queue */ |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| } |
| |
| _current_cpu->swap_ok = false; |
| return thread; |
| #endif |
| } |
| |
| static void move_thread_to_end_of_prio_q(struct k_thread *thread) |
| { |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| } |
| queue_thread(thread); |
| update_cache(thread == _current); |
| } |
| |
| #ifdef CONFIG_TIMESLICING |
| |
| static int slice_ticks; |
| static int slice_max_prio; |
| |
| static inline int slice_time(struct k_thread *curr) |
| { |
| int ret = slice_ticks; |
| |
| #ifdef CONFIG_TIMESLICE_PER_THREAD |
| if (curr->base.slice_ticks != 0) { |
| ret = curr->base.slice_ticks; |
| } |
| #endif |
| return ret; |
| } |
| |
| #ifdef CONFIG_SWAP_NONATOMIC |
| /* If z_swap() isn't atomic, then it's possible for a timer interrupt |
| * to try to timeslice away _current after it has already pended |
| * itself but before the corresponding context switch. Treat that as |
| * a noop condition in z_time_slice(). |
| */ |
| static struct k_thread *pending_current; |
| #endif |
| |
| void z_reset_time_slice(struct k_thread *curr) |
| { |
| /* Add the elapsed time since the last announced tick to the |
| * slice count, as we'll see those "expired" ticks arrive in a |
| * FUTURE z_time_slice() call. |
| */ |
| if (slice_time(curr) != 0) { |
| _current_cpu->slice_ticks = slice_time(curr) + sys_clock_elapsed(); |
| z_set_timeout_expiry(slice_time(curr), false); |
| } |
| } |
| |
| void k_sched_time_slice_set(int32_t slice, int prio) |
| { |
| LOCKED(&sched_spinlock) { |
| _current_cpu->slice_ticks = 0; |
| slice_ticks = k_ms_to_ticks_ceil32(slice); |
| if (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && slice > 0) { |
| /* It's not possible to reliably set a 1-tick |
| * timeout if ticks aren't regular. |
| */ |
| slice_ticks = MAX(2, slice_ticks); |
| } |
| slice_max_prio = prio; |
| z_reset_time_slice(_current); |
| } |
| } |
| |
| #ifdef CONFIG_TIMESLICE_PER_THREAD |
| void k_thread_time_slice_set(struct k_thread *th, int32_t slice_ticks, |
| k_thread_timeslice_fn_t expired, void *data) |
| { |
| LOCKED(&sched_spinlock) { |
| th->base.slice_ticks = slice_ticks; |
| th->base.slice_expired = expired; |
| th->base.slice_data = data; |
| } |
| } |
| #endif |
| |
| static inline bool sliceable(struct k_thread *thread) |
| { |
| bool ret = is_preempt(thread) |
| && !z_is_thread_prevented_from_running(thread) |
| && !z_is_prio_higher(thread->base.prio, slice_max_prio) |
| && !z_is_idle_thread_object(thread); |
| |
| #ifdef CONFIG_TIMESLICE_PER_THREAD |
| ret |= thread->base.slice_ticks != 0; |
| #endif |
| |
| return ret; |
| } |
| |
| static k_spinlock_key_t slice_expired_locked(k_spinlock_key_t sched_lock_key) |
| { |
| struct k_thread *curr = _current; |
| |
| #ifdef CONFIG_TIMESLICE_PER_THREAD |
| if (curr->base.slice_expired) { |
| k_spin_unlock(&sched_spinlock, sched_lock_key); |
| curr->base.slice_expired(curr, curr->base.slice_data); |
| sched_lock_key = k_spin_lock(&sched_spinlock); |
| } |
| #endif |
| if (!z_is_thread_prevented_from_running(curr)) { |
| move_thread_to_end_of_prio_q(curr); |
| } |
| z_reset_time_slice(curr); |
| |
| return sched_lock_key; |
| } |
| |
| /* Called out of each timer interrupt */ |
| void z_time_slice(int ticks) |
| { |
| /* Hold sched_spinlock, so that activity on another CPU |
| * (like a call to k_thread_abort() at just the wrong time) |
| * won't affect the correctness of the decisions made here. |
| * Also prevents any nested interrupts from changing |
| * thread state to avoid similar issues, since this would |
| * normally run with IRQs enabled. |
| */ |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| #ifdef CONFIG_SWAP_NONATOMIC |
| if (pending_current == _current) { |
| z_reset_time_slice(_current); |
| k_spin_unlock(&sched_spinlock, key); |
| return; |
| } |
| pending_current = NULL; |
| #endif |
| |
| if (slice_time(_current) && sliceable(_current)) { |
| if (ticks >= _current_cpu->slice_ticks) { |
| /* Note: this will (if so enabled) internally |
| * drop and reacquire the scheduler lock |
| * around the callback! Don't put anything |
| * after this line that requires |
| * synchronization. |
| */ |
| key = slice_expired_locked(key); |
| } else { |
| _current_cpu->slice_ticks -= ticks; |
| } |
| } else { |
| _current_cpu->slice_ticks = 0; |
| } |
| k_spin_unlock(&sched_spinlock, key); |
| } |
| #endif |
| |
| /* Track cooperative threads preempted by metairqs so we can return to |
| * them specifically. Called at the moment a new thread has been |
| * selected to run. |
| */ |
| static void update_metairq_preempt(struct k_thread *thread) |
| { |
| #if (CONFIG_NUM_METAIRQ_PRIORITIES > 0) && (CONFIG_NUM_COOP_PRIORITIES > 0) |
| if (is_metairq(thread) && !is_metairq(_current) && |
| !is_preempt(_current)) { |
| /* Record new preemption */ |
| _current_cpu->metairq_preempted = _current; |
| } else if (!is_metairq(thread) && !z_is_idle_thread_object(thread)) { |
| /* Returning from existing preemption */ |
| _current_cpu->metairq_preempted = NULL; |
| } |
| #endif |
| } |
| |
| static void update_cache(int preempt_ok) |
| { |
| #ifndef CONFIG_SMP |
| struct k_thread *thread = next_up(); |
| |
| if (should_preempt(thread, preempt_ok)) { |
| #ifdef CONFIG_TIMESLICING |
| if (thread != _current) { |
| z_reset_time_slice(thread); |
| } |
| #endif |
| update_metairq_preempt(thread); |
| _kernel.ready_q.cache = thread; |
| } else { |
| _kernel.ready_q.cache = _current; |
| } |
| |
| #else |
| /* The way this works is that the CPU record keeps its |
| * "cooperative swapping is OK" flag until the next reschedule |
| * call or context switch. It doesn't need to be tracked per |
| * thread because if the thread gets preempted for whatever |
| * reason the scheduler will make the same decision anyway. |
| */ |
| _current_cpu->swap_ok = preempt_ok; |
| #endif |
| } |
| |
| static bool thread_active_elsewhere(struct k_thread *thread) |
| { |
| /* True if the thread is currently running on another CPU. |
| * There are more scalable designs to answer this question in |
| * constant time, but this is fine for now. |
| */ |
| #ifdef CONFIG_SMP |
| int currcpu = _current_cpu->id; |
| |
| unsigned int num_cpus = arch_num_cpus(); |
| |
| for (int i = 0; i < num_cpus; i++) { |
| if ((i != currcpu) && |
| (_kernel.cpus[i].current == thread)) { |
| return true; |
| } |
| } |
| #endif |
| return false; |
| } |
| |
| static void flag_ipi(void) |
| { |
| #if defined(CONFIG_SMP) && defined(CONFIG_SCHED_IPI_SUPPORTED) |
| if (arch_num_cpus() > 1) { |
| _kernel.pending_ipi = true; |
| } |
| #endif |
| } |
| |
| static void ready_thread(struct k_thread *thread) |
| { |
| #ifdef CONFIG_KERNEL_COHERENCE |
| __ASSERT_NO_MSG(arch_mem_coherent(thread)); |
| #endif |
| |
| /* If thread is queued already, do not try and added it to the |
| * run queue again |
| */ |
| if (!z_is_thread_queued(thread) && z_is_thread_ready(thread)) { |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_ready, thread); |
| |
| queue_thread(thread); |
| update_cache(0); |
| flag_ipi(); |
| } |
| } |
| |
| void z_ready_thread(struct k_thread *thread) |
| { |
| LOCKED(&sched_spinlock) { |
| if (!thread_active_elsewhere(thread)) { |
| ready_thread(thread); |
| } |
| } |
| } |
| |
| void z_move_thread_to_end_of_prio_q(struct k_thread *thread) |
| { |
| LOCKED(&sched_spinlock) { |
| move_thread_to_end_of_prio_q(thread); |
| } |
| } |
| |
| void z_sched_start(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| if (z_has_thread_started(thread)) { |
| k_spin_unlock(&sched_spinlock, key); |
| return; |
| } |
| |
| z_mark_thread_as_started(thread); |
| ready_thread(thread); |
| z_reschedule(&sched_spinlock, key); |
| } |
| |
| void z_impl_k_thread_suspend(struct k_thread *thread) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, suspend, thread); |
| |
| (void)z_abort_thread_timeout(thread); |
| |
| LOCKED(&sched_spinlock) { |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| } |
| z_mark_thread_as_suspended(thread); |
| update_cache(thread == _current); |
| } |
| |
| if (thread == _current) { |
| z_reschedule_unlocked(); |
| } |
| |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, suspend, thread); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_suspend(struct k_thread *thread) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| z_impl_k_thread_suspend(thread); |
| } |
| #include <syscalls/k_thread_suspend_mrsh.c> |
| #endif |
| |
| void z_impl_k_thread_resume(struct k_thread *thread) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, resume, thread); |
| |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| /* Do not try to resume a thread that was not suspended */ |
| if (!z_is_thread_suspended(thread)) { |
| k_spin_unlock(&sched_spinlock, key); |
| return; |
| } |
| |
| z_mark_thread_as_not_suspended(thread); |
| ready_thread(thread); |
| |
| z_reschedule(&sched_spinlock, key); |
| |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, resume, thread); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_resume(struct k_thread *thread) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| z_impl_k_thread_resume(thread); |
| } |
| #include <syscalls/k_thread_resume_mrsh.c> |
| #endif |
| |
| static _wait_q_t *pended_on_thread(struct k_thread *thread) |
| { |
| __ASSERT_NO_MSG(thread->base.pended_on); |
| |
| return thread->base.pended_on; |
| } |
| |
| static void unready_thread(struct k_thread *thread) |
| { |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| } |
| update_cache(thread == _current); |
| } |
| |
| /* sched_spinlock must be held */ |
| static void add_to_waitq_locked(struct k_thread *thread, _wait_q_t *wait_q) |
| { |
| unready_thread(thread); |
| z_mark_thread_as_pending(thread); |
| |
| SYS_PORT_TRACING_FUNC(k_thread, sched_pend, thread); |
| |
| if (wait_q != NULL) { |
| thread->base.pended_on = wait_q; |
| z_priq_wait_add(&wait_q->waitq, thread); |
| } |
| } |
| |
| static void add_thread_timeout(struct k_thread *thread, k_timeout_t timeout) |
| { |
| if (!K_TIMEOUT_EQ(timeout, K_FOREVER)) { |
| z_add_thread_timeout(thread, timeout); |
| } |
| } |
| |
| static void pend_locked(struct k_thread *thread, _wait_q_t *wait_q, |
| k_timeout_t timeout) |
| { |
| #ifdef CONFIG_KERNEL_COHERENCE |
| __ASSERT_NO_MSG(wait_q == NULL || arch_mem_coherent(wait_q)); |
| #endif |
| add_to_waitq_locked(thread, wait_q); |
| add_thread_timeout(thread, timeout); |
| } |
| |
| void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, |
| k_timeout_t timeout) |
| { |
| __ASSERT_NO_MSG(thread == _current || is_thread_dummy(thread)); |
| LOCKED(&sched_spinlock) { |
| pend_locked(thread, wait_q, timeout); |
| } |
| } |
| |
| static inline void unpend_thread_no_timeout(struct k_thread *thread) |
| { |
| _priq_wait_remove(&pended_on_thread(thread)->waitq, thread); |
| z_mark_thread_as_not_pending(thread); |
| thread->base.pended_on = NULL; |
| } |
| |
| ALWAYS_INLINE void z_unpend_thread_no_timeout(struct k_thread *thread) |
| { |
| LOCKED(&sched_spinlock) { |
| unpend_thread_no_timeout(thread); |
| } |
| } |
| |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| /* Timeout handler for *_thread_timeout() APIs */ |
| void z_thread_timeout(struct _timeout *timeout) |
| { |
| struct k_thread *thread = CONTAINER_OF(timeout, |
| struct k_thread, base.timeout); |
| |
| LOCKED(&sched_spinlock) { |
| bool killed = ((thread->base.thread_state & _THREAD_DEAD) || |
| (thread->base.thread_state & _THREAD_ABORTING)); |
| |
| if (!killed) { |
| if (thread->base.pended_on != NULL) { |
| unpend_thread_no_timeout(thread); |
| } |
| z_mark_thread_as_started(thread); |
| z_mark_thread_as_not_suspended(thread); |
| ready_thread(thread); |
| } |
| } |
| } |
| #endif |
| |
| int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout) |
| { |
| /* This is a legacy API for pre-switch architectures and isn't |
| * correctly synchronized for multi-cpu use |
| */ |
| __ASSERT_NO_MSG(!IS_ENABLED(CONFIG_SMP)); |
| |
| pend_locked(_current, wait_q, timeout); |
| |
| #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
| pending_current = _current; |
| |
| int ret = z_swap_irqlock(key); |
| LOCKED(&sched_spinlock) { |
| if (pending_current == _current) { |
| pending_current = NULL; |
| } |
| } |
| return ret; |
| #else |
| return z_swap_irqlock(key); |
| #endif |
| } |
| |
| int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, |
| _wait_q_t *wait_q, k_timeout_t timeout) |
| { |
| #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
| pending_current = _current; |
| #endif |
| __ASSERT_NO_MSG(sizeof(sched_spinlock) == 0 || lock != &sched_spinlock); |
| |
| /* We do a "lock swap" prior to calling z_swap(), such that |
| * the caller's lock gets released as desired. But we ensure |
| * that we hold the scheduler lock and leave local interrupts |
| * masked until we reach the context swich. z_swap() itself |
| * has similar code; the duplication is because it's a legacy |
| * API that doesn't expect to be called with scheduler lock |
| * held. |
| */ |
| (void) k_spin_lock(&sched_spinlock); |
| pend_locked(_current, wait_q, timeout); |
| k_spin_release(lock); |
| return z_swap(&sched_spinlock, key); |
| } |
| |
| struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q) |
| { |
| struct k_thread *thread = NULL; |
| |
| LOCKED(&sched_spinlock) { |
| thread = _priq_wait_best(&wait_q->waitq); |
| |
| if (thread != NULL) { |
| unpend_thread_no_timeout(thread); |
| } |
| } |
| |
| return thread; |
| } |
| |
| struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q) |
| { |
| struct k_thread *thread = NULL; |
| |
| LOCKED(&sched_spinlock) { |
| thread = _priq_wait_best(&wait_q->waitq); |
| |
| if (thread != NULL) { |
| unpend_thread_no_timeout(thread); |
| (void)z_abort_thread_timeout(thread); |
| } |
| } |
| |
| return thread; |
| } |
| |
| void z_unpend_thread(struct k_thread *thread) |
| { |
| z_unpend_thread_no_timeout(thread); |
| (void)z_abort_thread_timeout(thread); |
| } |
| |
| /* Priority set utility that does no rescheduling, it just changes the |
| * run queue state, returning true if a reschedule is needed later. |
| */ |
| bool z_set_prio(struct k_thread *thread, int prio) |
| { |
| bool need_sched = 0; |
| |
| LOCKED(&sched_spinlock) { |
| need_sched = z_is_thread_ready(thread); |
| |
| if (need_sched) { |
| /* Don't requeue on SMP if it's the running thread */ |
| if (!IS_ENABLED(CONFIG_SMP) || z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| thread->base.prio = prio; |
| queue_thread(thread); |
| } else { |
| thread->base.prio = prio; |
| } |
| update_cache(1); |
| } else { |
| thread->base.prio = prio; |
| } |
| } |
| |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, sched_priority_set, thread, prio); |
| |
| return need_sched; |
| } |
| |
| void z_thread_priority_set(struct k_thread *thread, int prio) |
| { |
| bool need_sched = z_set_prio(thread, prio); |
| |
| flag_ipi(); |
| |
| if (need_sched && _current->base.sched_locked == 0U) { |
| z_reschedule_unlocked(); |
| } |
| } |
| |
| static inline bool resched(uint32_t key) |
| { |
| #ifdef CONFIG_SMP |
| _current_cpu->swap_ok = 0; |
| #endif |
| |
| return arch_irq_unlocked(key) && !arch_is_in_isr(); |
| } |
| |
| /* |
| * Check if the next ready thread is the same as the current thread |
| * and save the trip if true. |
| */ |
| static inline bool need_swap(void) |
| { |
| /* the SMP case will be handled in C based z_swap() */ |
| #ifdef CONFIG_SMP |
| return true; |
| #else |
| struct k_thread *new_thread; |
| |
| /* Check if the next ready thread is the same as the current thread */ |
| new_thread = _kernel.ready_q.cache; |
| return new_thread != _current; |
| #endif |
| } |
| |
| void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key) |
| { |
| if (resched(key.key) && need_swap()) { |
| z_swap(lock, key); |
| } else { |
| k_spin_unlock(lock, key); |
| signal_pending_ipi(); |
| } |
| } |
| |
| void z_reschedule_irqlock(uint32_t key) |
| { |
| if (resched(key)) { |
| z_swap_irqlock(key); |
| } else { |
| irq_unlock(key); |
| signal_pending_ipi(); |
| } |
| } |
| |
| void k_sched_lock(void) |
| { |
| LOCKED(&sched_spinlock) { |
| SYS_PORT_TRACING_FUNC(k_thread, sched_lock); |
| |
| z_sched_lock(); |
| } |
| } |
| |
| void k_sched_unlock(void) |
| { |
| LOCKED(&sched_spinlock) { |
| __ASSERT(_current->base.sched_locked != 0U, ""); |
| __ASSERT(!arch_is_in_isr(), ""); |
| |
| ++_current->base.sched_locked; |
| update_cache(0); |
| } |
| |
| LOG_DBG("scheduler unlocked (%p:%d)", |
| _current, _current->base.sched_locked); |
| |
| SYS_PORT_TRACING_FUNC(k_thread, sched_unlock); |
| |
| z_reschedule_unlocked(); |
| } |
| |
| struct k_thread *z_swap_next_thread(void) |
| { |
| #ifdef CONFIG_SMP |
| struct k_thread *ret = next_up(); |
| |
| if (ret == _current) { |
| /* When not swapping, have to signal IPIs here. In |
| * the context switch case it must happen later, after |
| * _current gets requeued. |
| */ |
| signal_pending_ipi(); |
| } |
| return ret; |
| #else |
| return _kernel.ready_q.cache; |
| #endif |
| } |
| |
| #ifdef CONFIG_USE_SWITCH |
| /* Just a wrapper around _current = xxx with tracing */ |
| static inline void set_current(struct k_thread *new_thread) |
| { |
| z_thread_mark_switched_out(); |
| _current_cpu->current = new_thread; |
| } |
| |
| /** |
| * @brief Determine next thread to execute upon completion of an interrupt |
| * |
| * Thread preemption is performed by context switching after the completion |
| * of a non-recursed interrupt. This function determines which thread to |
| * switch to if any. This function accepts as @p interrupted either: |
| * |
| * - The handle for the interrupted thread in which case the thread's context |
| * must already be fully saved and ready to be picked up by a different CPU. |
| * |
| * - NULL if more work is required to fully save the thread's state after |
| * it is known that a new thread is to be scheduled. It is up to the caller |
| * to store the handle resulting from the thread that is being switched out |
| * in that thread's "switch_handle" field after its |
| * context has fully been saved, following the same requirements as with |
| * the @ref arch_switch() function. |
| * |
| * If a new thread needs to be scheduled then its handle is returned. |
| * Otherwise the same value provided as @p interrupted is returned back. |
| * Those handles are the same opaque types used by the @ref arch_switch() |
| * function. |
| * |
| * @warning |
| * The @ref _current value may have changed after this call and not refer |
| * to the interrupted thread anymore. It might be necessary to make a local |
| * copy before calling this function. |
| * |
| * @param interrupted Handle for the thread that was interrupted or NULL. |
| * @retval Handle for the next thread to execute, or @p interrupted when |
| * no new thread is to be scheduled. |
| */ |
| void *z_get_next_switch_handle(void *interrupted) |
| { |
| z_check_stack_sentinel(); |
| |
| #ifdef CONFIG_SMP |
| void *ret = NULL; |
| |
| LOCKED(&sched_spinlock) { |
| struct k_thread *old_thread = _current, *new_thread; |
| |
| if (IS_ENABLED(CONFIG_SMP)) { |
| old_thread->switch_handle = NULL; |
| } |
| new_thread = next_up(); |
| |
| z_sched_usage_switch(new_thread); |
| |
| if (old_thread != new_thread) { |
| update_metairq_preempt(new_thread); |
| wait_for_switch(new_thread); |
| arch_cohere_stacks(old_thread, interrupted, new_thread); |
| |
| _current_cpu->swap_ok = 0; |
| set_current(new_thread); |
| |
| #ifdef CONFIG_TIMESLICING |
| z_reset_time_slice(new_thread); |
| #endif |
| |
| #ifdef CONFIG_SPIN_VALIDATE |
| /* Changed _current! Update the spinlock |
| * bookkeeping so the validation doesn't get |
| * confused when the "wrong" thread tries to |
| * release the lock. |
| */ |
| z_spin_lock_set_owner(&sched_spinlock); |
| #endif |
| |
| /* A queued (runnable) old/current thread |
| * needs to be added back to the run queue |
| * here, and atomically with its switch handle |
| * being set below. This is safe now, as we |
| * will not return into it. |
| */ |
| if (z_is_thread_queued(old_thread)) { |
| runq_add(old_thread); |
| } |
| } |
| old_thread->switch_handle = interrupted; |
| ret = new_thread->switch_handle; |
| if (IS_ENABLED(CONFIG_SMP)) { |
| /* Active threads MUST have a null here */ |
| new_thread->switch_handle = NULL; |
| } |
| } |
| signal_pending_ipi(); |
| return ret; |
| #else |
| z_sched_usage_switch(_kernel.ready_q.cache); |
| _current->switch_handle = interrupted; |
| set_current(_kernel.ready_q.cache); |
| return _current->switch_handle; |
| #endif |
| } |
| #endif |
| |
| void z_priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread) |
| { |
| __ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
| |
| sys_dlist_remove(&thread->base.qnode_dlist); |
| } |
| |
| struct k_thread *z_priq_dumb_best(sys_dlist_t *pq) |
| { |
| struct k_thread *thread = NULL; |
| sys_dnode_t *n = sys_dlist_peek_head(pq); |
| |
| if (n != NULL) { |
| thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist); |
| } |
| return thread; |
| } |
| |
| bool z_priq_rb_lessthan(struct rbnode *a, struct rbnode *b) |
| { |
| struct k_thread *thread_a, *thread_b; |
| int32_t cmp; |
| |
| thread_a = CONTAINER_OF(a, struct k_thread, base.qnode_rb); |
| thread_b = CONTAINER_OF(b, struct k_thread, base.qnode_rb); |
| |
| cmp = z_sched_prio_cmp(thread_a, thread_b); |
| |
| if (cmp > 0) { |
| return true; |
| } else if (cmp < 0) { |
| return false; |
| } else { |
| return thread_a->base.order_key < thread_b->base.order_key |
| ? 1 : 0; |
| } |
| } |
| |
| void z_priq_rb_add(struct _priq_rb *pq, struct k_thread *thread) |
| { |
| struct k_thread *t; |
| |
| __ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
| |
| thread->base.order_key = pq->next_order_key++; |
| |
| /* Renumber at wraparound. This is tiny code, and in practice |
| * will almost never be hit on real systems. BUT on very |
| * long-running systems where a priq never completely empties |
| * AND that contains very large numbers of threads, it can be |
| * a latency glitch to loop over all the threads like this. |
| */ |
| if (!pq->next_order_key) { |
| RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) { |
| t->base.order_key = pq->next_order_key++; |
| } |
| } |
| |
| rb_insert(&pq->tree, &thread->base.qnode_rb); |
| } |
| |
| void z_priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread) |
| { |
| __ASSERT_NO_MSG(!z_is_idle_thread_object(thread)); |
| |
| rb_remove(&pq->tree, &thread->base.qnode_rb); |
| |
| if (!pq->tree.root) { |
| pq->next_order_key = 0; |
| } |
| } |
| |
| struct k_thread *z_priq_rb_best(struct _priq_rb *pq) |
| { |
| struct k_thread *thread = NULL; |
| struct rbnode *n = rb_get_min(&pq->tree); |
| |
| if (n != NULL) { |
| thread = CONTAINER_OF(n, struct k_thread, base.qnode_rb); |
| } |
| return thread; |
| } |
| |
| #ifdef CONFIG_SCHED_MULTIQ |
| # if (K_LOWEST_THREAD_PRIO - K_HIGHEST_THREAD_PRIO) > 31 |
| # error Too many priorities for multiqueue scheduler (max 32) |
| # endif |
| |
| static ALWAYS_INLINE void z_priq_mq_add(struct _priq_mq *pq, |
| struct k_thread *thread) |
| { |
| int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; |
| |
| sys_dlist_append(&pq->queues[priority_bit], &thread->base.qnode_dlist); |
| pq->bitmask |= BIT(priority_bit); |
| } |
| |
| static ALWAYS_INLINE void z_priq_mq_remove(struct _priq_mq *pq, |
| struct k_thread *thread) |
| { |
| int priority_bit = thread->base.prio - K_HIGHEST_THREAD_PRIO; |
| |
| sys_dlist_remove(&thread->base.qnode_dlist); |
| if (sys_dlist_is_empty(&pq->queues[priority_bit])) { |
| pq->bitmask &= ~BIT(priority_bit); |
| } |
| } |
| #endif |
| |
| struct k_thread *z_priq_mq_best(struct _priq_mq *pq) |
| { |
| if (!pq->bitmask) { |
| return NULL; |
| } |
| |
| struct k_thread *thread = NULL; |
| sys_dlist_t *l = &pq->queues[__builtin_ctz(pq->bitmask)]; |
| sys_dnode_t *n = sys_dlist_peek_head(l); |
| |
| if (n != NULL) { |
| thread = CONTAINER_OF(n, struct k_thread, base.qnode_dlist); |
| } |
| return thread; |
| } |
| |
| int z_unpend_all(_wait_q_t *wait_q) |
| { |
| int need_sched = 0; |
| struct k_thread *thread; |
| |
| while ((thread = z_waitq_head(wait_q)) != NULL) { |
| z_unpend_thread(thread); |
| z_ready_thread(thread); |
| need_sched = 1; |
| } |
| |
| return need_sched; |
| } |
| |
| void init_ready_q(struct _ready_q *rq) |
| { |
| #if defined(CONFIG_SCHED_SCALABLE) |
| rq->runq = (struct _priq_rb) { |
| .tree = { |
| .lessthan_fn = z_priq_rb_lessthan, |
| } |
| }; |
| #elif defined(CONFIG_SCHED_MULTIQ) |
| for (int i = 0; i < ARRAY_SIZE(_kernel.ready_q.runq.queues); i++) { |
| sys_dlist_init(&rq->runq.queues[i]); |
| } |
| #else |
| sys_dlist_init(&rq->runq); |
| #endif |
| } |
| |
| void z_sched_init(void) |
| { |
| #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
| unsigned int num_cpus = arch_num_cpus(); |
| |
| for (int i = 0; i < num_cpus; i++) { |
| init_ready_q(&_kernel.cpus[i].ready_q); |
| } |
| #else |
| init_ready_q(&_kernel.ready_q); |
| #endif |
| |
| #ifdef CONFIG_TIMESLICING |
| k_sched_time_slice_set(CONFIG_TIMESLICE_SIZE, |
| CONFIG_TIMESLICE_PRIORITY); |
| #endif |
| } |
| |
| int z_impl_k_thread_priority_get(k_tid_t thread) |
| { |
| return thread->base.prio; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_thread_priority_get(k_tid_t thread) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| return z_impl_k_thread_priority_get(thread); |
| } |
| #include <syscalls/k_thread_priority_get_mrsh.c> |
| #endif |
| |
| void z_impl_k_thread_priority_set(k_tid_t thread, int prio) |
| { |
| /* |
| * Use NULL, since we cannot know what the entry point is (we do not |
| * keep track of it) and idle cannot change its priority. |
| */ |
| Z_ASSERT_VALID_PRIO(prio, NULL); |
| __ASSERT(!arch_is_in_isr(), ""); |
| |
| struct k_thread *th = (struct k_thread *)thread; |
| |
| z_thread_priority_set(th, prio); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_priority_set(k_tid_t thread, int prio) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL), |
| "invalid thread priority %d", prio)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG((int8_t)prio >= thread->base.prio, |
| "thread priority may only be downgraded (%d < %d)", |
| prio, thread->base.prio)); |
| |
| z_impl_k_thread_priority_set(thread, prio); |
| } |
| #include <syscalls/k_thread_priority_set_mrsh.c> |
| #endif |
| |
| #ifdef CONFIG_SCHED_DEADLINE |
| void z_impl_k_thread_deadline_set(k_tid_t tid, int deadline) |
| { |
| struct k_thread *thread = tid; |
| |
| LOCKED(&sched_spinlock) { |
| thread->base.prio_deadline = k_cycle_get_32() + deadline; |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| queue_thread(thread); |
| } |
| } |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_thread_deadline_set(k_tid_t tid, int deadline) |
| { |
| struct k_thread *thread = tid; |
| |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(deadline > 0, |
| "invalid thread deadline %d", |
| (int)deadline)); |
| |
| z_impl_k_thread_deadline_set((k_tid_t)thread, deadline); |
| } |
| #include <syscalls/k_thread_deadline_set_mrsh.c> |
| #endif |
| #endif |
| |
| bool k_can_yield(void) |
| { |
| return !(k_is_pre_kernel() || k_is_in_isr() || |
| z_is_idle_thread_object(_current)); |
| } |
| |
| void z_impl_k_yield(void) |
| { |
| __ASSERT(!arch_is_in_isr(), ""); |
| |
| SYS_PORT_TRACING_FUNC(k_thread, yield); |
| |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| if (!IS_ENABLED(CONFIG_SMP) || |
| z_is_thread_queued(_current)) { |
| dequeue_thread(_current); |
| } |
| queue_thread(_current); |
| update_cache(1); |
| z_swap(&sched_spinlock, key); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_yield(void) |
| { |
| z_impl_k_yield(); |
| } |
| #include <syscalls/k_yield_mrsh.c> |
| #endif |
| |
| static int32_t z_tick_sleep(k_ticks_t ticks) |
| { |
| #ifdef CONFIG_MULTITHREADING |
| uint32_t expected_wakeup_ticks; |
| |
| __ASSERT(!arch_is_in_isr(), ""); |
| |
| LOG_DBG("thread %p for %lu ticks", _current, (unsigned long)ticks); |
| |
| /* wait of 0 ms is treated as a 'yield' */ |
| if (ticks == 0) { |
| k_yield(); |
| return 0; |
| } |
| |
| k_timeout_t timeout = Z_TIMEOUT_TICKS(ticks); |
| if (Z_TICK_ABS(ticks) <= 0) { |
| expected_wakeup_ticks = ticks + sys_clock_tick_get_32(); |
| } else { |
| expected_wakeup_ticks = Z_TICK_ABS(ticks); |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| #if defined(CONFIG_TIMESLICING) && defined(CONFIG_SWAP_NONATOMIC) |
| pending_current = _current; |
| #endif |
| unready_thread(_current); |
| z_add_thread_timeout(_current, timeout); |
| z_mark_thread_as_suspended(_current); |
| |
| (void)z_swap(&sched_spinlock, key); |
| |
| __ASSERT(!z_is_thread_state_set(_current, _THREAD_SUSPENDED), ""); |
| |
| ticks = (k_ticks_t)expected_wakeup_ticks - sys_clock_tick_get_32(); |
| if (ticks > 0) { |
| return ticks; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| int32_t z_impl_k_sleep(k_timeout_t timeout) |
| { |
| k_ticks_t ticks; |
| |
| __ASSERT(!arch_is_in_isr(), ""); |
| |
| SYS_PORT_TRACING_FUNC_ENTER(k_thread, sleep, timeout); |
| |
| /* in case of K_FOREVER, we suspend */ |
| if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { |
| k_thread_suspend(_current); |
| |
| SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, (int32_t) K_TICKS_FOREVER); |
| |
| return (int32_t) K_TICKS_FOREVER; |
| } |
| |
| ticks = timeout.ticks; |
| |
| ticks = z_tick_sleep(ticks); |
| |
| int32_t ret = k_ticks_to_ms_floor64(ticks); |
| |
| SYS_PORT_TRACING_FUNC_EXIT(k_thread, sleep, timeout, ret); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int32_t z_vrfy_k_sleep(k_timeout_t timeout) |
| { |
| return z_impl_k_sleep(timeout); |
| } |
| #include <syscalls/k_sleep_mrsh.c> |
| #endif |
| |
| int32_t z_impl_k_usleep(int us) |
| { |
| int32_t ticks; |
| |
| SYS_PORT_TRACING_FUNC_ENTER(k_thread, usleep, us); |
| |
| ticks = k_us_to_ticks_ceil64(us); |
| ticks = z_tick_sleep(ticks); |
| |
| SYS_PORT_TRACING_FUNC_EXIT(k_thread, usleep, us, k_ticks_to_us_floor64(ticks)); |
| |
| return k_ticks_to_us_floor64(ticks); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int32_t z_vrfy_k_usleep(int us) |
| { |
| return z_impl_k_usleep(us); |
| } |
| #include <syscalls/k_usleep_mrsh.c> |
| #endif |
| |
| void z_impl_k_wakeup(k_tid_t thread) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC(k_thread, wakeup, thread); |
| |
| if (z_is_thread_pending(thread)) { |
| return; |
| } |
| |
| if (z_abort_thread_timeout(thread) < 0) { |
| /* Might have just been sleeping forever */ |
| if (thread->base.thread_state != _THREAD_SUSPENDED) { |
| return; |
| } |
| } |
| |
| z_mark_thread_as_not_suspended(thread); |
| z_ready_thread(thread); |
| |
| flag_ipi(); |
| |
| if (!arch_is_in_isr()) { |
| z_reschedule_unlocked(); |
| } |
| } |
| |
| #ifdef CONFIG_TRACE_SCHED_IPI |
| extern void z_trace_sched_ipi(void); |
| #endif |
| |
| #ifdef CONFIG_SMP |
| void z_sched_ipi(void) |
| { |
| /* NOTE: When adding code to this, make sure this is called |
| * at appropriate location when !CONFIG_SCHED_IPI_SUPPORTED. |
| */ |
| #ifdef CONFIG_TRACE_SCHED_IPI |
| z_trace_sched_ipi(); |
| #endif |
| } |
| #endif |
| |
| #ifdef CONFIG_USERSPACE |
| static inline void z_vrfy_k_wakeup(k_tid_t thread) |
| { |
| Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD)); |
| z_impl_k_wakeup(thread); |
| } |
| #include <syscalls/k_wakeup_mrsh.c> |
| #endif |
| |
| k_tid_t z_impl_z_current_get(void) |
| { |
| #ifdef CONFIG_SMP |
| /* In SMP, _current is a field read from _current_cpu, which |
| * can race with preemption before it is read. We must lock |
| * local interrupts when reading it. |
| */ |
| unsigned int k = arch_irq_lock(); |
| #endif |
| |
| k_tid_t ret = _current_cpu->current; |
| |
| #ifdef CONFIG_SMP |
| arch_irq_unlock(k); |
| #endif |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline k_tid_t z_vrfy_z_current_get(void) |
| { |
| return z_impl_z_current_get(); |
| } |
| #include <syscalls/z_current_get_mrsh.c> |
| #endif |
| |
| int z_impl_k_is_preempt_thread(void) |
| { |
| return !arch_is_in_isr() && is_preempt(_current); |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| static inline int z_vrfy_k_is_preempt_thread(void) |
| { |
| return z_impl_k_is_preempt_thread(); |
| } |
| #include <syscalls/k_is_preempt_thread_mrsh.c> |
| #endif |
| |
| #ifdef CONFIG_SCHED_CPU_MASK |
| # ifdef CONFIG_SMP |
| /* Right now we use a single byte for this mask */ |
| BUILD_ASSERT(CONFIG_MP_MAX_NUM_CPUS <= 8, "Too many CPUs for mask word"); |
| # endif |
| |
| |
| static int cpu_mask_mod(k_tid_t thread, uint32_t enable_mask, uint32_t disable_mask) |
| { |
| int ret = 0; |
| |
| #ifdef CONFIG_SCHED_CPU_MASK_PIN_ONLY |
| __ASSERT(z_is_thread_prevented_from_running(thread), |
| "Running threads cannot change CPU pin"); |
| #endif |
| |
| LOCKED(&sched_spinlock) { |
| if (z_is_thread_prevented_from_running(thread)) { |
| thread->base.cpu_mask |= enable_mask; |
| thread->base.cpu_mask &= ~disable_mask; |
| } else { |
| ret = -EINVAL; |
| } |
| } |
| |
| #if defined(CONFIG_ASSERT) && defined(CONFIG_SCHED_CPU_MASK_PIN_ONLY) |
| int m = thread->base.cpu_mask; |
| |
| __ASSERT((m == 0) || ((m & (m - 1)) == 0), |
| "Only one CPU allowed in mask when PIN_ONLY"); |
| #endif |
| |
| return ret; |
| } |
| |
| int k_thread_cpu_mask_clear(k_tid_t thread) |
| { |
| return cpu_mask_mod(thread, 0, 0xffffffff); |
| } |
| |
| int k_thread_cpu_mask_enable_all(k_tid_t thread) |
| { |
| return cpu_mask_mod(thread, 0xffffffff, 0); |
| } |
| |
| int k_thread_cpu_mask_enable(k_tid_t thread, int cpu) |
| { |
| return cpu_mask_mod(thread, BIT(cpu), 0); |
| } |
| |
| int k_thread_cpu_mask_disable(k_tid_t thread, int cpu) |
| { |
| return cpu_mask_mod(thread, 0, BIT(cpu)); |
| } |
| |
| int k_thread_cpu_pin(k_tid_t thread, int cpu) |
| { |
| int ret; |
| |
| ret = k_thread_cpu_mask_clear(thread); |
| if (ret == 0) { |
| return k_thread_cpu_mask_enable(thread, cpu); |
| } |
| return ret; |
| } |
| |
| #endif /* CONFIG_SCHED_CPU_MASK */ |
| |
| static inline void unpend_all(_wait_q_t *wait_q) |
| { |
| struct k_thread *thread; |
| |
| while ((thread = z_waitq_head(wait_q)) != NULL) { |
| unpend_thread_no_timeout(thread); |
| (void)z_abort_thread_timeout(thread); |
| arch_thread_return_value_set(thread, 0); |
| ready_thread(thread); |
| } |
| } |
| |
| #ifdef CONFIG_CMSIS_RTOS_V1 |
| extern void z_thread_cmsis_status_mask_clear(struct k_thread *thread); |
| #endif |
| |
| static void end_thread(struct k_thread *thread) |
| { |
| /* We hold the lock, and the thread is known not to be running |
| * anywhere. |
| */ |
| if ((thread->base.thread_state & _THREAD_DEAD) == 0U) { |
| thread->base.thread_state |= _THREAD_DEAD; |
| thread->base.thread_state &= ~_THREAD_ABORTING; |
| if (z_is_thread_queued(thread)) { |
| dequeue_thread(thread); |
| } |
| if (thread->base.pended_on != NULL) { |
| unpend_thread_no_timeout(thread); |
| } |
| (void)z_abort_thread_timeout(thread); |
| unpend_all(&thread->join_queue); |
| update_cache(1); |
| |
| SYS_PORT_TRACING_FUNC(k_thread, sched_abort, thread); |
| |
| z_thread_monitor_exit(thread); |
| |
| #ifdef CONFIG_CMSIS_RTOS_V1 |
| z_thread_cmsis_status_mask_clear(thread); |
| #endif |
| |
| #ifdef CONFIG_USERSPACE |
| z_mem_domain_exit_thread(thread); |
| z_thread_perms_all_clear(thread); |
| z_object_uninit(thread->stack_obj); |
| z_object_uninit(thread); |
| #endif |
| } |
| } |
| |
| void z_thread_abort(struct k_thread *thread) |
| { |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| |
| if ((thread->base.user_options & K_ESSENTIAL) != 0) { |
| k_spin_unlock(&sched_spinlock, key); |
| __ASSERT(false, "aborting essential thread %p", thread); |
| k_panic(); |
| return; |
| } |
| |
| if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
| k_spin_unlock(&sched_spinlock, key); |
| return; |
| } |
| |
| #ifdef CONFIG_SMP |
| if (is_aborting(thread) && thread == _current && arch_is_in_isr()) { |
| /* Another CPU is spinning for us, don't deadlock */ |
| end_thread(thread); |
| } |
| |
| bool active = thread_active_elsewhere(thread); |
| |
| if (active) { |
| /* It's running somewhere else, flag and poke */ |
| thread->base.thread_state |= _THREAD_ABORTING; |
| |
| /* We're going to spin, so need a true synchronous IPI |
| * here, not deferred! |
| */ |
| #ifdef CONFIG_SCHED_IPI_SUPPORTED |
| arch_sched_ipi(); |
| #endif |
| } |
| |
| if (is_aborting(thread) && thread != _current) { |
| if (arch_is_in_isr()) { |
| /* ISRs can only spin waiting another CPU */ |
| k_spin_unlock(&sched_spinlock, key); |
| while (is_aborting(thread)) { |
| } |
| } else if (active) { |
| /* Threads can join */ |
| add_to_waitq_locked(_current, &thread->join_queue); |
| z_swap(&sched_spinlock, key); |
| } |
| return; /* lock has been released */ |
| } |
| #endif |
| end_thread(thread); |
| if (thread == _current && !arch_is_in_isr()) { |
| z_swap(&sched_spinlock, key); |
| __ASSERT(false, "aborted _current back from dead"); |
| } |
| k_spin_unlock(&sched_spinlock, key); |
| } |
| |
| #if !defined(CONFIG_ARCH_HAS_THREAD_ABORT) |
| void z_impl_k_thread_abort(struct k_thread *thread) |
| { |
| SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, abort, thread); |
| |
| z_thread_abort(thread); |
| |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, abort, thread); |
| } |
| #endif |
| |
| int z_impl_k_thread_join(struct k_thread *thread, k_timeout_t timeout) |
| { |
| k_spinlock_key_t key = k_spin_lock(&sched_spinlock); |
| int ret = 0; |
| |
| SYS_PORT_TRACING_OBJ_FUNC_ENTER(k_thread, join, thread, timeout); |
| |
| if ((thread->base.thread_state & _THREAD_DEAD) != 0U) { |
| ret = 0; |
| } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { |
| ret = -EBUSY; |
| } else if ((thread == _current) || |
| (thread->base.pended_on == &_current->join_queue)) { |
| ret = -EDEADLK; |
| } else { |
| __ASSERT(!arch_is_in_isr(), "cannot join in ISR"); |
| add_to_waitq_locked(_current, &thread->join_queue); |
| add_thread_timeout(_current, timeout); |
| |
| SYS_PORT_TRACING_OBJ_FUNC_BLOCKING(k_thread, join, thread, timeout); |
| ret = z_swap(&sched_spinlock, key); |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
| |
| return ret; |
| } |
| |
| SYS_PORT_TRACING_OBJ_FUNC_EXIT(k_thread, join, thread, timeout, ret); |
| |
| k_spin_unlock(&sched_spinlock, key); |
| return ret; |
| } |
| |
| #ifdef CONFIG_USERSPACE |
| /* Special case: don't oops if the thread is uninitialized. This is because |
| * the initialization bit does double-duty for thread objects; if false, means |
| * the thread object is truly uninitialized, or the thread ran and exited for |
| * some reason. |
| * |
| * Return true in this case indicating we should just do nothing and return |
| * success to the caller. |
| */ |
| static bool thread_obj_validate(struct k_thread *thread) |
| { |
| struct z_object *ko = z_object_find(thread); |
| int ret = z_object_validate(ko, K_OBJ_THREAD, _OBJ_INIT_TRUE); |
| |
| switch (ret) { |
| case 0: |
| return false; |
| case -EINVAL: |
| return true; |
| default: |
| #ifdef CONFIG_LOG |
| z_dump_object_error(ret, thread, ko, K_OBJ_THREAD); |
| #endif |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(ret, "access denied")); |
| } |
| CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ |
| } |
| |
| static inline int z_vrfy_k_thread_join(struct k_thread *thread, |
| k_timeout_t timeout) |
| { |
| if (thread_obj_validate(thread)) { |
| return 0; |
| } |
| |
| return z_impl_k_thread_join(thread, timeout); |
| } |
| #include <syscalls/k_thread_join_mrsh.c> |
| |
| static inline void z_vrfy_k_thread_abort(k_tid_t thread) |
| { |
| if (thread_obj_validate(thread)) { |
| return; |
| } |
| |
| Z_OOPS(Z_SYSCALL_VERIFY_MSG(!(thread->base.user_options & K_ESSENTIAL), |
| "aborting essential thread %p", thread)); |
| |
| z_impl_k_thread_abort((struct k_thread *)thread); |
| } |
| #include <syscalls/k_thread_abort_mrsh.c> |
| #endif /* CONFIG_USERSPACE */ |
| |
| /* |
| * future scheduler.h API implementations |
| */ |
| bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data) |
| { |
| struct k_thread *thread; |
| bool ret = false; |
| |
| LOCKED(&sched_spinlock) { |
| thread = _priq_wait_best(&wait_q->waitq); |
| |
| if (thread != NULL) { |
| z_thread_return_value_set_with_data(thread, |
| swap_retval, |
| swap_data); |
| unpend_thread_no_timeout(thread); |
| (void)z_abort_thread_timeout(thread); |
| ready_thread(thread); |
| ret = true; |
| } |
| } |
| |
| return ret; |
| } |
| |
| int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, |
| _wait_q_t *wait_q, k_timeout_t timeout, void **data) |
| { |
| int ret = z_pend_curr(lock, key, wait_q, timeout); |
| |
| if (data != NULL) { |
| *data = _current->base.swap_data; |
| } |
| return ret; |
| } |