blob: 3624cd334c12c81e59f055c97c4cdc8715b130ee [file] [log] [blame]
/*
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright (c) 2017,2019, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_spi
#include <errno.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/drivers/spi/rtio.h>
#include <zephyr/drivers/clock_control.h>
#include <fsl_spi.h>
#include <zephyr/logging/log.h>
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#include <zephyr/drivers/dma.h>
#endif
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/sys_clock.h>
#include <zephyr/irq.h>
#include <zephyr/drivers/reset.h>
LOG_MODULE_REGISTER(spi_mcux_flexcomm, CONFIG_SPI_LOG_LEVEL);
#include "spi_context.h"
#define SPI_CHIP_SELECT_COUNT 4
#define SPI_MAX_DATA_WIDTH 16
struct spi_mcux_config {
SPI_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(const struct device *dev);
uint32_t pre_delay;
uint32_t post_delay;
uint32_t frame_delay;
uint32_t transfer_delay;
uint32_t def_char;
const struct pinctrl_dev_config *pincfg;
const struct reset_dt_spec reset;
};
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#define SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG 0x01
#define SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG 0x02
#define SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG 0x04
#define SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG \
(SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG | SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG)
struct stream {
const struct device *dma_dev;
uint32_t channel; /* stores the channel for dma */
struct dma_config dma_cfg;
struct dma_block_config dma_blk_cfg[2];
int wait_for_dma_status;
};
#endif
struct spi_mcux_data {
const struct device *dev;
spi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
volatile uint32_t status_flags;
struct stream dma_rx;
struct stream dma_tx;
/* dummy value used for transferring NOP when tx buf is null */
uint32_t dummy_tx_buffer;
/* Used to send the last word */
uint32_t last_word;
#endif
};
static void spi_mcux_transfer_next_packet(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
struct spi_context *ctx = &data->ctx;
spi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, dev, 0);
return;
}
transfer.configFlags = 0;
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (uint8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
}
if (ctx->tx_count <= 1 && ctx->rx_count <= 1) {
transfer.configFlags = kSPI_FrameAssert;
}
data->transfer_len = transfer.dataSize;
status = SPI_MasterTransferNonBlocking(base, &data->handle, &transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
}
}
static void spi_mcux_isr(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
SPI_MasterTransferHandleIRQ(base, &data->handle);
}
static void spi_mcux_transfer_callback(SPI_Type *base,
spi_master_handle_t *handle, status_t status, void *userData)
{
struct spi_mcux_data *data = userData;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(data->dev);
}
static uint8_t spi_clock_cycles(uint32_t delay_ns, uint32_t sck_frequency_hz)
{
/* Convert delay_ns to an integer number of clock cycles of frequency
* sck_frequency_hz. The maximum delay is 15 clock cycles.
*/
uint8_t delay_cycles = (uint64_t)delay_ns * sck_frequency_hz / NSEC_PER_SEC;
delay_cycles = MIN(delay_cycles, 15);
return delay_cycles;
}
static int spi_mcux_configure(const struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
uint32_t clock_freq;
uint32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
if (spi_cfg->operation & SPI_HALF_DUPLEX) {
LOG_ERR("Half-duplex not supported");
return -ENOTSUP;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > SPI_MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, SPI_MAX_DATA_WIDTH);
return -EINVAL;
}
/*
* Do master or slave initialisation, depending on the
* mode requested.
*/
if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) {
spi_master_config_t master_config;
SPI_MasterGetDefaultConfig(&master_config);
if (!device_is_ready(config->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
/* Get the clock frequency */
if (clock_control_get_rate(config->clock_dev,
config->clock_subsys, &clock_freq)) {
return -EINVAL;
}
if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave, SPI_CHIP_SELECT_COUNT);
return -EINVAL;
}
master_config.sselNum = spi_cfg->slave;
master_config.sselPol = kSPI_SpolActiveAllLow;
master_config.dataWidth = word_size - 1;
master_config.polarity =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kSPI_ClockPolarityActiveLow
: kSPI_ClockPolarityActiveHigh;
master_config.phase =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kSPI_ClockPhaseSecondEdge
: kSPI_ClockPhaseFirstEdge;
master_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kSPI_LsbFirst
: kSPI_MsbFirst;
master_config.baudRate_Bps = spi_cfg->frequency;
spi_delay_config_t *delayConfig = &master_config.delayConfig;
delayConfig->preDelay = spi_clock_cycles(config->pre_delay,
spi_cfg->frequency);
delayConfig->postDelay = spi_clock_cycles(config->post_delay,
spi_cfg->frequency);
delayConfig->frameDelay = spi_clock_cycles(config->frame_delay,
spi_cfg->frequency);
delayConfig->transferDelay = spi_clock_cycles(config->transfer_delay,
spi_cfg->frequency);
SPI_MasterInit(base, &master_config, clock_freq);
SPI_SetDummyData(base, (uint8_t)config->def_char);
SPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_transfer_callback, data);
data->ctx.config = spi_cfg;
} else {
spi_slave_config_t slave_config;
SPI_SlaveGetDefaultConfig(&slave_config);
slave_config.polarity =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kSPI_ClockPolarityActiveLow
: kSPI_ClockPolarityActiveHigh;
slave_config.phase =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kSPI_ClockPhaseSecondEdge
: kSPI_ClockPhaseFirstEdge;
slave_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kSPI_LsbFirst
: kSPI_MsbFirst;
/* SS pin active low */
slave_config.sselPol = kSPI_SpolActiveAllLow;
slave_config.dataWidth = word_size - 1;
SPI_SlaveInit(base, &slave_config);
SPI_SetDummyData(base, (uint8_t)config->def_char);
SPI_SlaveTransferCreateHandle(base, &data->handle,
spi_mcux_transfer_callback, data);
data->ctx.config = spi_cfg;
}
return 0;
}
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
/* This function is executed in the interrupt context */
static void spi_mcux_dma_callback(const struct device *dev, void *arg,
uint32_t channel, int status)
{
/* arg directly holds the spi device */
const struct device *spi_dev = arg;
struct spi_mcux_data *data = spi_dev->data;
if (status < 0) {
LOG_ERR("DMA callback error with channel %d.", channel);
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
} else {
/* identify the origin of this callback */
if (channel == data->dma_tx.channel) {
if (status != data->dma_tx.wait_for_dma_status) {
return;
}
/* this part of the transfer ends */
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_TX_DONE_FLAG;
} else if (channel == data->dma_rx.channel) {
/* this part of the transfer ends */
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG;
} else {
LOG_ERR("DMA callback channel %d is not valid.",
channel);
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG;
}
}
spi_context_complete(&data->ctx, spi_dev, 0);
}
static void spi_mcux_prepare_txlastword(uint32_t *txLastWord,
const uint8_t *buf, const struct spi_config *spi_cfg,
size_t len, bool rx_ignore)
{
uint32_t word_size;
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > 8) {
*txLastWord = (((uint32_t)buf[len - 1U] << 8U) |
(buf[len - 2U]));
} else {
*txLastWord = buf[len - 1U];
}
if (rx_ignore) {
*txLastWord |= (uint32_t)SPI_FIFOWR_RXIGNORE_MASK;
}
*txLastWord |= (uint32_t)SPI_FIFOWR_EOT_MASK;
*txLastWord |= ((uint32_t)SPI_DEASSERT_ALL &
(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));
/* set width of data - range asserted at entry */
*txLastWord |= SPI_FIFOWR_LEN(word_size - 1);
}
static void spi_mcux_prepare_txdummy(uint32_t *dummy, bool last_packet,
const struct spi_config *spi_cfg,
bool rx_ignore)
{
uint32_t word_size;
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (last_packet) {
*dummy |= (uint32_t)SPI_FIFOWR_EOT_MASK;
}
if (rx_ignore) {
*dummy |= (uint32_t)SPI_FIFOWR_RXIGNORE_MASK;
}
*dummy |= ((uint32_t)SPI_DEASSERT_ALL &
(~(uint32_t)SPI_DEASSERTNUM_SSEL((uint32_t)spi_cfg->slave)));
/* set width of data - range asserted at entry */
*dummy |= SPI_FIFOWR_LEN(word_size - 1);
}
static int spi_mcux_dma_tx_load(const struct device *dev, const uint8_t *buf,
const struct spi_config *spi_cfg, size_t len,
bool last_packet, bool rx_ignore)
{
const struct spi_mcux_config *cfg = dev->config;
struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg;
int ret;
SPI_Type *base = cfg->base;
uint32_t word_size;
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
/* remember active TX DMA channel (used in callback) */
struct stream *stream = &data->dma_tx;
blk_cfg = &stream->dma_blk_cfg[0];
/* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
/* tx direction has memory as source and periph as dest. */
if (buf == NULL) {
data->dummy_tx_buffer = 0;
data->last_word = 0;
spi_mcux_prepare_txdummy(&data->dummy_tx_buffer, last_packet, spi_cfg, rx_ignore);
if (last_packet &&
((word_size > 8) ? (len > 2U) : (len > 1U))) {
spi_mcux_prepare_txdummy(&data->last_word, last_packet, spi_cfg, rx_ignore);
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = (word_size > 8) ?
(len - 2U) : (len - 1U);
blk_cfg->next_block = &stream->dma_blk_cfg[1];
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg = &stream->dma_blk_cfg[1];
/* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->source_address = (uint32_t)&data->last_word;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = sizeof(uint32_t);
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_tx.wait_for_dma_status = DMA_STATUS_COMPLETE;
} else {
blk_cfg->source_address = (uint32_t)&data->dummy_tx_buffer;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = len;
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_tx.wait_for_dma_status = DMA_STATUS_BLOCK;
}
} else {
if (last_packet) {
spi_mcux_prepare_txlastword(&data->last_word, buf, spi_cfg, len, rx_ignore);
}
/* If last packet and data transfer frame is bigger then 1,
* use dma descriptor to send the last data.
*/
if (last_packet &&
((word_size > 8) ? (len > 2U) : (len > 1U))) {
blk_cfg->source_address = (uint32_t)buf;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = (word_size > 8) ?
(len - 2U) : (len - 1U);
blk_cfg->next_block = &stream->dma_blk_cfg[1];
blk_cfg = &stream->dma_blk_cfg[1];
/* prepare the block for this TX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->source_address = (uint32_t)&data->last_word;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = sizeof(uint32_t);
blk_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
blk_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
data->dma_tx.wait_for_dma_status = DMA_STATUS_COMPLETE;
} else {
blk_cfg->source_address = (uint32_t)buf;
blk_cfg->dest_address = (uint32_t)&base->FIFOWR;
blk_cfg->block_size = len;
data->dma_tx.wait_for_dma_status = DMA_STATUS_BLOCK;
}
}
/* Enables the DMA request from SPI txFIFO */
base->FIFOCFG |= SPI_FIFOCFG_DMATX_MASK;
/* direction is given by the DT */
stream->dma_cfg.head_block = &stream->dma_blk_cfg[0];
/* give the client dev as arg, as the callback comes from the dma */
stream->dma_cfg.user_data = (struct device *)dev;
/* pass our client origin to the dma: data->dma_tx.dma_channel */
ret = dma_config(data->dma_tx.dma_dev, data->dma_tx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
uint32_t tmpData = 0U;
spi_mcux_prepare_txdummy(&tmpData, last_packet, spi_cfg, rx_ignore);
/* Setup the control info.
* Halfword writes to just the control bits (offset 0xE22) doesn't push
* anything into the FIFO. And the data access type of control bits must
* be uint16_t, byte writes or halfword writes to FIFOWR will push the
* data and the current control bits into the FIFO.
*/
if ((last_packet) &&
((word_size > 8) ? (len == 2U) : (len == 1U))) {
*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
} else {
/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last */
tmpData &= (~(uint32_t)SPI_FIFOWR_EOT_MASK);
*((uint16_t *)((uint32_t)&base->FIFOWR) + 1) = (uint16_t)(tmpData >> 16U);
}
/* gives the request ID */
return dma_start(data->dma_tx.dma_dev, data->dma_tx.channel);
}
static int spi_mcux_dma_rx_load(const struct device *dev, uint8_t *buf,
size_t len)
{
const struct spi_mcux_config *cfg = dev->config;
struct spi_mcux_data *data = dev->data;
struct dma_block_config *blk_cfg;
int ret;
SPI_Type *base = cfg->base;
/* retrieve active RX DMA channel (used in callback) */
struct stream *stream = &data->dma_rx;
if (buf == NULL) {
data->status_flags |= SPI_MCUX_FLEXCOMM_DMA_RX_DONE_FLAG;
return 0;
}
blk_cfg = &stream->dma_blk_cfg[0];
/* prepare the block for this RX DMA channel */
memset(blk_cfg, 0, sizeof(struct dma_block_config));
blk_cfg->block_size = len;
/* rx direction has periph as source and mem as dest. */
blk_cfg->dest_address = (uint32_t)buf;
blk_cfg->source_address = (uint32_t)&base->FIFORD;
/* direction is given by the DT */
stream->dma_cfg.head_block = blk_cfg;
stream->dma_cfg.user_data = (struct device *)dev;
/* Enables the DMA request from SPI rxFIFO */
base->FIFOCFG |= SPI_FIFOCFG_DMARX_MASK;
/* pass our client origin to the dma: data->dma_rx.channel */
ret = dma_config(data->dma_rx.dma_dev, data->dma_rx.channel,
&stream->dma_cfg);
/* the channel is the actual stream from 0 */
if (ret != 0) {
return ret;
}
/* gives the request ID */
return dma_start(data->dma_rx.dma_dev, data->dma_rx.channel);
}
static int spi_mcux_dma_move_buffers(const struct device *dev, size_t len,
const struct spi_config *spi_cfg, bool last_packet)
{
struct spi_mcux_data *data = dev->data;
bool rx_ignore = data->ctx.rx_buf ? false : true;
int ret;
ret = spi_mcux_dma_rx_load(dev, data->ctx.rx_buf, len);
if (ret != 0) {
return ret;
}
ret = spi_mcux_dma_tx_load(dev, data->ctx.tx_buf, spi_cfg,
len, last_packet, rx_ignore);
return ret;
}
static int wait_dma_rx_tx_done(const struct device *dev)
{
struct spi_mcux_data *data = dev->data;
int ret = -1;
while (1) {
ret = spi_context_wait_for_completion(&data->ctx);
if (data->status_flags & SPI_MCUX_FLEXCOMM_DMA_ERROR_FLAG) {
return -EIO;
}
if ((data->status_flags & SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) ==
SPI_MCUX_FLEXCOMM_DMA_DONE_FLAG) {
return 0;
}
}
}
static int transceive_dma(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
SPI_Type *base = config->base;
int ret;
uint32_t word_size;
uint16_t data_size;
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
data_size = (word_size > 8) ? (sizeof(uint16_t)) : (sizeof(uint8_t));
data->dma_rx.dma_cfg.source_data_size = data_size;
data->dma_rx.dma_cfg.dest_data_size = data_size;
data->dma_tx.dma_cfg.source_data_size = data_size;
data->dma_tx.dma_cfg.dest_data_size = data_size;
while (data->ctx.rx_len > 0 || data->ctx.tx_len > 0) {
size_t dma_len;
/* last is used to deassert chip select if this
* is the last transfer in the set.
*/
bool last = false;
if (data->ctx.rx_len == 0) {
dma_len = data->ctx.tx_len;
last = true;
} else if (data->ctx.tx_len == 0) {
dma_len = data->ctx.rx_len;
last = true;
} else if (data->ctx.tx_len == data->ctx.rx_len) {
dma_len = data->ctx.rx_len;
last = true;
} else {
dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len);
last = false;
}
/* at this point, last just means whether or not
* this transfer will completely cover
* the current tx/rx buffer in data->ctx
* or require additional transfers because
* the two buffers are not the same size.
*
* if it covers the current ctx tx/rx buffers, then
* we'll move to the next pair of buffers (if any)
* after the transfer, but if there are
* no more buffer pairs, then this is the last
* transfer in the set and we need to deassert CS.
*/
if (last) {
/* this dma transfer should cover
* the entire current data->ctx set
* of buffers. if there are more
* buffers in the set, then we don't
* want to deassert CS.
*/
if ((data->ctx.tx_count > 1) ||
(data->ctx.rx_count > 1)) {
/* more buffers to transfer so
* this isn't last
*/
last = false;
}
}
data->status_flags = 0;
ret = spi_mcux_dma_move_buffers(dev, dma_len, spi_cfg, last);
if (ret != 0) {
break;
}
ret = wait_dma_rx_tx_done(dev);
if (ret != 0) {
break;
}
/* wait until TX FIFO is really empty */
while (0U == (base->FIFOSTAT & SPI_FIFOSTAT_TXEMPTY_MASK)) {
}
spi_context_update_tx(&data->ctx, 1, dma_len);
spi_context_update_rx(&data->ctx, 1, dma_len);
}
base->FIFOCFG &= ~SPI_FIFOCFG_DMATX_MASK;
base->FIFOCFG &= ~SPI_FIFOCFG_DMARX_MASK;
spi_context_cs_control(&data->ctx, false);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
#endif
static int transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
spi_callback_t cb,
void *userdata)
{
struct spi_mcux_data *data = dev->data;
int ret;
spi_context_lock(&data->ctx, asynchronous, cb, userdata, spi_cfg);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
spi_mcux_transfer_next_packet(dev);
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
#endif
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(const struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
return transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
#endif
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(const struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(const struct device *dev)
{
const struct spi_mcux_config *config = dev->config;
struct spi_mcux_data *data = dev->data;
int err = 0;
if (!device_is_ready(config->reset.dev)) {
LOG_ERR("Reset device not ready");
return -ENODEV;
}
err = reset_line_toggle(config->reset.dev, config->reset.id);
if (err) {
return err;
}
config->irq_config_func(dev);
data->dev = dev;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
#ifdef CONFIG_SPI_MCUX_FLEXCOMM_DMA
if (!device_is_ready(data->dma_tx.dma_dev)) {
LOG_ERR("%s device is not ready", data->dma_tx.dma_dev->name);
return -ENODEV;
}
if (!device_is_ready(data->dma_rx.dma_dev)) {
LOG_ERR("%s device is not ready", data->dma_rx.dma_dev->name);
return -ENODEV;
}
#endif /* CONFIG_SPI_MCUX_FLEXCOMM_DMA */
err = spi_context_cs_configure_all(&data->ctx);
if (err < 0) {
return err;
}
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
#ifdef CONFIG_SPI_RTIO
.iodev_submit = spi_rtio_iodev_default_submit,
#endif
.release = spi_mcux_release,
};
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id) \
static void spi_mcux_config_func_##id(const struct device *dev)
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id) \
.irq_config_func = spi_mcux_config_func_##id,
#define SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id) \
static void spi_mcux_config_func_##id(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(id), \
DT_INST_IRQ(id, priority), \
spi_mcux_isr, DEVICE_DT_INST_GET(id), \
0); \
irq_enable(DT_INST_IRQN(id)); \
}
#ifndef CONFIG_SPI_MCUX_FLEXCOMM_DMA
#define SPI_DMA_CHANNELS(id)
#else
#define SPI_DMA_CHANNELS(id) \
.dma_tx = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, tx)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(id, tx, channel), \
.dma_cfg = { \
.channel_direction = MEMORY_TO_PERIPHERAL, \
.dma_callback = spi_mcux_dma_callback, \
.complete_callback_en = true, \
.block_count = 2, \
} \
}, \
.dma_rx = { \
.dma_dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(id, rx)), \
.channel = \
DT_INST_DMAS_CELL_BY_NAME(id, rx, channel), \
.dma_cfg = { \
.channel_direction = PERIPHERAL_TO_MEMORY, \
.dma_callback = spi_mcux_dma_callback, \
.block_count = 1, \
} \
}
#endif
#define SPI_MCUX_FLEXCOMM_DEVICE(id) \
SPI_MCUX_FLEXCOMM_IRQ_HANDLER_DECL(id); \
PINCTRL_DT_INST_DEFINE(id); \
static const struct spi_mcux_config spi_mcux_config_##id = { \
.base = \
(SPI_Type *)DT_INST_REG_ADDR(id), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(id, name),\
SPI_MCUX_FLEXCOMM_IRQ_HANDLER_FUNC(id) \
.pre_delay = DT_INST_PROP_OR(id, pre_delay, 0), \
.post_delay = DT_INST_PROP_OR(id, post_delay, 0), \
.frame_delay = DT_INST_PROP_OR(id, frame_delay, 0), \
.transfer_delay = DT_INST_PROP_OR(id, transfer_delay, 0), \
.def_char = DT_INST_PROP_OR(id, def_char, 0), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(id), \
.reset = RESET_DT_SPEC_INST_GET(id), \
}; \
static struct spi_mcux_data spi_mcux_data_##id = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(id), ctx) \
SPI_DMA_CHANNELS(id) \
}; \
DEVICE_DT_INST_DEFINE(id, \
spi_mcux_init, \
NULL, \
&spi_mcux_data_##id, \
&spi_mcux_config_##id, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_mcux_driver_api); \
\
SPI_MCUX_FLEXCOMM_IRQ_HANDLER(id)
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXCOMM_DEVICE)