blob: d30438319b0e7d5eb59940cddae0b1b8e741b40b [file] [log] [blame]
/*
* Copyright 2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpcip3511
#include <soc.h>
#include <string.h>
#include <stdio.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/drivers/usb/udc.h>
#include <zephyr/drivers/pinctrl.h>
#include "udc_common.h"
#include "usb.h"
#include "usb_device_config.h"
#include "usb_device_mcux_drv_port.h"
#include "usb_device_lpcip3511.h"
#include "usb_phy.h"
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(udc_mcux, CONFIG_UDC_DRIVER_LOG_LEVEL);
/*
* There is no real advantage to change control endpoint size
* but we can use it for testing UDC driver API and higher layers.
*/
#define USB_MCUX_MPS0 UDC_MPS0_64
#define USB_MCUX_EP0_SIZE 64
#define PRV_DATA_HANDLE(_handle) CONTAINER_OF(_handle, struct udc_mcux_data, mcux_device)
struct udc_mcux_config {
const usb_device_controller_interface_struct_t *mcux_if;
void (*irq_enable_func)(const struct device *dev);
void (*irq_disable_func)(const struct device *dev);
size_t num_of_eps;
struct udc_ep_config *ep_cfg_in;
struct udc_ep_config *ep_cfg_out;
uintptr_t base;
const struct pinctrl_dev_config *pincfg;
usb_phy_config_struct_t *phy_config;
};
struct udc_mcux_data {
const struct device *dev;
usb_device_struct_t mcux_device;
struct k_work work;
struct k_fifo fifo;
uint8_t controller_id; /* 0xFF is invalid value */
};
/* Structure for driver's events */
struct udc_mcux_event {
sys_snode_t node;
const struct device *dev;
usb_device_callback_message_struct_t mcux_msg;
};
K_MEM_SLAB_DEFINE(udc_event_slab, sizeof(struct udc_mcux_event),
CONFIG_UDC_NXP_EVENT_COUNT, sizeof(void *));
static int udc_mcux_lock(const struct device *dev)
{
return udc_lock_internal(dev, K_FOREVER);
}
static int udc_mcux_unlock(const struct device *dev)
{
return udc_unlock_internal(dev);
}
static int udc_mcux_control(const struct device *dev, usb_device_control_type_t command,
void *param)
{
const struct udc_mcux_config *config = dev->config;
const usb_device_controller_interface_struct_t *mcux_if = config->mcux_if;
struct udc_mcux_data *priv = udc_get_private(dev);
usb_status_t status;
status = mcux_if->deviceControl(priv->mcux_device.controllerHandle,
command, param);
if (status != kStatus_USB_Success) {
return -ENOMEM;
}
return 0;
}
/* If ep is busy, return busy. Otherwise feed the buf to controller */
static int udc_mcux_ep_feed(const struct device *dev,
struct udc_ep_config *const cfg,
struct net_buf *const buf)
{
const struct udc_mcux_config *config = dev->config;
const usb_device_controller_interface_struct_t *mcux_if = config->mcux_if;
struct udc_mcux_data *priv = udc_get_private(dev);
usb_status_t status = kStatus_USB_Success;
uint8_t *data;
uint32_t len;
usb_device_endpoint_status_struct_t ep_status;
ep_status.endpointAddress = cfg->addr;
udc_mcux_control(dev, kUSB_DeviceControlGetEndpointStatus, &ep_status);
if (ep_status.endpointStatus == kUSB_DeviceEndpointStateStalled) {
return -EACCES; /* stalled */
}
udc_mcux_lock(dev);
if (!udc_ep_is_busy(dev, cfg->addr)) {
udc_ep_set_busy(dev, cfg->addr, true);
udc_mcux_unlock(dev);
if (USB_EP_DIR_IS_OUT(cfg->addr)) {
len = net_buf_tailroom(buf);
data = net_buf_tail(buf);
status = mcux_if->deviceRecv(priv->mcux_device.controllerHandle,
cfg->addr, data, len);
} else {
len = buf->len;
data = buf->data;
status = mcux_if->deviceSend(priv->mcux_device.controllerHandle,
cfg->addr, data, len);
}
udc_mcux_lock(dev);
if (status != kStatus_USB_Success) {
udc_ep_set_busy(dev, cfg->addr, false);
}
udc_mcux_unlock(dev);
} else {
udc_mcux_unlock(dev);
return -EBUSY;
}
return (status == kStatus_USB_Success ? 0 : -EIO);
}
/* return success if the ep is busy or stalled. */
static int udc_mcux_ep_try_feed(const struct device *dev,
struct udc_ep_config *const cfg)
{
struct net_buf *feed_buf;
feed_buf = udc_buf_peek(dev, cfg->addr);
if (feed_buf) {
int ret = udc_mcux_ep_feed(dev, cfg, feed_buf);
return ((ret == -EBUSY || ret == -EACCES || ret == 0) ? 0 : -EIO);
}
return 0;
}
/*
* Allocate buffer and initiate a new control OUT transfer.
*/
static int udc_mcux_ctrl_feed_dout(const struct device *dev,
const size_t length)
{
struct net_buf *buf;
struct udc_ep_config *cfg = udc_get_ep_cfg(dev, USB_CONTROL_EP_OUT);
int ret;
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT, length);
if (buf == NULL) {
return -ENOMEM;
}
k_fifo_put(&cfg->fifo, buf);
ret = udc_mcux_ep_feed(dev, cfg, buf);
if (ret) {
net_buf_unref(buf);
return ret;
}
return 0;
}
static int udc_mcux_handler_setup(const struct device *dev, struct usb_setup_packet *setup)
{
int err;
struct net_buf *buf;
LOG_DBG("setup packet");
buf = udc_ctrl_alloc(dev, USB_CONTROL_EP_OUT,
sizeof(struct usb_setup_packet));
if (buf == NULL) {
LOG_ERR("Failed to allocate for setup");
return -EIO;
}
udc_ep_buf_set_setup(buf);
memcpy(buf->data, setup, 8);
net_buf_add(buf, 8);
if (setup->RequestType.type == USB_REQTYPE_TYPE_STANDARD &&
setup->RequestType.direction == USB_REQTYPE_DIR_TO_DEVICE &&
setup->bRequest == USB_SREQ_SET_ADDRESS &&
setup->wLength == 0) {
udc_mcux_control(dev, kUSB_DeviceControlPreSetDeviceAddress,
&setup->wValue);
}
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
if (!buf->len) {
return -EIO;
}
if (udc_ctrl_stage_is_data_out(dev)) {
/* Allocate and feed buffer for data OUT stage */
LOG_DBG("s:%p|feed for -out-", buf);
err = udc_mcux_ctrl_feed_dout(dev, udc_data_stage_length(buf));
if (err == -ENOMEM) {
err = udc_submit_ep_event(dev, buf, err);
}
} else if (udc_ctrl_stage_is_data_in(dev)) {
err = udc_ctrl_submit_s_in_status(dev);
} else {
err = udc_ctrl_submit_s_status(dev);
}
return err;
}
static int udc_mcux_handler_ctrl_out(const struct device *dev, struct net_buf *buf,
uint8_t *mcux_buf, uint16_t mcux_len)
{
int err = 0;
uint32_t len;
len = MIN(net_buf_tailroom(buf), mcux_len);
net_buf_add(buf, len);
if (udc_ctrl_stage_is_status_out(dev)) {
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
/* Status stage finished, notify upper layer */
err = udc_ctrl_submit_status(dev, buf);
} else {
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
}
if (udc_ctrl_stage_is_status_in(dev)) {
err = udc_ctrl_submit_s_out_status(dev, buf);
}
return err;
}
static int udc_mcux_handler_ctrl_in(const struct device *dev, struct net_buf *buf,
uint8_t *mcux_buf, uint16_t mcux_len)
{
int err = 0;
uint32_t len;
len = MIN(buf->len, mcux_len);
buf->data += len;
buf->len -= len;
if (udc_ctrl_stage_is_status_in(dev) ||
udc_ctrl_stage_is_no_data(dev)) {
/* Status stage finished, notify upper layer */
err = udc_ctrl_submit_status(dev, buf);
}
/* Update to next stage of control transfer */
udc_ctrl_update_stage(dev, buf);
if (udc_ctrl_stage_is_status_out(dev)) {
/*
* IN transfer finished, release buffer,
* control OUT buffer should be already fed.
*/
net_buf_unref(buf);
err = udc_mcux_ctrl_feed_dout(dev, 0u);
}
return err;
}
static int udc_mcux_handler_non_ctrl_in(const struct device *dev, uint8_t ep,
struct net_buf *buf, uint8_t *mcux_buf, uint16_t mcux_len)
{
int err;
uint32_t len;
len = MIN(buf->len, mcux_len);
buf->data += len;
buf->len -= len;
err = udc_submit_ep_event(dev, buf, 0);
udc_mcux_ep_try_feed(dev, udc_get_ep_cfg(dev, ep));
return err;
}
static int udc_mcux_handler_non_ctrl_out(const struct device *dev, uint8_t ep,
struct net_buf *buf, uint8_t *mcux_buf, uint16_t mcux_len)
{
int err;
uint32_t len;
len = MIN(net_buf_tailroom(buf), mcux_len);
net_buf_add(buf, len);
err = udc_submit_ep_event(dev, buf, 0);
udc_mcux_ep_try_feed(dev, udc_get_ep_cfg(dev, ep));
return err;
}
static int udc_mcux_handler_out(const struct device *dev, uint8_t ep,
uint8_t *mcux_buf, uint16_t mcux_len)
{
int err;
struct net_buf *buf;
buf = udc_buf_get(dev, ep);
udc_mcux_lock(dev);
udc_ep_set_busy(dev, ep, false);
udc_mcux_unlock(dev);
if (buf == NULL) {
udc_submit_event(dev, UDC_EVT_ERROR, -ENOBUFS);
return -ENOBUFS;
}
if (ep == USB_CONTROL_EP_OUT) {
err = udc_mcux_handler_ctrl_out(dev, buf, mcux_buf, mcux_len);
} else {
err = udc_mcux_handler_non_ctrl_out(dev, ep, buf, mcux_buf, mcux_len);
}
return err;
}
/* return true - zlp is feed; false - no zlp */
static bool udc_mcux_handler_zlt(const struct device *dev, uint8_t ep, struct net_buf *buf,
uint16_t mcux_len)
{
const struct udc_mcux_config *config = dev->config;
const usb_device_controller_interface_struct_t *mcux_if = config->mcux_if;
struct udc_mcux_data *priv = udc_get_private(dev);
/* The whole transfer is already done by MCUX controller driver. */
if (mcux_len >= buf->len) {
if (udc_ep_buf_has_zlp(buf)) {
usb_status_t status;
udc_ep_buf_clear_zlp(buf);
status = mcux_if->deviceRecv(priv->mcux_device.controllerHandle,
ep, NULL, 0);
if (status != kStatus_USB_Success) {
udc_submit_event(dev, UDC_EVT_ERROR, -EIO);
return false;
}
return true;
}
}
return false;
}
static int udc_mcux_handler_in(const struct device *dev, uint8_t ep,
uint8_t *mcux_buf, uint16_t mcux_len)
{
int err;
struct net_buf *buf;
buf = udc_buf_peek(dev, ep);
if (buf == NULL) {
udc_submit_event(dev, UDC_EVT_ERROR, -ENOBUFS);
return -ENOBUFS;
}
if (udc_mcux_handler_zlt(dev, ep, buf, mcux_len)) {
return 0;
}
buf = udc_buf_get(dev, ep);
udc_mcux_lock(dev);
udc_ep_set_busy(dev, ep, false);
udc_mcux_unlock(dev);
if (buf == NULL) {
udc_submit_event(dev, UDC_EVT_ERROR, -ENOBUFS);
return -ENOBUFS;
}
if (ep == USB_CONTROL_EP_IN) {
err = udc_mcux_handler_ctrl_in(dev, buf, mcux_buf, mcux_len);
} else {
err = udc_mcux_handler_non_ctrl_in(dev, ep, buf, mcux_buf, mcux_len);
}
return err;
}
static void udc_mcux_event_submit(const struct device *dev,
const usb_device_callback_message_struct_t *mcux_msg)
{
struct udc_mcux_data *priv = udc_get_private(dev);
struct udc_mcux_event *ev;
int ret;
ret = k_mem_slab_alloc(&udc_event_slab, (void **)&ev, K_NO_WAIT);
if (ret) {
udc_submit_event(dev, UDC_EVT_ERROR, ret);
LOG_ERR("Failed to allocate slab");
return;
}
ev->dev = dev;
ev->mcux_msg = *mcux_msg;
k_fifo_put(&priv->fifo, ev);
k_work_submit_to_queue(udc_get_work_q(), &priv->work);
}
static void udc_mcux_work_handler(struct k_work *item)
{
struct udc_mcux_event *ev;
struct udc_mcux_data *priv;
usb_device_callback_message_struct_t *mcux_msg;
int err;
uint8_t ep;
priv = CONTAINER_OF(item, struct udc_mcux_data, work);
while ((ev = k_fifo_get(&priv->fifo, K_NO_WAIT)) != NULL) {
mcux_msg = &ev->mcux_msg;
if (mcux_msg->code == kUSB_DeviceNotifyBusReset) {
struct udc_ep_config *cfg;
udc_mcux_control(ev->dev, kUSB_DeviceControlSetDefaultStatus, NULL);
cfg = udc_get_ep_cfg(ev->dev, USB_CONTROL_EP_OUT);
if (cfg->stat.enabled) {
udc_ep_disable_internal(ev->dev, USB_CONTROL_EP_OUT);
}
cfg = udc_get_ep_cfg(ev->dev, USB_CONTROL_EP_IN);
if (cfg->stat.enabled) {
udc_ep_disable_internal(ev->dev, USB_CONTROL_EP_IN);
}
if (udc_ep_enable_internal(ev->dev, USB_CONTROL_EP_OUT,
USB_EP_TYPE_CONTROL,
USB_MCUX_EP0_SIZE, 0)) {
LOG_ERR("Failed to enable control endpoint");
}
if (udc_ep_enable_internal(ev->dev, USB_CONTROL_EP_IN,
USB_EP_TYPE_CONTROL,
USB_MCUX_EP0_SIZE, 0)) {
LOG_ERR("Failed to enable control endpoint");
}
udc_submit_event(ev->dev, UDC_EVT_RESET, 0);
} else {
ep = mcux_msg->code;
if (mcux_msg->isSetup) {
struct usb_setup_packet *setup =
(struct usb_setup_packet *)mcux_msg->buffer;
err = udc_mcux_handler_setup(ev->dev, setup);
} else if (USB_EP_DIR_IS_IN(ep)) {
err = udc_mcux_handler_in(ev->dev, ep, mcux_msg->buffer,
mcux_msg->length);
} else {
err = udc_mcux_handler_out(ev->dev, ep, mcux_msg->buffer,
mcux_msg->length);
}
if (unlikely(err)) {
udc_submit_event(ev->dev, UDC_EVT_ERROR, err);
}
}
k_mem_slab_free(&udc_event_slab, (void *)ev);
}
}
/* NXP MCUX controller driver notify transfers/status through this interface */
usb_status_t USB_DeviceNotificationTrigger(void *handle, void *msg)
{
usb_device_callback_message_struct_t *mcux_msg = msg;
usb_device_notification_t mcux_notify;
struct udc_mcux_data *priv;
const struct device *dev;
usb_status_t mcux_status = kStatus_USB_Success;
if ((NULL == msg) || (NULL == handle)) {
return kStatus_USB_InvalidHandle;
}
mcux_notify = (usb_device_notification_t)mcux_msg->code;
priv = (struct udc_mcux_data *)(PRV_DATA_HANDLE(handle));
dev = priv->dev;
switch (mcux_notify) {
case kUSB_DeviceNotifyBusReset:
udc_mcux_event_submit(dev, mcux_msg);
break;
case kUSB_DeviceNotifyError:
udc_submit_event(dev, UDC_EVT_ERROR, -EIO);
break;
case kUSB_DeviceNotifySuspend:
udc_set_suspended(dev, true);
udc_submit_event(dev, UDC_EVT_SUSPEND, 0);
break;
case kUSB_DeviceNotifyResume:
udc_set_suspended(dev, false);
udc_submit_event(dev, UDC_EVT_RESUME, 0);
break;
case kUSB_DeviceNotifyLPMSleep:
break;
case kUSB_DeviceNotifyDetach:
udc_submit_event(dev, UDC_EVT_VBUS_REMOVED, 0);
break;
case kUSB_DeviceNotifyAttach:
udc_submit_event(dev, UDC_EVT_VBUS_READY, 0);
break;
case kUSB_DeviceNotifySOF:
udc_submit_event(dev, UDC_EVT_SOF, 0);
break;
default:
udc_mcux_event_submit(dev, mcux_msg);
break;
}
return mcux_status;
}
static void udc_mcux_isr(const struct device *dev)
{
struct udc_mcux_data *priv = udc_get_private(dev);
USB_DeviceLpcIp3511IsrFunction((void *)(&priv->mcux_device));
}
/* Return actual USB device speed */
static enum udc_bus_speed udc_mcux_device_speed(const struct device *dev)
{
int err;
uint8_t mcux_speed;
err = udc_mcux_control(dev, kUSB_DeviceControlGetSpeed, &mcux_speed);
if (err) {
/*
* In the current version of all NXP USB device drivers,
* no error is returned if the parameter is correct.
*/
return UDC_BUS_SPEED_FS;
}
switch (mcux_speed) {
case USB_SPEED_HIGH:
return UDC_BUS_SPEED_HS;
case USB_SPEED_LOW:
__ASSERT(false, "Low speed mode not supported");
__fallthrough;
case USB_SPEED_FULL:
__fallthrough;
default:
return UDC_BUS_SPEED_FS;
}
}
static int udc_mcux_ep_enqueue(const struct device *dev,
struct udc_ep_config *const cfg,
struct net_buf *const buf)
{
udc_buf_put(cfg, buf);
if (cfg->stat.halted) {
LOG_DBG("ep 0x%02x halted", cfg->addr);
return 0;
}
return udc_mcux_ep_try_feed(dev, cfg);
}
static int udc_mcux_ep_dequeue(const struct device *dev,
struct udc_ep_config *const cfg)
{
struct net_buf *buf;
cfg->stat.halted = false;
buf = udc_buf_get_all(dev, cfg->addr);
if (buf) {
udc_submit_ep_event(dev, buf, -ECONNABORTED);
}
udc_mcux_lock(dev);
udc_ep_set_busy(dev, cfg->addr, false);
udc_mcux_unlock(dev);
return 0;
}
static int udc_mcux_ep_set_halt(const struct device *dev,
struct udc_ep_config *const cfg)
{
return udc_mcux_control(dev, kUSB_DeviceControlEndpointStall, &cfg->addr);
}
static int udc_mcux_ep_clear_halt(const struct device *dev,
struct udc_ep_config *const cfg)
{
(void)udc_mcux_control(dev, kUSB_DeviceControlEndpointUnstall, &cfg->addr);
/* transfer is enqueued after stalled */
return udc_mcux_ep_try_feed(dev, cfg);
}
static int udc_mcux_ep_enable(const struct device *dev,
struct udc_ep_config *const cfg)
{
usb_device_endpoint_init_struct_t ep_init;
LOG_DBG("Enable ep 0x%02x", cfg->addr);
ep_init.zlt = 0U;
ep_init.interval = cfg->interval;
ep_init.endpointAddress = cfg->addr;
/* HAL expects wMaxPacketSize value directly in maxPacketSize field */
ep_init.maxPacketSize = cfg->mps;
switch (cfg->attributes & USB_EP_TRANSFER_TYPE_MASK) {
case USB_EP_TYPE_CONTROL:
ep_init.transferType = USB_ENDPOINT_CONTROL;
break;
case USB_EP_TYPE_BULK:
ep_init.transferType = USB_ENDPOINT_BULK;
break;
case USB_EP_TYPE_INTERRUPT:
ep_init.transferType = USB_ENDPOINT_INTERRUPT;
break;
case USB_EP_TYPE_ISO:
ep_init.transferType = USB_ENDPOINT_ISOCHRONOUS;
break;
default:
return -EINVAL;
}
return udc_mcux_control(dev, kUSB_DeviceControlEndpointInit, &ep_init);
}
static int udc_mcux_ep_disable(const struct device *dev,
struct udc_ep_config *const cfg)
{
LOG_DBG("Disable ep 0x%02x", cfg->addr);
return udc_mcux_control(dev, kUSB_DeviceControlEndpointDeinit, &cfg->addr);
}
static int udc_mcux_host_wakeup(const struct device *dev)
{
return -ENOTSUP;
}
static int udc_mcux_set_address(const struct device *dev, const uint8_t addr)
{
uint8_t temp_addr = addr;
return udc_mcux_control(dev, kUSB_DeviceControlSetDeviceAddress, &temp_addr);
}
static int udc_mcux_enable(const struct device *dev)
{
return udc_mcux_control(dev, kUSB_DeviceControlRun, NULL);
}
static int udc_mcux_disable(const struct device *dev)
{
return udc_mcux_control(dev, kUSB_DeviceControlStop, NULL);
}
static int udc_mcux_init(const struct device *dev)
{
const struct udc_mcux_config *config = dev->config;
const usb_device_controller_interface_struct_t *mcux_if = config->mcux_if;
struct udc_mcux_data *priv = udc_get_private(dev);
usb_status_t status;
if (priv->controller_id == 0xFFu) {
return -ENOMEM;
}
#ifdef CONFIG_DT_HAS_NXP_USBPHY_ENABLED
if (config->phy_config != NULL) {
USB_EhciPhyInit(priv->controller_id, 0u,
(usb_phy_config_struct_t *)&config->phy_config);
}
#endif
/* Init MCUX USB device driver. */
status = mcux_if->deviceInit(priv->controller_id,
&priv->mcux_device, &(priv->mcux_device.controllerHandle));
if (status != kStatus_USB_Success) {
return -ENOMEM;
}
/* enable USB interrupt */
config->irq_enable_func(dev);
LOG_DBG("Initialized USB controller %x", (uint32_t)config->base);
return 0;
}
static int udc_mcux_shutdown(const struct device *dev)
{
const struct udc_mcux_config *config = dev->config;
const usb_device_controller_interface_struct_t *mcux_if = config->mcux_if;
struct udc_mcux_data *priv = udc_get_private(dev);
usb_status_t status;
/* Disable interrupt */
config->irq_disable_func(dev);
/* De-init MCUX USB device driver. */
status = mcux_if->deviceDeinit(priv->mcux_device.controllerHandle);
if (status != kStatus_USB_Success) {
return -ENOMEM;
}
return 0;
}
static inline void udc_mcux_get_hal_driver_id(struct udc_mcux_data *priv,
const struct udc_mcux_config *config)
{
/*
* MCUX USB controller drivers use an ID to tell the HAL drivers
* which controller is being used. This part of the code converts
* the base address to the ID value.
*/
#ifdef USB_BASE_ADDRS
uintptr_t ip3511_fs_base[] = USB_BASE_ADDRS;
#endif
#ifdef USBHSD_BASE_ADDRS
uintptr_t ip3511_hs_base[] = USBHSD_BASE_ADDRS;
#endif
/* get the right controller id */
priv->controller_id = 0xFFu; /* invalid value */
#ifdef USB_BASE_ADDRS
for (uint8_t i = 0; i < ARRAY_SIZE(ip3511_fs_base); i++) {
if (ip3511_fs_base[i] == config->base) {
priv->controller_id = kUSB_ControllerLpcIp3511Fs0 + i;
break;
}
}
#endif
#ifdef USBHSD_BASE_ADDRS
if (priv->controller_id == 0xFF) {
for (uint8_t i = 0; i < ARRAY_SIZE(ip3511_hs_base); i++) {
if (ip3511_hs_base[i] == config->base) {
priv->controller_id = kUSB_ControllerLpcIp3511Hs0 + i;
break;
}
}
}
#endif
}
static int udc_mcux_driver_preinit(const struct device *dev)
{
const struct udc_mcux_config *config = dev->config;
struct udc_data *data = dev->data;
struct udc_mcux_data *priv = data->priv;
int err;
udc_mcux_get_hal_driver_id(priv, config);
if (priv->controller_id == 0xFFu) {
return -ENOMEM;
}
k_mutex_init(&data->mutex);
k_fifo_init(&priv->fifo);
k_work_init(&priv->work, udc_mcux_work_handler);
for (int i = 0; i < config->num_of_eps; i++) {
config->ep_cfg_out[i].caps.out = 1;
if (i == 0) {
config->ep_cfg_out[i].caps.control = 1;
config->ep_cfg_out[i].caps.mps = 64;
} else {
config->ep_cfg_out[i].caps.bulk = 1;
config->ep_cfg_out[i].caps.interrupt = 1;
config->ep_cfg_out[i].caps.iso = 1;
config->ep_cfg_out[i].caps.mps = 1024;
if ((priv->controller_id == kUSB_ControllerLpcIp3511Hs0) ||
(priv->controller_id == kUSB_ControllerLpcIp3511Hs1)) {
config->ep_cfg_out[i].caps.high_bandwidth = 1;
}
}
config->ep_cfg_out[i].addr = USB_EP_DIR_OUT | i;
err = udc_register_ep(dev, &config->ep_cfg_out[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
for (int i = 0; i < config->num_of_eps; i++) {
config->ep_cfg_in[i].caps.in = 1;
if (i == 0) {
config->ep_cfg_in[i].caps.control = 1;
config->ep_cfg_in[i].caps.mps = 64;
} else {
config->ep_cfg_in[i].caps.bulk = 1;
config->ep_cfg_in[i].caps.interrupt = 1;
config->ep_cfg_in[i].caps.iso = 1;
config->ep_cfg_in[i].caps.mps = 1024;
if ((priv->controller_id == kUSB_ControllerLpcIp3511Hs0) ||
(priv->controller_id == kUSB_ControllerLpcIp3511Hs1)) {
config->ep_cfg_in[i].caps.high_bandwidth = 1;
}
}
config->ep_cfg_in[i].addr = USB_EP_DIR_IN | i;
err = udc_register_ep(dev, &config->ep_cfg_in[i]);
if (err != 0) {
LOG_ERR("Failed to register endpoint");
return err;
}
}
/* Requires udc_mcux_host_wakeup() implementation */
data->caps.rwup = false;
data->caps.mps0 = USB_MCUX_MPS0;
if ((priv->controller_id == kUSB_ControllerLpcIp3511Hs0) ||
(priv->controller_id == kUSB_ControllerLpcIp3511Hs1)) {
data->caps.hs = true;
}
priv->dev = dev;
pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
return 0;
}
static const struct udc_api udc_mcux_api = {
.device_speed = udc_mcux_device_speed,
.ep_enqueue = udc_mcux_ep_enqueue,
.ep_dequeue = udc_mcux_ep_dequeue,
.ep_set_halt = udc_mcux_ep_set_halt,
.ep_clear_halt = udc_mcux_ep_clear_halt,
.ep_try_config = NULL,
.ep_enable = udc_mcux_ep_enable,
.ep_disable = udc_mcux_ep_disable,
.host_wakeup = udc_mcux_host_wakeup,
.set_address = udc_mcux_set_address,
.enable = udc_mcux_enable,
.disable = udc_mcux_disable,
.init = udc_mcux_init,
.shutdown = udc_mcux_shutdown,
.lock = udc_mcux_lock,
.unlock = udc_mcux_unlock,
};
/* IP3511 device driver interface */
static const usb_device_controller_interface_struct_t udc_mcux_if = {
USB_DeviceLpc3511IpInit, USB_DeviceLpc3511IpDeinit, USB_DeviceLpc3511IpSend,
USB_DeviceLpc3511IpRecv, USB_DeviceLpc3511IpCancel, USB_DeviceLpc3511IpControl
};
#define UDC_MCUX_PHY_DEFINE(n) \
static usb_phy_config_struct_t phy_config_##n = { \
.D_CAL = DT_PROP_OR(DT_INST_PHANDLE(n, phy_handle), tx_d_cal, 0), \
.TXCAL45DP = DT_PROP_OR(DT_INST_PHANDLE(n, phy_handle), tx_cal_45_dp_ohms, 0), \
.TXCAL45DM = DT_PROP_OR(DT_INST_PHANDLE(n, phy_handle), tx_cal_45_dm_ohms, 0), \
}
#define UDC_MCUX_PHY_DEFINE_OR(n) \
COND_CODE_1(DT_NODE_HAS_PROP(DT_DRV_INST(n), phy_handle), \
(UDC_MCUX_PHY_DEFINE(n)), ())
#define UDC_MCUX_PHY_CFG_PTR_OR_NULL(n) \
COND_CODE_1(DT_NODE_HAS_PROP(DT_DRV_INST(n), phy_handle), \
(&phy_config_##n), (NULL))
#define USB_MCUX_IP3511_DEVICE_DEFINE(n) \
UDC_MCUX_PHY_DEFINE_OR(n); \
\
static void udc_irq_enable_func##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), \
udc_mcux_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
} \
\
static void udc_irq_disable_func##n(const struct device *dev) \
{ \
irq_disable(DT_INST_IRQN(n)); \
} \
\
static struct udc_ep_config \
ep_cfg_out##n[DT_INST_PROP(n, num_bidir_endpoints)]; \
static struct udc_ep_config \
ep_cfg_in##n[DT_INST_PROP(n, num_bidir_endpoints)]; \
\
PINCTRL_DT_INST_DEFINE(n); \
\
static struct udc_mcux_config priv_config_##n = { \
.base = DT_INST_REG_ADDR(n), \
.irq_enable_func = udc_irq_enable_func##n, \
.irq_disable_func = udc_irq_disable_func##n, \
.num_of_eps = DT_INST_PROP(n, num_bidir_endpoints), \
.ep_cfg_in = ep_cfg_in##n, \
.ep_cfg_out = ep_cfg_out##n, \
.mcux_if = &udc_mcux_if, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.phy_config = UDC_MCUX_PHY_CFG_PTR_OR_NULL(n), \
}; \
\
static struct udc_mcux_data priv_data_##n = { \
}; \
\
static struct udc_data udc_data_##n = { \
.mutex = Z_MUTEX_INITIALIZER(udc_data_##n.mutex), \
.priv = &priv_data_##n, \
}; \
\
DEVICE_DT_INST_DEFINE(n, udc_mcux_driver_preinit, NULL, \
&udc_data_##n, &priv_config_##n, \
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&udc_mcux_api);
DT_INST_FOREACH_STATUS_OKAY(USB_MCUX_IP3511_DEVICE_DEFINE)