| /* |
| * Copyright (c) 2018 Nordic Semiconductor ASA |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define ADC_CONTEXT_USES_KERNEL_TIMER |
| #include "adc_context.h" |
| #include <nrfx_saadc.h> |
| #include <zephyr/dt-bindings/adc/nrf-saadc-v3.h> |
| #include <zephyr/dt-bindings/adc/nrf-saadc-nrf54l.h> |
| #include <zephyr/dt-bindings/adc/nrf-saadc-haltium.h> |
| #include <zephyr/linker/devicetree_regions.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| |
| LOG_MODULE_REGISTER(adc_nrfx_saadc, CONFIG_ADC_LOG_LEVEL); |
| |
| #define DT_DRV_COMPAT nordic_nrf_saadc |
| |
| #if (NRF_SAADC_HAS_AIN_AS_PIN) |
| |
| #if defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| static const uint32_t saadc_psels[NRF_SAADC_AIN13 + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), |
| [NRF_SAADC_AIN8] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 9), |
| [NRF_SAADC_AIN9] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 9), |
| [NRF_SAADC_AIN10] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 9), |
| [NRF_SAADC_AIN11] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 9), |
| [NRF_SAADC_AIN12] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 9), |
| [NRF_SAADC_AIN13] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 9), |
| }; |
| #elif defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15) |
| static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1), |
| [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, |
| [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, |
| [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, |
| }; |
| #elif defined(NRF54LM20A_ENGA_XXAA) |
| static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(31U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(30U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(29U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), |
| [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, |
| [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, |
| [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, |
| }; |
| #elif defined(NRF54LV10A_ENGA_XXAA) |
| static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { |
| [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), |
| [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), |
| [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), |
| [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), |
| [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), |
| [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(10U, 1), |
| [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), |
| [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), |
| [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, |
| [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, |
| }; |
| #endif |
| |
| #else |
| BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) && |
| (NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) && |
| (NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) && |
| (NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) && |
| (NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) && |
| (NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) && |
| (NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) && |
| (NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) && |
| #if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5) |
| (NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) && |
| #endif |
| #if defined(SAADC_CH_PSELP_PSELP_VDD) |
| (NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) && |
| #endif |
| 1, |
| "Definitions from nrf-adc.h do not match those from nrf_saadc.h"); |
| #endif |
| |
| #if defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| #include <dmm.h> |
| /* Haltium devices always use bounce buffers in RAM */ |
| static uint16_t adc_samples_buffer[SAADC_CH_NUM] DMM_MEMORY_SECTION(DT_NODELABEL(adc)); |
| |
| #define ADC_BUFFER_IN_RAM |
| |
| #endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */ |
| |
| struct driver_data { |
| struct adc_context ctx; |
| uint8_t single_ended_channels; |
| nrf_saadc_value_t *buffer; /* Pointer to the buffer with converted samples. */ |
| uint8_t active_channel_cnt; |
| |
| #if defined(ADC_BUFFER_IN_RAM) |
| void *samples_buffer; |
| void *user_buffer; |
| #endif |
| }; |
| |
| static struct driver_data m_data = { |
| ADC_CONTEXT_INIT_TIMER(m_data, ctx), |
| ADC_CONTEXT_INIT_LOCK(m_data, ctx), |
| ADC_CONTEXT_INIT_SYNC(m_data, ctx), |
| #if defined(ADC_BUFFER_IN_RAM) |
| .samples_buffer = adc_samples_buffer, |
| #endif |
| }; |
| |
| /* Forward declaration */ |
| static void event_handler(const nrfx_saadc_evt_t *event); |
| |
| /* Helper function to convert acquisition time to register TACQ value. */ |
| static int acq_time_set(nrf_saadc_channel_config_t *ch_cfg, uint16_t acquisition_time) |
| { |
| #if NRF_SAADC_HAS_ACQTIME_ENUM |
| switch (acquisition_time) { |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_3US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_5US; |
| break; |
| case ADC_ACQ_TIME_DEFAULT: |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_10US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_15US; |
| break; |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_20US; |
| break; |
| case ADC_ACQ_TIME_MAX: |
| case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): |
| ch_cfg->acq_time = NRF_SAADC_ACQTIME_40US; |
| break; |
| default: |
| LOG_ERR("Selected ADC acquisition time is not valid"); |
| return -EINVAL; |
| } |
| #else |
| #define MINIMUM_ACQ_TIME_IN_NS 125 |
| #define DEFAULT_ACQ_TIME_IN_NS 10000 |
| |
| nrf_saadc_acqtime_t tacq = 0; |
| uint16_t acq_time = |
| (acquisition_time == ADC_ACQ_TIME_DEFAULT |
| ? DEFAULT_ACQ_TIME_IN_NS |
| : (ADC_ACQ_TIME_VALUE(acquisition_time) * |
| (ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS |
| ? 1000 |
| : 1))); |
| |
| tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1; |
| if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) { |
| LOG_ERR("Selected ADC acquisition time is not valid"); |
| return -EINVAL; |
| } else { |
| ch_cfg->acq_time = tacq; |
| } |
| #endif |
| |
| LOG_DBG("ADC acquisition_time: %d", acquisition_time); |
| |
| return 0; |
| } |
| |
| static int input_assign(nrf_saadc_input_t *pin_p, |
| nrf_saadc_input_t *pin_n, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| #if (NRF_SAADC_HAS_AIN_AS_PIN) |
| if (channel_cfg->input_positive > ARRAY_SIZE(saadc_psels) || |
| channel_cfg->input_positive < NRF_SAADC_AIN0) { |
| LOG_ERR("Invalid analog positive input number: %d", channel_cfg->input_positive); |
| return -EINVAL; |
| } |
| |
| *pin_p = saadc_psels[channel_cfg->input_positive]; |
| |
| if (channel_cfg->differential) { |
| if (channel_cfg->input_negative > ARRAY_SIZE(saadc_psels) || |
| channel_cfg->input_negative < NRF_SAADC_AIN0 || |
| (IS_ENABLED(CONFIG_NRF_PLATFORM_HALTIUM) && |
| (channel_cfg->input_positive > NRF_SAADC_AIN7) != |
| (channel_cfg->input_negative > NRF_SAADC_AIN7))) { |
| LOG_ERR("Invalid analog negative input number: %d", |
| channel_cfg->input_negative); |
| return -EINVAL; |
| } |
| *pin_n = saadc_psels[channel_cfg->input_negative]; |
| } else { |
| *pin_n = NRF_SAADC_INPUT_DISABLED; |
| } |
| #else |
| *pin_p = channel_cfg->input_positive; |
| *pin_n = channel_cfg->differential ? channel_cfg->input_negative |
| : NRF_SAADC_INPUT_DISABLED; |
| #endif |
| LOG_DBG("ADC positive input: %d", *pin_p); |
| LOG_DBG("ADC negative input: %d", *pin_n); |
| |
| return 0; |
| } |
| |
| static int gain_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_gain gain) |
| { |
| #if NRF_SAADC_HAS_CH_GAIN |
| switch (gain) { |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_6) |
| case ADC_GAIN_1_6: |
| ch_cfg->gain = NRF_SAADC_GAIN1_6; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_5) |
| case ADC_GAIN_1_5: |
| ch_cfg->gain = NRF_SAADC_GAIN1_5; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8) |
| case ADC_GAIN_1_4: |
| ch_cfg->gain = NRF_SAADC_GAIN1_4; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain2_7) |
| case ADC_GAIN_2_7: |
| ch_cfg->gain = NRF_SAADC_GAIN2_7; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6) |
| case ADC_GAIN_1_3: |
| ch_cfg->gain = NRF_SAADC_GAIN1_3; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain2_5) |
| case ADC_GAIN_2_5: |
| ch_cfg->gain = NRF_SAADC_GAIN2_5; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4) |
| case ADC_GAIN_1_2: |
| ch_cfg->gain = NRF_SAADC_GAIN1_2; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain2_3) |
| case ADC_GAIN_2_3: |
| ch_cfg->gain = NRF_SAADC_GAIN2_3; |
| break; |
| #endif |
| case ADC_GAIN_1: |
| ch_cfg->gain = NRF_SAADC_GAIN1; |
| break; |
| case ADC_GAIN_2: |
| ch_cfg->gain = NRF_SAADC_GAIN2; |
| break; |
| #if defined(SAADC_CH_CONFIG_GAIN_Gain4) |
| case ADC_GAIN_4: |
| ch_cfg->gain = NRF_SAADC_GAIN4; |
| break; |
| #endif |
| default: |
| #else |
| if (ch_cfg->gain != ADC_GAIN_1) { |
| #endif /* defined(NRF_SAADC_HAS_CH_GAIN) */ |
| LOG_ERR("Selected ADC gain is not valid"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int reference_set(nrf_saadc_channel_config_t *ch_cfg, enum adc_reference reference) |
| { |
| switch (reference) { |
| #if defined(SAADC_CH_CONFIG_REFSEL_Internal) |
| case ADC_REF_INTERNAL: |
| ch_cfg->reference = NRF_SAADC_REFERENCE_INTERNAL; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4) |
| case ADC_REF_VDD_1_4: |
| ch_cfg->reference = NRF_SAADC_REFERENCE_VDD4; |
| break; |
| #endif |
| #if defined(SAADC_CH_CONFIG_REFSEL_External) |
| case ADC_REF_EXTERNAL0: |
| ch_cfg->reference = NRF_SAADC_REFERENCE_EXTERNAL; |
| break; |
| #endif |
| default: |
| LOG_ERR("Selected ADC reference is not valid"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* Implementation of the ADC driver API function: adc_channel_setup. */ |
| static int adc_nrfx_channel_setup(const struct device *dev, |
| const struct adc_channel_cfg *channel_cfg) |
| { |
| int err; |
| nrf_saadc_channel_config_t *ch_cfg; |
| nrfx_saadc_channel_t cfg = { |
| .channel_config = { |
| #if NRF_SAADC_HAS_CH_CONFIG_RES |
| .resistor_p = NRF_SAADC_RESISTOR_DISABLED, |
| .resistor_n = NRF_SAADC_RESISTOR_DISABLED, |
| #endif |
| #if NRF_SAADC_HAS_CH_BURST |
| .burst = NRF_SAADC_BURST_DISABLED, |
| #endif |
| }, |
| .channel_index = channel_cfg->channel_id, |
| }; |
| |
| if (channel_cfg->channel_id >= SAADC_CH_NUM) { |
| LOG_ERR("Invalid channel ID: %d", channel_cfg->channel_id); |
| return -EINVAL; |
| } |
| |
| ch_cfg = &cfg.channel_config; |
| |
| err = input_assign(&cfg.pin_p, &cfg.pin_n, channel_cfg); |
| if (err != 0) { |
| return err; |
| } |
| |
| err = gain_set(ch_cfg, channel_cfg->gain); |
| if (err != 0) { |
| return err; |
| } |
| |
| err = reference_set(ch_cfg, channel_cfg->reference); |
| if (err != 0) { |
| return err; |
| } |
| |
| err = acq_time_set(ch_cfg, channel_cfg->acquisition_time); |
| if (err != 0) { |
| return err; |
| } |
| |
| /* Store channel mode to allow correcting negative readings in single-ended mode |
| * after ADC sequence ends. |
| */ |
| if (channel_cfg->differential) { |
| ch_cfg->mode = NRF_SAADC_MODE_DIFFERENTIAL; |
| m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id); |
| } else { |
| ch_cfg->mode = NRF_SAADC_MODE_SINGLE_ENDED; |
| m_data.single_ended_channels |= BIT(channel_cfg->channel_id); |
| } |
| |
| nrfx_err_t ret = nrfx_saadc_channel_config(&cfg); |
| |
| if (ret != NRFX_SUCCESS) { |
| LOG_ERR("Cannot configure channel %d: %d", channel_cfg->channel_id, ret); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static void adc_context_start_sampling(struct adc_context *ctx) |
| { |
| if (ctx->sequence.calibrate) { |
| nrfx_saadc_offset_calibrate(event_handler); |
| } else { |
| nrfx_err_t ret = nrfx_saadc_mode_trigger(); |
| |
| if (ret != NRFX_SUCCESS) { |
| LOG_ERR("Cannot start sampling: 0x%08x", ret); |
| adc_context_complete(&m_data.ctx, -EIO); |
| } |
| } |
| } |
| |
| static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat) |
| { |
| if (!repeat) { |
| #if defined(ADC_BUFFER_IN_RAM) |
| m_data.user_buffer = (uint16_t *)m_data.user_buffer + m_data.active_channel_cnt; |
| #else |
| nrf_saadc_value_t *buffer = (uint16_t *)m_data.buffer + m_data.active_channel_cnt; |
| |
| nrfx_saadc_buffer_set(buffer, m_data.active_channel_cnt); |
| #endif |
| } |
| } |
| |
| static int get_resolution(const struct adc_sequence *sequence, nrf_saadc_resolution_t *resolution) |
| { |
| switch (sequence->resolution) { |
| case 8: |
| *resolution = NRF_SAADC_RESOLUTION_8BIT; |
| break; |
| case 10: |
| *resolution = NRF_SAADC_RESOLUTION_10BIT; |
| break; |
| case 12: |
| *resolution = NRF_SAADC_RESOLUTION_12BIT; |
| break; |
| case 14: |
| *resolution = NRF_SAADC_RESOLUTION_14BIT; |
| break; |
| default: |
| LOG_ERR("ADC resolution value %d is not valid", sequence->resolution); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int get_oversampling(const struct adc_sequence *sequence, uint8_t active_channel_cnt, |
| nrf_saadc_oversample_t *oversampling) |
| { |
| if ((active_channel_cnt > 1) && (sequence->oversampling > 0)) { |
| LOG_ERR( |
| "Oversampling is supported for single channel only"); |
| return -EINVAL; |
| } |
| |
| switch (sequence->oversampling) { |
| case 0: |
| *oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; |
| break; |
| case 1: |
| *oversampling = NRF_SAADC_OVERSAMPLE_2X; |
| break; |
| case 2: |
| *oversampling = NRF_SAADC_OVERSAMPLE_4X; |
| break; |
| case 3: |
| *oversampling = NRF_SAADC_OVERSAMPLE_8X; |
| break; |
| case 4: |
| *oversampling = NRF_SAADC_OVERSAMPLE_16X; |
| break; |
| case 5: |
| *oversampling = NRF_SAADC_OVERSAMPLE_32X; |
| break; |
| case 6: |
| *oversampling = NRF_SAADC_OVERSAMPLE_64X; |
| break; |
| case 7: |
| *oversampling = NRF_SAADC_OVERSAMPLE_128X; |
| break; |
| case 8: |
| *oversampling = NRF_SAADC_OVERSAMPLE_256X; |
| break; |
| default: |
| LOG_ERR("Oversampling value %d is not valid", sequence->oversampling); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channel_cnt) |
| { |
| size_t needed_buffer_size; |
| |
| needed_buffer_size = NRFX_SAADC_SAMPLES_TO_BYTES(active_channel_cnt); |
| |
| if (sequence->options) { |
| needed_buffer_size *= (1 + sequence->options->extra_samplings); |
| } |
| |
| if (sequence->buffer_size < needed_buffer_size) { |
| LOG_ERR("Provided buffer is too small (%u/%u)", |
| sequence->buffer_size, needed_buffer_size); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static bool has_single_ended(const struct adc_sequence *sequence) |
| { |
| return sequence->channels & m_data.single_ended_channels; |
| } |
| |
| static void correct_single_ended(const struct adc_sequence *sequence) |
| { |
| uint16_t channel_bit = BIT(0); |
| uint8_t selected_channels = sequence->channels; |
| uint8_t single_ended_channels = m_data.single_ended_channels; |
| int16_t *sample = (int16_t *)m_data.buffer; |
| |
| while (channel_bit <= single_ended_channels) { |
| if (channel_bit & selected_channels) { |
| if ((channel_bit & single_ended_channels) && (*sample < 0)) { |
| *sample = 0; |
| } |
| |
| sample++; |
| } |
| |
| channel_bit <<= 1; |
| } |
| } |
| |
| static int start_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| nrfx_err_t nrfx_err; |
| int error; |
| uint32_t selected_channels = sequence->channels; |
| nrf_saadc_resolution_t resolution; |
| nrf_saadc_oversample_t oversampling; |
| uint8_t active_channel_cnt = 0U; |
| uint8_t channel_id = 0U; |
| |
| /* Signal an error if channel selection is invalid (no channels or |
| * a non-existing one is selected). |
| */ |
| if (!selected_channels || |
| (selected_channels & ~BIT_MASK(SAADC_CH_NUM))) { |
| LOG_ERR("Invalid selection of channels"); |
| return -EINVAL; |
| } |
| |
| do { |
| if (selected_channels & BIT(channel_id)) { |
| /* Signal an error if a selected channel has not been configured yet. */ |
| if (0 == (nrfx_saadc_channels_configured_get() & BIT(channel_id))) { |
| LOG_ERR("Channel %u not configured", channel_id); |
| return -EINVAL; |
| } |
| ++active_channel_cnt; |
| } |
| } while (++channel_id < SAADC_CH_NUM); |
| |
| if (active_channel_cnt == 0) { |
| LOG_ERR("No channel configured"); |
| return -EINVAL; |
| } |
| |
| error = get_resolution(sequence, &resolution); |
| if (error) { |
| return error; |
| } |
| |
| error = get_oversampling(sequence, active_channel_cnt, &oversampling); |
| if (error) { |
| return error; |
| } |
| |
| nrfx_err = nrfx_saadc_simple_mode_set(selected_channels, |
| resolution, |
| oversampling, |
| event_handler); |
| if (nrfx_err != NRFX_SUCCESS) { |
| return -EINVAL; |
| } |
| |
| error = check_buffer_size(sequence, active_channel_cnt); |
| if (error) { |
| return error; |
| } |
| |
| m_data.active_channel_cnt = active_channel_cnt; |
| #if defined(ADC_BUFFER_IN_RAM) |
| m_data.user_buffer = sequence->buffer; |
| |
| nrfx_saadc_buffer_set(m_data.samples_buffer, active_channel_cnt); |
| #else |
| /* Buffer is filled in chunks, each chunk composed of number of samples equal to number |
| * of active channels. Buffer pointer is advanced and reloaded after each chunk. |
| */ |
| nrfx_saadc_buffer_set(sequence->buffer, active_channel_cnt); |
| #endif |
| |
| adc_context_start_read(&m_data.ctx, sequence); |
| |
| return adc_context_wait_for_completion(&m_data.ctx); |
| } |
| |
| /* Implementation of the ADC driver API function: adc_read. */ |
| static int adc_nrfx_read(const struct device *dev, |
| const struct adc_sequence *sequence) |
| { |
| int error; |
| |
| adc_context_lock(&m_data.ctx, false, NULL); |
| error = start_read(dev, sequence); |
| adc_context_release(&m_data.ctx, error); |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_ADC_ASYNC |
| /* Implementation of the ADC driver API function: adc_read_async. */ |
| static int adc_nrfx_read_async(const struct device *dev, |
| const struct adc_sequence *sequence, |
| struct k_poll_signal *async) |
| { |
| int error; |
| |
| adc_context_lock(&m_data.ctx, true, async); |
| error = start_read(dev, sequence); |
| adc_context_release(&m_data.ctx, error); |
| |
| return error; |
| } |
| #endif /* CONFIG_ADC_ASYNC */ |
| |
| static void event_handler(const nrfx_saadc_evt_t *event) |
| { |
| nrfx_err_t err; |
| |
| if (event->type == NRFX_SAADC_EVT_DONE) { |
| m_data.buffer = event->data.done.p_buffer; |
| |
| if (has_single_ended(&m_data.ctx.sequence)) { |
| correct_single_ended(&m_data.ctx.sequence); |
| } |
| |
| #if defined(ADC_BUFFER_IN_RAM) |
| memcpy(m_data.user_buffer, m_data.samples_buffer, |
| NRFX_SAADC_SAMPLES_TO_BYTES(m_data.active_channel_cnt)); |
| #endif |
| |
| adc_context_on_sampling_done(&m_data.ctx, DEVICE_DT_INST_GET(0)); |
| } else if (event->type == NRFX_SAADC_EVT_CALIBRATEDONE) { |
| err = nrfx_saadc_mode_trigger(); |
| if (err != NRFX_SUCCESS) { |
| LOG_ERR("Cannot start sampling: 0x%08x", err); |
| adc_context_complete(&m_data.ctx, -EIO); |
| } |
| } |
| } |
| |
| static int init_saadc(const struct device *dev) |
| { |
| nrfx_err_t err; |
| |
| /* The priority value passed here is ignored (see nrfx_glue.h). */ |
| err = nrfx_saadc_init(0); |
| if (err != NRFX_SUCCESS) { |
| LOG_ERR("Failed to initialize device: %s", dev->name); |
| return -EIO; |
| } |
| |
| IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), nrfx_isr, nrfx_saadc_irq_handler, 0); |
| |
| adc_context_unlock_unconditionally(&m_data.ctx); |
| |
| return 0; |
| } |
| |
| static DEVICE_API(adc, adc_nrfx_driver_api) = { |
| .channel_setup = adc_nrfx_channel_setup, |
| .read = adc_nrfx_read, |
| #ifdef CONFIG_ADC_ASYNC |
| .read_async = adc_nrfx_read_async, |
| #endif |
| #if defined(NRF54LV10A_ENGA_XXAA) |
| .ref_internal = 1300, |
| #elif defined(CONFIG_SOC_COMPATIBLE_NRF54LX) |
| .ref_internal = 900, |
| #elif defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| .ref_internal = 1024, |
| #else |
| .ref_internal = 600, |
| #endif |
| }; |
| |
| #if defined(CONFIG_NRF_PLATFORM_HALTIUM) |
| /* AIN8-AIN14 inputs are on 3v3 GPIO port and they cannot be mixed with other |
| * analog inputs (from 1v8 ports) in differential mode. |
| */ |
| #define CH_IS_3V3(val) (val >= NRF_SAADC_AIN8) |
| |
| #define MIXED_3V3_1V8_INPUTS(node) \ |
| (DT_NODE_HAS_PROP(node, zephyr_input_negative) && \ |
| (CH_IS_3V3(DT_PROP_OR(node, zephyr_input_negative, 0)) != \ |
| CH_IS_3V3(DT_PROP_OR(node, zephyr_input_positive, 0)))) |
| #else |
| #define MIXED_3V3_1V8_INPUTS(node) false |
| #endif |
| |
| #define VALIDATE_CHANNEL_CONFIG(node) \ |
| BUILD_ASSERT(MIXED_3V3_1V8_INPUTS(node) == false, \ |
| "1v8 inputs cannot be mixed with 3v3 inputs"); |
| |
| /* Validate configuration of all channels. */ |
| DT_FOREACH_CHILD(DT_DRV_INST(0), VALIDATE_CHANNEL_CONFIG) |
| |
| DEVICE_DT_INST_DEFINE(0, init_saadc, NULL, NULL, NULL, POST_KERNEL, |
| CONFIG_ADC_INIT_PRIORITY, &adc_nrfx_driver_api); |