blob: 01d57c75128cd02f74a80201f2b49285d35641f1 [file] [log] [blame]
/*
* Copyright (c) 2025 Renesas Electronics Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT renesas_rz_sci_uart
#include <zephyr/drivers/uart.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#if defined(CONFIG_UART_RENESAS_RZ_SCI_B)
#include "r_sci_b_uart.h"
#else
#include "r_sci_uart.h"
#endif
#if defined(CONFIG_UART_RENESAS_RZ_SCI_B)
#define R_SCI0_Type R_SCI_B0_Type
#define SCI_UART_CLOCK_INT SCI_B_UART_CLOCK_INT
#define SCI_UART_RS485_DISABLE SCI_B_UART_RS485_DISABLE
#define SCI_UART_FLOW_CONTROL_RTS SCI_B_UART_FLOW_CONTROL_RTS
#define SCI_UART_RX_FIFO_TRIGGER_MAX SCI_B_UART_RX_FIFO_TRIGGER_MAX
#define SCI_UART_START_BIT_FALLING_EDGE SCI_B_UART_START_BIT_FALLING_EDGE
#define SCI_UART_RS485_DE_POLARITY_HIGH SCI_B_UART_RS485_DE_POLARITY_HIGH
#define SCI_UART_NOISE_CANCELLATION_ENABLE SCI_B_UART_NOISE_CANCELLATION_ENABLE
#define SCI_UART_FLOW_CONTROL_HARDWARE_CTSRTS SCI_B_UART_FLOW_CONTROL_HARDWARE_CTSRTS
typedef sci_b_baud_setting_t sci_baud_setting_t;
typedef sci_b_uart_extended_cfg_t sci_uart_extended_cfg_t;
typedef sci_b_uart_instance_ctrl_t sci_uart_instance_ctrl_t;
#endif
LOG_MODULE_REGISTER(rz_sci_uart);
struct uart_rz_sci_config {
const struct pinctrl_dev_config *pin_config;
const uart_api_t *fsp_api;
};
struct uart_rz_sci_int {
bool rx_fifo_busy;
bool irq_rx_enable;
bool irq_tx_enable;
uint8_t rx_byte;
uint8_t tx_byte;
uart_event_t event;
};
struct uart_rz_sci_data {
struct uart_config uart_config;
uart_cfg_t *fsp_cfg;
struct uart_rz_sci_int int_data;
sci_uart_instance_ctrl_t *fsp_ctrl;
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
uart_irq_callback_user_data_t callback;
void *callback_data;
#endif
};
#define SCI_UART_ERROR_RATE_x1000 (5000)
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
#if defined(CONFIG_UART_RENESAS_RZ_SCI_B)
void sci_b_uart_rxi_isr(void);
void sci_b_uart_txi_isr(void);
void sci_b_uart_tei_isr(void);
void sci_b_uart_eri_isr(void);
#define SCI_RXI_ISR sci_b_uart_rxi_isr
#define SCI_TXI_ISR sci_b_uart_txi_isr
#define SCI_TEI_ISR sci_b_uart_tei_isr
#define SCI_ERI_ISR sci_b_uart_eri_isr
#else
void sci_uart_rxi_isr(void);
void sci_uart_txi_isr(void);
void sci_uart_tei_isr(void);
void sci_uart_eri_isr(void);
#define SCI_RXI_ISR sci_uart_rxi_isr
#define SCI_TXI_ISR sci_uart_txi_isr
#define SCI_TEI_ISR sci_uart_tei_isr
#define SCI_ERI_ISR sci_uart_eri_isr
#endif /* CONFIG_UART_RENESAS_RZ_SCI_B */
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static int uart_rz_sci_poll_in(const struct device *dev, unsigned char *c)
{
struct uart_rz_sci_data *data = dev->data;
R_SCI0_Type *reg = data->fsp_ctrl->p_reg;
if (reg->FRSR_b.R == 0U) {
/* There are no characters available to read. */
return -1;
}
*c = (unsigned char)reg->RDR_b.RDAT;
return 0;
}
static void uart_rz_sci_poll_out(const struct device *dev, unsigned char c)
{
struct uart_rz_sci_data *data = dev->data;
R_SCI0_Type *reg = data->fsp_ctrl->p_reg;
uint8_t key;
key = irq_lock();
while (!reg->CSR_b.TDRE) {
;
}
reg->TDR_b.TDAT = c;
reg->CFCLR_b.TDREC = 1;
while (!reg->CSR_b.TEND) {
;
}
irq_unlock(key);
}
static int uart_rz_sci_err_check(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
uart_event_t event = data->int_data.event;
int err = 0;
if (event & UART_EVENT_ERR_OVERFLOW) {
err |= UART_ERROR_OVERRUN;
}
if (event & UART_EVENT_ERR_FRAMING) {
err |= UART_ERROR_FRAMING;
}
if (event & UART_EVENT_ERR_PARITY) {
err |= UART_ERROR_PARITY;
}
return err;
}
static int uart_rz_sci_apply_config(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
struct uart_config *uart_config = &data->uart_config;
uart_cfg_t *fsp_cfg = data->fsp_cfg;
sci_baud_setting_t baud_setting;
sci_uart_extended_cfg_t *fsp_config_extend = (sci_uart_extended_cfg_t *)fsp_cfg->p_extend;
fsp_err_t fsp_err;
#if defined(CONFIG_UART_RENESAS_RZ_SCI_B)
uint32_t baud_rate = uart_config->baudrate;
bool enable_bitrate_modulation = false;
uint32_t error_rate_x_1000 = SCI_UART_ERROR_RATE_x1000;
fsp_err = R_SCI_B_UART_BaudCalculate(baud_rate, enable_bitrate_modulation,
error_rate_x_1000, &baud_setting);
#else
sci_uart_baud_calculation_t baud_target;
baud_target.baudrate = uart_config->baudrate;
baud_target.bitrate_modulation = false;
baud_target.baud_rate_error_x_1000 = SCI_UART_ERROR_RATE_x1000;
fsp_err = R_SCI_UART_BaudCalculate(&baud_target, fsp_config_extend->clock_source,
&baud_setting);
#endif /* CONFIG_UART_RENESAS_RZ_SCI_B */
if (fsp_err) {
return -EIO;
}
memcpy(fsp_config_extend->p_baud_setting, &baud_setting, sizeof(sci_baud_setting_t));
switch (uart_config->data_bits) {
case UART_CFG_DATA_BITS_7:
fsp_cfg->data_bits = UART_DATA_BITS_7;
break;
case UART_CFG_DATA_BITS_8:
fsp_cfg->data_bits = UART_DATA_BITS_8;
break;
case UART_CFG_DATA_BITS_9:
fsp_cfg->data_bits = UART_DATA_BITS_9;
break;
default:
return -ENOTSUP;
}
switch (uart_config->parity) {
case UART_CFG_PARITY_NONE:
fsp_cfg->parity = UART_PARITY_OFF;
break;
case UART_CFG_PARITY_ODD:
fsp_cfg->parity = UART_PARITY_ODD;
break;
case UART_CFG_PARITY_EVEN:
fsp_cfg->parity = UART_PARITY_EVEN;
break;
default:
return -ENOTSUP;
}
switch (uart_config->stop_bits) {
case UART_CFG_STOP_BITS_1:
fsp_cfg->stop_bits = UART_STOP_BITS_1;
break;
case UART_CFG_STOP_BITS_2:
fsp_cfg->stop_bits = UART_STOP_BITS_2;
break;
default:
return -ENOTSUP;
}
switch (uart_config->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
fsp_config_extend->flow_control = 0;
fsp_config_extend->rs485_setting.enable = SCI_UART_RS485_DISABLE;
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
fsp_config_extend->flow_control = SCI_UART_FLOW_CONTROL_HARDWARE_CTSRTS;
fsp_config_extend->rs485_setting.enable = SCI_UART_RS485_DISABLE;
break;
default:
return -ENOTSUP;
}
return 0;
}
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
static int uart_rz_sci_configure(const struct device *dev, const struct uart_config *cfg)
{
int err;
fsp_err_t fsp_err;
const struct uart_rz_sci_config *config = dev->config;
struct uart_rz_sci_data *data = dev->data;
memcpy(&data->uart_config, cfg, sizeof(struct uart_config));
err = uart_rz_sci_apply_config(dev);
if (err) {
return err;
}
fsp_err = config->fsp_api->close(data->fsp_ctrl);
if (fsp_err) {
return -EIO;
}
fsp_err = config->fsp_api->open(data->fsp_ctrl, data->fsp_cfg);
if (fsp_err) {
return -EIO;
}
return err;
}
static int uart_rz_sci_config_get(const struct device *dev, struct uart_config *cfg)
{
struct uart_rz_sci_data *data = dev->data;
memcpy(cfg, &data->uart_config, sizeof(struct uart_config));
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
static int uart_rz_sci_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size)
{
struct uart_rz_sci_data *data = dev->data;
sci_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
fsp_ctrl->tx_src_bytes = size;
fsp_ctrl->p_tx_src = tx_data;
SCI_TXI_ISR();
return (size - fsp_ctrl->tx_src_bytes);
}
static int uart_rz_sci_fifo_read(const struct device *dev, uint8_t *rx_data, const int size)
{
struct uart_rz_sci_data *data = dev->data;
sci_uart_instance_ctrl_t *fsp_ctrl = data->fsp_ctrl;
fsp_ctrl->rx_dest_bytes = size;
fsp_ctrl->p_rx_dest = rx_data;
SCI_RXI_ISR();
data->int_data.rx_fifo_busy = false;
return (size - fsp_ctrl->rx_dest_bytes);
}
static void uart_rz_sci_irq_rx_enable(const struct device *dev)
{
const struct uart_rz_sci_config *config = dev->config;
struct uart_rz_sci_data *data = dev->data;
data->int_data.irq_rx_enable = true;
/* Prepare 1-byte buffer to receive, it will be overwritten by fifo read */
config->fsp_api->read(data->fsp_ctrl, &(data->int_data.rx_byte), 1);
}
static void uart_rz_sci_irq_rx_disable(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
data->int_data.irq_rx_enable = false;
}
static void uart_rz_sci_irq_tx_enable(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
const struct uart_rz_sci_config *config = dev->config;
data->int_data.irq_tx_enable = true;
/* Trigger TX with a NULL frame */
/* It is expected not to be sent, and will be overwritten by the fifo fill */
data->int_data.tx_byte = '\0';
config->fsp_api->write(data->fsp_ctrl, &data->int_data.tx_byte, 1);
}
static void uart_rz_sci_irq_tx_disable(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
data->int_data.irq_tx_enable = false;
}
static int uart_rz_sci_irq_tx_ready(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
return data->int_data.irq_tx_enable;
}
static int uart_rz_sci_irq_rx_ready(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
return data->int_data.rx_fifo_busy && data->int_data.irq_rx_enable;
}
static int uart_rz_sci_irq_is_pending(const struct device *dev)
{
return (uart_rz_sci_irq_tx_ready(dev)) || (uart_rz_sci_irq_rx_ready(dev));
}
static void uart_rz_sci_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb,
void *cb_data)
{
struct uart_rz_sci_data *data = dev->data;
data->callback = cb;
data->callback_data = cb_data;
}
static int uart_rz_sci_irq_update(const struct device *dev)
{
ARG_UNUSED(dev);
return 1;
}
static void uart_rz_sci_rxi_isr(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
data->int_data.rx_fifo_busy = true;
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_sci_txi_isr(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_sci_tei_isr(const struct device *dev)
{
struct uart_rz_sci_data *data = dev->data;
SCI_TEI_ISR();
if (data->callback) {
data->callback(dev, data->callback_data);
}
}
static void uart_rz_sci_eri_isr(const struct device *dev)
{
SCI_ERI_ISR();
}
static void uart_rz_sci_event_handler(uart_callback_args_t *p_args)
{
const struct device *dev = (const struct device *)p_args->p_context;
struct uart_rz_sci_data *data = dev->data;
data->int_data.event = p_args->event;
switch (p_args->event) {
case UART_EVENT_RX_CHAR:
data->int_data.rx_byte = p_args->data;
break;
case UART_EVENT_RX_COMPLETE:
break;
case UART_EVENT_TX_DATA_EMPTY:
break;
case UART_EVENT_TX_COMPLETE:
data->fsp_ctrl->p_reg->CCR0_b.TE = 1;
break;
default:
break;
}
}
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
static DEVICE_API(uart, uart_rz_sci_driver_api) = {
.poll_in = uart_rz_sci_poll_in,
.poll_out = uart_rz_sci_poll_out,
.err_check = uart_rz_sci_err_check,
#ifdef CONFIG_UART_USE_RUNTIME_CONFIGURE
.configure = uart_rz_sci_configure,
.config_get = uart_rz_sci_config_get,
#endif
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
.fifo_fill = uart_rz_sci_fifo_fill,
.fifo_read = uart_rz_sci_fifo_read,
.irq_rx_enable = uart_rz_sci_irq_rx_enable,
.irq_rx_disable = uart_rz_sci_irq_rx_disable,
.irq_tx_enable = uart_rz_sci_irq_tx_enable,
.irq_tx_disable = uart_rz_sci_irq_tx_disable,
.irq_tx_ready = uart_rz_sci_irq_tx_ready,
.irq_rx_ready = uart_rz_sci_irq_rx_ready,
.irq_is_pending = uart_rz_sci_irq_is_pending,
.irq_callback_set = uart_rz_sci_irq_callback_set,
.irq_update = uart_rz_sci_irq_update,
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
static int uart_rz_init(const struct device *dev)
{
const struct uart_rz_sci_config *config = dev->config;
struct uart_rz_sci_data *data = dev->data;
int ret;
ret = pinctrl_apply_state(config->pin_config, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
return ret;
}
/* uart_rz_sci_apply_config must be called first before open api */
ret = uart_rz_sci_apply_config(dev);
if (ret < 0) {
return ret;
}
config->fsp_api->open(data->fsp_ctrl, data->fsp_cfg);
return 0;
}
#define SCI_NODE(idx) DT_INST_PARENT(idx)
#ifdef CONFIG_CPU_CORTEX_M
#define GET_IRQ_FLAGS(index, irq_name) 0
#else /* Cortex-A/R */
#define GET_IRQ_FLAGS(index, irq_name) DT_IRQ_BY_NAME(index, irq_name, flags)
#endif
#define UART_RZ_IRQ_CONNECT(n, irq_name, isr) \
do { \
IRQ_CONNECT(DT_IRQ_BY_NAME(SCI_NODE(n), irq_name, irq), \
DT_IRQ_BY_NAME(SCI_NODE(n), irq_name, priority), isr, \
DEVICE_DT_INST_GET(n), GET_IRQ_FLAGS(SCI_NODE(n), irq_name)); \
irq_enable(DT_IRQ_BY_NAME(SCI_NODE(n), irq_name, irq)); \
} while (0)
#define UART_RZ_CONFIG_FUNC(n) \
UART_RZ_IRQ_CONNECT(n, eri, uart_rz_sci_eri_isr); \
UART_RZ_IRQ_CONNECT(n, rxi, uart_rz_sci_rxi_isr); \
UART_RZ_IRQ_CONNECT(n, txi, uart_rz_sci_txi_isr); \
UART_RZ_IRQ_CONNECT(n, tei, uart_rz_sci_tei_isr);
#define UART_RZ_INIT(n) \
static sci_baud_setting_t g_uart##n##_baud_setting; \
static sci_uart_extended_cfg_t g_uart##n##_cfg_extend = { \
.clock = SCI_UART_CLOCK_INT, \
.rx_edge_start = SCI_UART_START_BIT_FALLING_EDGE, \
.noise_cancel = SCI_UART_NOISE_CANCELLATION_ENABLE, \
.rx_fifo_trigger = SCI_UART_RX_FIFO_TRIGGER_MAX, \
.p_baud_setting = &g_uart##n##_baud_setting, \
.flow_control = SCI_UART_FLOW_CONTROL_RTS, \
.flow_control_pin = 0xFF, \
.rs485_setting = \
{ \
.enable = SCI_UART_RS485_DISABLE, \
.polarity = SCI_UART_RS485_DE_POLARITY_HIGH, \
.assertion_time = 1, \
.negation_time = 1, \
}, \
COND_CODE_1(CONFIG_UART_RENESAS_RZ_SCI_B, \
(.half_data_setting = {.enable = 0}), \
(.clock_source = SCI_UART_CLOCK_SOURCE_SCI0ASYNCCLK)) }; \
static uart_cfg_t g_uart##n##_cfg = { \
.channel = DT_PROP(SCI_NODE(n), channel), \
.p_extend = &g_uart##n##_cfg_extend, \
.p_transfer_tx = NULL, \
.p_transfer_rx = NULL, \
.rxi_ipl = DT_IRQ_BY_NAME(SCI_NODE(n), rxi, priority), \
.rxi_irq = DT_IRQ_BY_NAME(SCI_NODE(n), rxi, irq), \
.txi_ipl = DT_IRQ_BY_NAME(SCI_NODE(n), txi, priority), \
.txi_irq = DT_IRQ_BY_NAME(SCI_NODE(n), txi, irq), \
.tei_ipl = DT_IRQ_BY_NAME(SCI_NODE(n), tei, priority), \
.tei_irq = DT_IRQ_BY_NAME(SCI_NODE(n), tei, irq), \
.eri_ipl = DT_IRQ_BY_NAME(SCI_NODE(n), eri, priority), \
.eri_irq = DT_IRQ_BY_NAME(SCI_NODE(n), eri, irq), \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, ( \
.p_callback = uart_rz_sci_event_handler, \
.p_context = (void *)DEVICE_DT_INST_GET(n),)) }; \
PINCTRL_DT_DEFINE(SCI_NODE(n)); \
static struct uart_rz_sci_config uart_rz_config_##n = { \
.pin_config = PINCTRL_DT_DEV_CONFIG_GET(SCI_NODE(n)), \
COND_CODE_1(CONFIG_UART_RENESAS_RZ_SCI_B, \
(.fsp_api = &g_uart_on_sci_b), \
(.fsp_api = &g_uart_on_sci)) }; \
static sci_uart_instance_ctrl_t g_uart##n##_ctrl; \
static struct uart_rz_sci_data uart_rz_sci_data_##n = { \
.fsp_ctrl = &g_uart##n##_ctrl, \
.fsp_cfg = &g_uart##n##_cfg, \
.uart_config = \
{ \
.baudrate = DT_INST_PROP_OR(n, current_speed, 115200), \
.parity = DT_INST_ENUM_IDX_OR(n, parity, UART_CFG_PARITY_NONE), \
.stop_bits = \
DT_INST_ENUM_IDX_OR(n, stop_bits, UART_CFG_STOP_BITS_1), \
.data_bits = \
DT_INST_ENUM_IDX_OR(n, data_bits, UART_CFG_DATA_BITS_8), \
.flow_ctrl = DT_INST_PROP_OR(n, hw_flow_control, \
UART_CFG_FLOW_CTRL_NONE), \
}, \
}; \
static int uart_rz_init_##n(const struct device *dev) \
{ \
IF_ENABLED(CONFIG_UART_INTERRUPT_DRIVEN, \
(UART_RZ_CONFIG_FUNC(n);)) \
return uart_rz_init(dev); \
} \
DEVICE_DT_INST_DEFINE(n, &uart_rz_init_##n, NULL, &uart_rz_sci_data_##n, \
&uart_rz_config_##n, PRE_KERNEL_1, CONFIG_SERIAL_INIT_PRIORITY, \
&uart_rz_sci_driver_api);
DT_INST_FOREACH_STATUS_OKAY(UART_RZ_INIT)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT renesas_rz_sci_b_uart
DT_INST_FOREACH_STATUS_OKAY(UART_RZ_INIT)