blob: 69884308f8f467b65d13a64f4ccdf99e25cdef20 [file] [log] [blame]
/*
* Copyright (c) 2020 Markus Fuchs <markus.fuchs@de.sauter-bc.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <init.h>
#include <kernel.h>
#include <device.h>
#include <sys/__assert.h>
#include <crypto/crypto.h>
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include <sys/byteorder.h>
#include "crypto_stm32_priv.h"
#define LOG_LEVEL CONFIG_CRYPTO_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(crypto_stm32);
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_cryp)
#define DT_DRV_COMPAT st_stm32_cryp
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_aes)
#define DT_DRV_COMPAT st_stm32_aes
#else
#error No STM32 HW Crypto Accelerator in device tree
#endif
#define CRYP_SUPPORT (CAP_RAW_KEY | CAP_SEPARATE_IO_BUFS | CAP_SYNC_OPS | \
CAP_NO_IV_PREFIX)
#define BLOCK_LEN_BYTES 16
#define BLOCK_LEN_WORDS (BLOCK_LEN_BYTES / sizeof(uint32_t))
#define CRYPTO_MAX_SESSION CONFIG_CRYPTO_STM32_MAX_SESSION
#if defined(CRYP_KEYSIZE_192B)
#define STM32_CRYPTO_KEYSIZE_192B_SUPPORT
#endif
#if DT_HAS_COMPAT_STATUS_OKAY(st_stm32_cryp)
#define STM32_RCC_CRYPTO_FORCE_RESET __HAL_RCC_CRYP_FORCE_RESET
#define STM32_RCC_CRYPTO_RELEASE_RESET __HAL_RCC_CRYP_RELEASE_RESET
#define STM32_CRYPTO_TYPEDEF CRYP_TypeDef
#elif DT_HAS_COMPAT_STATUS_OKAY(st_stm32_aes)
#define STM32_RCC_CRYPTO_FORCE_RESET __HAL_RCC_AES_FORCE_RESET
#define STM32_RCC_CRYPTO_RELEASE_RESET __HAL_RCC_AES_RELEASE_RESET
#define STM32_CRYPTO_TYPEDEF AES_TypeDef
#endif
struct crypto_stm32_session crypto_stm32_sessions[CRYPTO_MAX_SESSION];
static void copy_reverse_words(uint8_t *dst_buf, int dst_len,
uint8_t *src_buf, int src_len)
{
int i;
__ASSERT_NO_MSG(dst_len >= src_len);
__ASSERT_NO_MSG((dst_len % 4) == 0);
memcpy(dst_buf, src_buf, src_len);
for (i = 0; i < dst_len; i += sizeof(uint32_t)) {
sys_mem_swap(&dst_buf[i], sizeof(uint32_t));
}
}
static int do_encrypt(struct cipher_ctx *ctx, uint8_t *in_buf, int in_len,
uint8_t *out_buf)
{
HAL_StatusTypeDef status;
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(ctx->device);
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
k_sem_take(&data->device_sem, K_FOREVER);
status = HAL_CRYP_SetConfig(&data->hcryp, &session->config);
if (status != HAL_OK) {
LOG_ERR("Configuration error");
k_sem_give(&data->device_sem);
return -EIO;
}
status = HAL_CRYP_Encrypt(&data->hcryp, (uint32_t *)in_buf, in_len,
(uint32_t *)out_buf, HAL_MAX_DELAY);
if (status != HAL_OK) {
LOG_ERR("Encryption error");
k_sem_give(&data->device_sem);
return -EIO;
}
k_sem_give(&data->device_sem);
return 0;
}
static int do_decrypt(struct cipher_ctx *ctx, uint8_t *in_buf, int in_len,
uint8_t *out_buf)
{
HAL_StatusTypeDef status;
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(ctx->device);
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
k_sem_take(&data->device_sem, K_FOREVER);
status = HAL_CRYP_SetConfig(&data->hcryp, &session->config);
if (status != HAL_OK) {
LOG_ERR("Configuration error");
k_sem_give(&data->device_sem);
return -EIO;
}
status = HAL_CRYP_Decrypt(&data->hcryp, (uint32_t *)in_buf, in_len,
(uint32_t *)out_buf, HAL_MAX_DELAY);
if (status != HAL_OK) {
LOG_ERR("Decryption error");
k_sem_give(&data->device_sem);
return -EIO;
}
k_sem_give(&data->device_sem);
return 0;
}
static int crypto_stm32_ecb_encrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt)
{
int ret;
/* For security reasons, ECB mode should not be used to encrypt
* more than one block. Use CBC mode instead.
*/
if (pkt->in_len > 16) {
LOG_ERR("Cannot encrypt more than 1 block");
return -EINVAL;
}
ret = do_encrypt(ctx, pkt->in_buf, pkt->in_len, pkt->out_buf);
if (ret == 0) {
pkt->out_len = 16;
}
return ret;
}
static int crypto_stm32_ecb_decrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt)
{
int ret;
/* For security reasons, ECB mode should not be used to encrypt
* more than one block. Use CBC mode instead.
*/
if (pkt->in_len > 16) {
LOG_ERR("Cannot encrypt more than 1 block");
return -EINVAL;
}
ret = do_decrypt(ctx, pkt->in_buf, pkt->in_len, pkt->out_buf);
if (ret == 0) {
pkt->out_len = 16;
}
return ret;
}
static int crypto_stm32_cbc_encrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt, uint8_t *iv)
{
int ret;
uint32_t vec[BLOCK_LEN_WORDS];
int out_offset = 0;
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
copy_reverse_words((uint8_t *)vec, sizeof(vec), iv, BLOCK_LEN_BYTES);
session->config.pInitVect = vec;
if ((ctx->flags & CAP_NO_IV_PREFIX) == 0U) {
/* Prefix IV to ciphertext unless CAP_NO_IV_PREFIX is set. */
memcpy(pkt->out_buf, iv, 16);
out_offset = 16;
}
ret = do_encrypt(ctx, pkt->in_buf, pkt->in_len,
pkt->out_buf + out_offset);
if (ret == 0) {
pkt->out_len = pkt->in_len + out_offset;
}
return ret;
}
static int crypto_stm32_cbc_decrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt, uint8_t *iv)
{
int ret;
uint32_t vec[BLOCK_LEN_WORDS];
int in_offset = 0;
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
copy_reverse_words((uint8_t *)vec, sizeof(vec), iv, BLOCK_LEN_BYTES);
session->config.pInitVect = vec;
if ((ctx->flags & CAP_NO_IV_PREFIX) == 0U) {
in_offset = 16;
}
ret = do_decrypt(ctx, pkt->in_buf + in_offset, pkt->in_len,
pkt->out_buf);
if (ret == 0) {
pkt->out_len = pkt->in_len - in_offset;
}
return ret;
}
static int crypto_stm32_ctr_encrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt, uint8_t *iv)
{
int ret;
uint32_t ctr[BLOCK_LEN_WORDS] = {0};
int ivlen = ctx->keylen - (ctx->mode_params.ctr_info.ctr_len >> 3);
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
copy_reverse_words((uint8_t *)ctr, sizeof(ctr), iv, ivlen);
session->config.pInitVect = ctr;
ret = do_encrypt(ctx, pkt->in_buf, pkt->in_len, pkt->out_buf);
if (ret == 0) {
pkt->out_len = pkt->in_len;
}
return ret;
}
static int crypto_stm32_ctr_decrypt(struct cipher_ctx *ctx,
struct cipher_pkt *pkt, uint8_t *iv)
{
int ret;
uint32_t ctr[BLOCK_LEN_WORDS] = {0};
int ivlen = ctx->keylen - (ctx->mode_params.ctr_info.ctr_len >> 3);
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
copy_reverse_words((uint8_t *)ctr, sizeof(ctr), iv, ivlen);
session->config.pInitVect = ctr;
ret = do_decrypt(ctx, pkt->in_buf, pkt->in_len, pkt->out_buf);
if (ret == 0) {
pkt->out_len = pkt->in_len;
}
return ret;
}
static int crypto_stm32_get_unused_session_index(const struct device *dev)
{
int i;
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
k_sem_take(&data->session_sem, K_FOREVER);
for (i = 0; i < CRYPTO_MAX_SESSION; i++) {
if (!crypto_stm32_sessions[i].in_use) {
crypto_stm32_sessions[i].in_use = true;
k_sem_give(&data->session_sem);
return i;
}
}
k_sem_give(&data->session_sem);
return -1;
}
static int crypto_stm32_session_setup(const struct device *dev,
struct cipher_ctx *ctx,
enum cipher_algo algo,
enum cipher_mode mode,
enum cipher_op op_type)
{
int ctx_idx;
struct crypto_stm32_session *session;
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
if (ctx->flags & ~(CRYP_SUPPORT)) {
LOG_ERR("Unsupported flag");
return -EINVAL;
}
if (algo != CRYPTO_CIPHER_ALGO_AES) {
LOG_ERR("Unsupported algo");
return -EINVAL;
}
/* The CRYP peripheral supports the AES ECB, CBC, CTR, CCM and GCM
* modes of operation, of which ECB, CBC, CTR and CCM are supported
* through the crypto API. However, in CCM mode, although the STM32Cube
* HAL driver follows the documentation (cf. RM0090, par. 23.3) by
* padding incomplete input data blocks in software prior encryption,
* incorrect authentication tags are returned for input data which is
* not a multiple of 128 bits. Therefore, CCM mode is not supported by
* this driver.
*/
if ((mode != CRYPTO_CIPHER_MODE_ECB) &&
(mode != CRYPTO_CIPHER_MODE_CBC) &&
(mode != CRYPTO_CIPHER_MODE_CTR)) {
LOG_ERR("Unsupported mode");
return -EINVAL;
}
/* The STM32F4 CRYP peripheral supports key sizes of 128, 192 and 256
* bits.
*/
if ((ctx->keylen != 16U) &&
#if defined(STM32_CRYPTO_KEYSIZE_192B_SUPPORT)
(ctx->keylen != 24U) &&
#endif
(ctx->keylen != 32U)) {
LOG_ERR("%u key size is not supported", ctx->keylen);
return -EINVAL;
}
ctx_idx = crypto_stm32_get_unused_session_index(dev);
if (ctx_idx < 0) {
LOG_ERR("No free session for now");
return -ENOSPC;
}
session = &crypto_stm32_sessions[ctx_idx];
memset(&session->config, 0, sizeof(session->config));
if (data->hcryp.State == HAL_CRYP_STATE_RESET) {
if (HAL_CRYP_Init(&data->hcryp) != HAL_OK) {
LOG_ERR("Initialization error");
session->in_use = false;
return -EIO;
}
}
switch (ctx->keylen) {
case 16U:
session->config.KeySize = CRYP_KEYSIZE_128B;
break;
#if defined(STM32_CRYPTO_KEYSIZE_192B_SUPPORT)
case 24U:
session->config.KeySize = CRYP_KEYSIZE_192B;
break;
#endif
case 32U:
session->config.KeySize = CRYP_KEYSIZE_256B;
break;
}
if (op_type == CRYPTO_CIPHER_OP_ENCRYPT) {
switch (mode) {
case CRYPTO_CIPHER_MODE_ECB:
session->config.Algorithm = CRYP_AES_ECB;
ctx->ops.block_crypt_hndlr = crypto_stm32_ecb_encrypt;
break;
case CRYPTO_CIPHER_MODE_CBC:
session->config.Algorithm = CRYP_AES_CBC;
ctx->ops.cbc_crypt_hndlr = crypto_stm32_cbc_encrypt;
break;
case CRYPTO_CIPHER_MODE_CTR:
session->config.Algorithm = CRYP_AES_CTR;
ctx->ops.ctr_crypt_hndlr = crypto_stm32_ctr_encrypt;
break;
default:
break;
}
} else {
switch (mode) {
case CRYPTO_CIPHER_MODE_ECB:
session->config.Algorithm = CRYP_AES_ECB;
ctx->ops.block_crypt_hndlr = crypto_stm32_ecb_decrypt;
break;
case CRYPTO_CIPHER_MODE_CBC:
session->config.Algorithm = CRYP_AES_CBC;
ctx->ops.cbc_crypt_hndlr = crypto_stm32_cbc_decrypt;
break;
case CRYPTO_CIPHER_MODE_CTR:
session->config.Algorithm = CRYP_AES_CTR;
ctx->ops.ctr_crypt_hndlr = crypto_stm32_ctr_decrypt;
break;
default:
break;
}
}
copy_reverse_words((uint8_t *)session->key, CRYPTO_STM32_AES_MAX_KEY_LEN,
ctx->key.bit_stream, ctx->keylen);
session->config.pKey = session->key;
session->config.DataType = CRYP_DATATYPE_8B;
session->config.DataWidthUnit = CRYP_DATAWIDTHUNIT_BYTE;
ctx->drv_sessn_state = session;
ctx->device = dev;
return 0;
}
static int crypto_stm32_session_free(const struct device *dev,
struct cipher_ctx *ctx)
{
int i;
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
struct crypto_stm32_session *session = CRYPTO_STM32_SESSN(ctx);
session->in_use = false;
k_sem_take(&data->session_sem, K_FOREVER);
/* Disable peripheral only if there are no more active sessions. */
for (i = 0; i < CRYPTO_MAX_SESSION; i++) {
if (crypto_stm32_sessions[i].in_use) {
k_sem_give(&data->session_sem);
return 0;
}
}
/* Deinitialize and reset peripheral. */
if (HAL_CRYP_DeInit(&data->hcryp) != HAL_OK) {
LOG_ERR("Deinitialization error");
k_sem_give(&data->session_sem);
return -EIO;
}
STM32_RCC_CRYPTO_FORCE_RESET();
STM32_RCC_CRYPTO_RELEASE_RESET();
k_sem_give(&data->session_sem);
return 0;
}
static int crypto_stm32_query_caps(const struct device *dev)
{
return CRYP_SUPPORT;
}
static int crypto_stm32_init(const struct device *dev)
{
const struct device *clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE);
struct crypto_stm32_data *data = CRYPTO_STM32_DATA(dev);
const struct crypto_stm32_config *cfg = CRYPTO_STM32_CFG(dev);
if (clock_control_on(clk, (clock_control_subsys_t *)&cfg->pclken) != 0) {
LOG_ERR("clock op failed\n");
return -EIO;
}
k_sem_init(&data->device_sem, 1, 1);
k_sem_init(&data->session_sem, 1, 1);
if (HAL_CRYP_DeInit(&data->hcryp) != HAL_OK) {
LOG_ERR("Peripheral reset error");
return -EIO;
}
return 0;
}
static struct crypto_driver_api crypto_enc_funcs = {
.cipher_begin_session = crypto_stm32_session_setup,
.cipher_free_session = crypto_stm32_session_free,
.cipher_async_callback_set = NULL,
.query_hw_caps = crypto_stm32_query_caps,
};
static struct crypto_stm32_data crypto_stm32_dev_data = {
.hcryp = {
.Instance = (STM32_CRYPTO_TYPEDEF *)DT_INST_REG_ADDR(0),
}
};
static struct crypto_stm32_config crypto_stm32_dev_config = {
.pclken = {
.enr = DT_INST_CLOCKS_CELL(0, bits),
.bus = DT_INST_CLOCKS_CELL(0, bus)
}
};
DEVICE_DT_INST_DEFINE(0, crypto_stm32_init, NULL,
&crypto_stm32_dev_data,
&crypto_stm32_dev_config, POST_KERNEL,
CONFIG_CRYPTO_INIT_PRIORITY, (void *)&crypto_enc_funcs);