blob: 92c49c122e98c788197b163cb2c0e5fda627baee [file] [log] [blame]
/*
* Copyright (c) 2015, Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/arch/cpu.h>
#include <errno.h>
#include <stdio.h>
#include <malloc.h>
#include <zephyr/sys/__assert.h>
#include <sys/stat.h>
#include <zephyr/linker/linker-defs.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/errno_private.h>
#include <zephyr/sys/heap_listener.h>
#include <zephyr/sys/libc-hooks.h>
#include <zephyr/syscall_handler.h>
#include <zephyr/app_memory/app_memdomain.h>
#include <zephyr/init.h>
#include <zephyr/sys/sem.h>
#include <zephyr/sys/mutex.h>
#include <zephyr/sys/mem_manage.h>
#include <sys/time.h>
#define LIBC_BSS K_APP_BMEM(z_libc_partition)
#define LIBC_DATA K_APP_DMEM(z_libc_partition)
/*
* End result of this thorny set of ifdefs is to define:
*
* - HEAP_BASE base address of the heap arena
* - MAX_HEAP_SIZE size of the heap arena
*/
#ifdef CONFIG_MMU
#ifdef CONFIG_USERSPACE
struct k_mem_partition z_malloc_partition;
#endif
LIBC_BSS static unsigned char *heap_base;
LIBC_BSS static size_t max_heap_size;
#define HEAP_BASE heap_base
#define MAX_HEAP_SIZE max_heap_size
#define USE_MALLOC_PREPARE 1
#elif CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
/* Arena size expressed in Kconfig, due to power-of-two size/align
* requirements of certain MPUs.
*
* We use an automatic memory partition instead of setting this up
* in malloc_prepare().
*/
K_APPMEM_PARTITION_DEFINE(z_malloc_partition);
#define MALLOC_BSS K_APP_BMEM(z_malloc_partition)
/* Compiler will throw an error if the provided value isn't a
* power of two
*/
MALLOC_BSS static unsigned char
__aligned(CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE)
heap_base[CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE];
#define MAX_HEAP_SIZE CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE
#define HEAP_BASE heap_base
#else /* Not MMU or CONFIG_NEWLIB_LIBC_ALIGNED_HEAP_SIZE */
#define USED_RAM_END_ADDR POINTER_TO_UINT(&_end)
#ifdef Z_MALLOC_PARTITION_EXISTS
/* Start of malloc arena needs to be aligned per MPU
* requirements
*/
struct k_mem_partition z_malloc_partition;
#if defined(CONFIG_ARM) || defined(CONFIG_ARM64)
#define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \
CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE)
#elif defined(CONFIG_ARC)
#define HEAP_BASE ROUND_UP(USED_RAM_END_ADDR, \
Z_ARC_MPU_ALIGN)
#else
#error "Unsupported platform"
#endif /* CONFIG_<arch> */
#define USE_MALLOC_PREPARE 1
#else
/* End of kernel image */
#define HEAP_BASE USED_RAM_END_ADDR
#endif
/* End of the malloc arena is the end of physical memory */
#if defined(CONFIG_XTENSA)
/* TODO: Why is xtensa a special case? */
extern char _heap_sentry[];
#define MAX_HEAP_SIZE (POINTER_TO_UINT(&_heap_sentry) - \
HEAP_BASE)
#else
#define MAX_HEAP_SIZE (KB(CONFIG_SRAM_SIZE) - (HEAP_BASE - \
CONFIG_SRAM_BASE_ADDRESS))
#endif /* CONFIG_XTENSA */
#endif
static int malloc_prepare(const struct device *unused)
{
ARG_UNUSED(unused);
#ifdef USE_MALLOC_PREPARE
#ifdef CONFIG_MMU
max_heap_size = MIN(CONFIG_NEWLIB_LIBC_MAX_MAPPED_REGION_SIZE,
k_mem_free_get());
if (max_heap_size != 0) {
heap_base = k_mem_map(max_heap_size, K_MEM_PERM_RW);
__ASSERT(heap_base != NULL,
"failed to allocate heap of size %zu", max_heap_size);
}
#endif /* CONFIG_MMU */
#ifdef Z_MALLOC_PARTITION_EXISTS
z_malloc_partition.start = (uintptr_t)HEAP_BASE;
z_malloc_partition.size = (size_t)MAX_HEAP_SIZE;
z_malloc_partition.attr = K_MEM_PARTITION_P_RW_U_RW;
#endif /* Z_MALLOC_PARTITION_EXISTS */
#endif /* USE_MALLOC_PREPARE */
/*
* Validate that the memory space available for the newlib heap is
* greater than the minimum required size.
*/
__ASSERT(MAX_HEAP_SIZE >= CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE,
"memory space available for newlib heap is less than the "
"minimum required size specified by "
"CONFIG_NEWLIB_LIBC_MIN_REQUIRED_HEAP_SIZE");
return 0;
}
SYS_INIT(malloc_prepare, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
/* Current offset from HEAP_BASE of unused memory */
LIBC_BSS static size_t heap_sz;
static int _stdout_hook_default(int c)
{
(void)(c); /* Prevent warning about unused argument */
return EOF;
}
static int (*_stdout_hook)(int) = _stdout_hook_default;
void __stdout_hook_install(int (*hook)(int))
{
_stdout_hook = hook;
}
static unsigned char _stdin_hook_default(void)
{
return 0;
}
static unsigned char (*_stdin_hook)(void) = _stdin_hook_default;
void __stdin_hook_install(unsigned char (*hook)(void))
{
_stdin_hook = hook;
}
int z_impl_zephyr_read_stdin(char *buf, int nbytes)
{
int i = 0;
for (i = 0; i < nbytes; i++) {
*(buf + i) = _stdin_hook();
if ((*(buf + i) == '\n') || (*(buf + i) == '\r')) {
i++;
break;
}
}
return i;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zephyr_read_stdin(char *buf, int nbytes)
{
Z_OOPS(Z_SYSCALL_MEMORY_WRITE(buf, nbytes));
return z_impl_zephyr_read_stdin((char *)buf, nbytes);
}
#include <syscalls/zephyr_read_stdin_mrsh.c>
#endif
int z_impl_zephyr_write_stdout(const void *buffer, int nbytes)
{
const char *buf = buffer;
int i;
for (i = 0; i < nbytes; i++) {
if (*(buf + i) == '\n') {
_stdout_hook('\r');
}
_stdout_hook(*(buf + i));
}
return nbytes;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_zephyr_write_stdout(const void *buf, int nbytes)
{
Z_OOPS(Z_SYSCALL_MEMORY_READ(buf, nbytes));
return z_impl_zephyr_write_stdout((const void *)buf, nbytes);
}
#include <syscalls/zephyr_write_stdout_mrsh.c>
#endif
#ifndef CONFIG_POSIX_API
int _read(int fd, char *buf, int nbytes)
{
ARG_UNUSED(fd);
return zephyr_read_stdin(buf, nbytes);
}
__weak FUNC_ALIAS(_read, read, int);
int _write(int fd, const void *buf, int nbytes)
{
ARG_UNUSED(fd);
return zephyr_write_stdout(buf, nbytes);
}
__weak FUNC_ALIAS(_write, write, int);
int _open(const char *name, int mode)
{
return -1;
}
__weak FUNC_ALIAS(_open, open, int);
int _close(int file)
{
return -1;
}
__weak FUNC_ALIAS(_close, close, int);
int _lseek(int file, int ptr, int dir)
{
return 0;
}
__weak FUNC_ALIAS(_lseek, lseek, int);
#else
extern ssize_t write(int file, const char *buffer, size_t count);
#define _write write
#endif
int _isatty(int file)
{
return file <= 2;
}
__weak FUNC_ALIAS(_isatty, isatty, int);
int _kill(int i, int j)
{
return 0;
}
__weak FUNC_ALIAS(_kill, kill, int);
int _getpid(void)
{
return 0;
}
__weak FUNC_ALIAS(_getpid, getpid, int);
int _fstat(int file, struct stat *st)
{
st->st_mode = S_IFCHR;
return 0;
}
__weak FUNC_ALIAS(_fstat, fstat, int);
__weak void _exit(int status)
{
_write(1, "exit\n", 5);
while (1) {
;
}
}
void *_sbrk(intptr_t count)
{
void *ret, *ptr;
ptr = ((char *)HEAP_BASE) + heap_sz;
if ((heap_sz + count) < MAX_HEAP_SIZE) {
heap_sz += count;
ret = ptr;
#ifdef CONFIG_NEWLIB_LIBC_HEAP_LISTENER
heap_listener_notify_resize(HEAP_ID_LIBC, ptr, (char *)ptr + count);
#endif
} else {
ret = (void *)-1;
}
return ret;
}
__weak FUNC_ALIAS(_sbrk, sbrk, void *);
#ifdef CONFIG_MULTITHREADING
/* Make sure _RETARGETABLE_LOCKING is enabled in toolchain */
BUILD_ASSERT(IS_ENABLED(_RETARGETABLE_LOCKING), "Retargetable locking must be enabled");
/*
* Newlib Retargetable Locking Interface Implementation
*
* When multithreading is enabled, the newlib retargetable locking interface is
* defined below to override the default void implementation and provide the
* Zephyr-side locks.
*
* NOTE: `k_mutex` and `k_sem` are used instead of `sys_mutex` and `sys_sem`
* because the latter do not support dynamic allocation for now.
*/
/* Static locks */
K_MUTEX_DEFINE(__lock___sinit_recursive_mutex);
K_MUTEX_DEFINE(__lock___sfp_recursive_mutex);
K_MUTEX_DEFINE(__lock___atexit_recursive_mutex);
K_MUTEX_DEFINE(__lock___malloc_recursive_mutex);
K_MUTEX_DEFINE(__lock___env_recursive_mutex);
K_SEM_DEFINE(__lock___at_quick_exit_mutex, 1, 1);
K_SEM_DEFINE(__lock___tz_mutex, 1, 1);
K_SEM_DEFINE(__lock___dd_hash_mutex, 1, 1);
K_SEM_DEFINE(__lock___arc4random_mutex, 1, 1);
#ifdef CONFIG_USERSPACE
/* Grant public access to all static locks after boot */
static int newlib_locks_prepare(const struct device *unused)
{
ARG_UNUSED(unused);
/* Initialise recursive locks */
k_object_access_all_grant(&__lock___sinit_recursive_mutex);
k_object_access_all_grant(&__lock___sfp_recursive_mutex);
k_object_access_all_grant(&__lock___atexit_recursive_mutex);
k_object_access_all_grant(&__lock___malloc_recursive_mutex);
k_object_access_all_grant(&__lock___env_recursive_mutex);
/* Initialise non-recursive locks */
k_object_access_all_grant(&__lock___at_quick_exit_mutex);
k_object_access_all_grant(&__lock___tz_mutex);
k_object_access_all_grant(&__lock___dd_hash_mutex);
k_object_access_all_grant(&__lock___arc4random_mutex);
return 0;
}
SYS_INIT(newlib_locks_prepare, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEFAULT);
#endif /* CONFIG_USERSPACE */
/* Create a new dynamic non-recursive lock */
void __retarget_lock_init(_LOCK_T *lock)
{
__ASSERT_NO_MSG(lock != NULL);
/* Allocate semaphore object */
#ifndef CONFIG_USERSPACE
*lock = malloc(sizeof(struct k_sem));
#else
*lock = k_object_alloc(K_OBJ_SEM);
#endif /* !CONFIG_USERSPACE */
__ASSERT(*lock != NULL, "non-recursive lock allocation failed");
k_sem_init((struct k_sem *)*lock, 1, 1);
}
/* Create a new dynamic recursive lock */
void __retarget_lock_init_recursive(_LOCK_T *lock)
{
__ASSERT_NO_MSG(lock != NULL);
/* Allocate mutex object */
#ifndef CONFIG_USERSPACE
*lock = malloc(sizeof(struct k_mutex));
#else
*lock = k_object_alloc(K_OBJ_MUTEX);
#endif /* !CONFIG_USERSPACE */
__ASSERT(*lock != NULL, "recursive lock allocation failed");
k_mutex_init((struct k_mutex *)*lock);
}
/* Close dynamic non-recursive lock */
void __retarget_lock_close(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
#ifndef CONFIG_USERSPACE
free(lock);
#else
k_object_release(lock);
#endif /* !CONFIG_USERSPACE */
}
/* Close dynamic recursive lock */
void __retarget_lock_close_recursive(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
#ifndef CONFIG_USERSPACE
free(lock);
#else
k_object_release(lock);
#endif /* !CONFIG_USERSPACE */
}
/* Acquiure non-recursive lock */
void __retarget_lock_acquire(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
k_sem_take((struct k_sem *)lock, K_FOREVER);
}
/* Acquiure recursive lock */
void __retarget_lock_acquire_recursive(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
k_mutex_lock((struct k_mutex *)lock, K_FOREVER);
}
/* Try acquiring non-recursive lock */
int __retarget_lock_try_acquire(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
return !k_sem_take((struct k_sem *)lock, K_NO_WAIT);
}
/* Try acquiring recursive lock */
int __retarget_lock_try_acquire_recursive(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
return !k_mutex_lock((struct k_mutex *)lock, K_NO_WAIT);
}
/* Release non-recursive lock */
void __retarget_lock_release(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
k_sem_give((struct k_sem *)lock);
}
/* Release recursive lock */
void __retarget_lock_release_recursive(_LOCK_T lock)
{
__ASSERT_NO_MSG(lock != NULL);
k_mutex_unlock((struct k_mutex *)lock);
}
#endif /* CONFIG_MULTITHREADING */
__weak int *__errno(void)
{
return z_errno();
}
/* This function gets called if static buffer overflow detection is enabled
* on stdlib side (Newlib here), in case such an overflow is detected. Newlib
* provides an implementation not suitable for us, so we override it here.
*/
__weak FUNC_NORETURN void __chk_fail(void)
{
static const char chk_fail_msg[] = "* buffer overflow detected *\n";
_write(2, chk_fail_msg, sizeof(chk_fail_msg) - 1);
k_oops();
CODE_UNREACHABLE;
}
#if CONFIG_XTENSA
extern int _read(int fd, char *buf, int nbytes);
extern int _open(const char *name, int mode);
extern int _close(int file);
extern int _lseek(int file, int ptr, int dir);
/* The Newlib in xtensa toolchain has a few missing functions for the
* reentrant versions of the syscalls.
*/
_ssize_t _read_r(struct _reent *r, int fd, void *buf, size_t nbytes)
{
ARG_UNUSED(r);
return _read(fd, (char *)buf, nbytes);
}
_ssize_t _write_r(struct _reent *r, int fd, const void *buf, size_t nbytes)
{
ARG_UNUSED(r);
return _write(fd, buf, nbytes);
}
int _open_r(struct _reent *r, const char *name, int flags, int mode)
{
ARG_UNUSED(r);
ARG_UNUSED(flags);
return _open(name, mode);
}
int _close_r(struct _reent *r, int file)
{
ARG_UNUSED(r);
return _close(file);
}
_off_t _lseek_r(struct _reent *r, int file, _off_t ptr, int dir)
{
ARG_UNUSED(r);
return _lseek(file, ptr, dir);
}
int _isatty_r(struct _reent *r, int file)
{
ARG_UNUSED(r);
return _isatty(file);
}
int _kill_r(struct _reent *r, int i, int j)
{
ARG_UNUSED(r);
return _kill(i, j);
}
int _getpid_r(struct _reent *r)
{
ARG_UNUSED(r);
return _getpid();
}
int _fstat_r(struct _reent *r, int file, struct stat *st)
{
ARG_UNUSED(r);
return _fstat(file, st);
}
void _exit_r(struct _reent *r, int status)
{
ARG_UNUSED(r);
_exit(status);
}
void *_sbrk_r(struct _reent *r, int count)
{
ARG_UNUSED(r);
return _sbrk(count);
}
#endif /* CONFIG_XTENSA */
int _gettimeofday(struct timeval *__tp, void *__tzp)
{
#ifdef CONFIG_POSIX_CLOCK
return gettimeofday(__tp, __tzp);
#else
/* Non-posix systems should not call gettimeofday() here as it will
* result in a recursive call loop and result in a stack overflow.
*/
return -1;
#endif
}