blob: 545adaff6671565890f84de6cef318fb5446f6f7 [file] [log] [blame]
/* ieee802154_nrf5.c - nRF5 802.15.4 driver */
/*
* Copyright (c) 2017 Nordic Semiconductor ASA
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nordic_nrf_ieee802154
#define LOG_MODULE_NAME ieee802154_nrf5
#if defined(CONFIG_IEEE802154_DRIVER_LOG_LEVEL)
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#else
#define LOG_LEVEL LOG_LEVEL_NONE
#endif
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/debug/stack.h>
#include <soc.h>
#include <soc_secure.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/debug/stack.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#if defined(CONFIG_NET_L2_OPENTHREAD)
#include <zephyr/net/openthread.h>
#endif
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/random/rand32.h>
#include <zephyr/net/ieee802154_radio.h>
#include <zephyr/irq.h>
#include "ieee802154_nrf5.h"
#include "nrf_802154.h"
#include "nrf_802154_const.h"
#if defined(CONFIG_NRF_802154_SER_HOST)
#include "nrf_802154_serialization_error.h"
#endif
struct nrf5_802154_config {
void (*irq_config_func)(const struct device *dev);
};
static struct nrf5_802154_data nrf5_data;
#define ACK_REQUEST_BYTE 1
#define ACK_REQUEST_BIT (1 << 5)
#define FRAME_PENDING_BYTE 1
#define FRAME_PENDING_BIT (1 << 4)
#define DRX_SLOT_RX 0 /* Delayed reception window ID */
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#if defined(CONFIG_SOC_NRF5340_CPUAPP)
#if defined(CONFIG_TRUSTED_EXECUTION_NONSECURE)
#error "NRF_UICR->OTP is not supported to read from non-secure"
#else
#define EUI64_ADDR (NRF_UICR->OTP)
#endif /* CONFIG_TRUSTED_EXECUTION_NONSECURE */
#else
#define EUI64_ADDR (NRF_UICR->CUSTOMER)
#endif /* CONFIG_SOC_NRF5340_CPUAPP */
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
#if defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
#define EUI64_ADDR_HIGH CONFIG_IEEE802154_NRF5_UICR_EUI64_REG
#define EUI64_ADDR_LOW (CONFIG_IEEE802154_NRF5_UICR_EUI64_REG + 1)
#else
#define EUI64_ADDR_HIGH 0
#define EUI64_ADDR_LOW 1
#endif /* CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE */
/* Convenience defines for RADIO */
#define NRF5_802154_DATA(dev) \
((struct nrf5_802154_data * const)(dev)->data)
#define NRF5_802154_CFG(dev) \
((const struct nrf5_802154_config * const)(dev)->config)
#if CONFIG_IEEE802154_VENDOR_OUI_ENABLE
#define IEEE802154_NRF5_VENDOR_OUI CONFIG_IEEE802154_VENDOR_OUI
#else
#define IEEE802154_NRF5_VENDOR_OUI (uint32_t)0xF4CE36
#endif
static void nrf5_get_eui64(uint8_t *mac)
{
uint64_t factoryAddress;
uint32_t index = 0;
#if !defined(CONFIG_IEEE802154_NRF5_UICR_EUI64_ENABLE)
uint32_t deviceid[2];
/* Set the MAC Address Block Larger (MA-L) formerly called OUI. */
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 16) & 0xff;
mac[index++] = (IEEE802154_NRF5_VENDOR_OUI >> 8) & 0xff;
mac[index++] = IEEE802154_NRF5_VENDOR_OUI & 0xff;
soc_secure_read_deviceid(deviceid);
factoryAddress = (uint64_t)deviceid[EUI64_ADDR_HIGH] << 32;
factoryAddress |= deviceid[EUI64_ADDR_LOW];
#else
/* Use device identifier assigned during the production. */
factoryAddress = (uint64_t)EUI64_ADDR[EUI64_ADDR_HIGH] << 32;
factoryAddress |= EUI64_ADDR[EUI64_ADDR_LOW];
#endif
memcpy(mac + index, &factoryAddress, sizeof(factoryAddress) - index);
}
static void nrf5_rx_thread(void *arg1, void *arg2, void *arg3)
{
struct nrf5_802154_data *nrf5_radio = (struct nrf5_802154_data *)arg1;
struct net_pkt *pkt;
struct nrf5_802154_rx_frame *rx_frame;
uint8_t pkt_len;
uint8_t *psdu;
ARG_UNUSED(arg2);
ARG_UNUSED(arg3);
while (1) {
pkt = NULL;
rx_frame = NULL;
LOG_DBG("Waiting for frame");
rx_frame = k_fifo_get(&nrf5_radio->rx_fifo, K_FOREVER);
__ASSERT_NO_MSG(rx_frame->psdu);
/* rx_mpdu contains length, psdu, fcs|lqi
* The last 2 bytes contain LQI or FCS, depending if
* automatic CRC handling is enabled or not, respectively.
*/
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
pkt_len = rx_frame->psdu[0];
} else {
pkt_len = rx_frame->psdu[0] - NRF5_FCS_LENGTH;
}
#if defined(CONFIG_NET_BUF_DATA_SIZE)
__ASSERT_NO_MSG(pkt_len <= CONFIG_NET_BUF_DATA_SIZE);
#endif
LOG_DBG("Frame received");
/* Block the RX thread until net_pkt is available, so that we
* don't drop already ACKed frame in case of temporary net_pkt
* scarcity. The nRF 802154 radio driver will accumulate any
* incoming frames until it runs out of internal buffers (and
* thus stops acknowledging consecutive frames).
*/
pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, pkt_len,
AF_UNSPEC, 0, K_FOREVER);
if (net_pkt_write(pkt, rx_frame->psdu + 1, pkt_len)) {
goto drop;
}
net_pkt_set_ieee802154_lqi(pkt, rx_frame->lqi);
net_pkt_set_ieee802154_rssi(pkt, rx_frame->rssi);
net_pkt_set_ieee802154_ack_fpb(pkt, rx_frame->ack_fpb);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
struct net_ptp_time timestamp = {
.second = rx_frame->time / USEC_PER_SEC,
.nanosecond =
(rx_frame->time % USEC_PER_SEC) * NSEC_PER_USEC
};
net_pkt_set_timestamp(pkt, &timestamp);
#endif
LOG_DBG("Caught a packet (%u) (LQI: %u)",
pkt_len, rx_frame->lqi);
if (net_recv_data(nrf5_radio->iface, pkt) < 0) {
LOG_ERR("Packet dropped by NET stack");
goto drop;
}
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
if (LOG_LEVEL >= LOG_LEVEL_DBG) {
log_stack_usage(&nrf5_radio->rx_thread);
}
continue;
drop:
psdu = rx_frame->psdu;
rx_frame->psdu = NULL;
nrf_802154_buffer_free_raw(psdu);
net_pkt_unref(pkt);
}
}
static void nrf5_get_capabilities_at_boot(void)
{
nrf_802154_capabilities_t caps = nrf_802154_capabilities_get();
nrf5_data.capabilities =
IEEE802154_HW_FCS |
IEEE802154_HW_PROMISC |
IEEE802154_HW_FILTER |
((caps & NRF_802154_CAPABILITY_CSMA) ? IEEE802154_HW_CSMA : 0UL) |
IEEE802154_HW_2_4_GHZ |
IEEE802154_HW_TX_RX_ACK |
IEEE802154_HW_ENERGY_SCAN |
((caps & NRF_802154_CAPABILITY_DELAYED_TX) ? IEEE802154_HW_TXTIME : 0UL) |
((caps & NRF_802154_CAPABILITY_DELAYED_RX) ? IEEE802154_HW_RXTIME : 0UL) |
IEEE802154_HW_SLEEP_TO_TX |
((caps & NRF_802154_CAPABILITY_SECURITY) ? IEEE802154_HW_TX_SEC : 0UL);
}
/* Radio device API */
static enum ieee802154_hw_caps nrf5_get_capabilities(const struct device *dev)
{
return nrf5_data.capabilities;
}
static int nrf5_cca(const struct device *dev)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
if (!nrf_802154_cca()) {
LOG_DBG("CCA failed");
return -EBUSY;
}
/* The nRF driver guarantees that a callback will be called once
* the CCA function is done, thus unlocking the semaphore.
*/
k_sem_take(&nrf5_radio->cca_wait, K_FOREVER);
LOG_DBG("Channel free? %d", nrf5_radio->channel_free);
return nrf5_radio->channel_free ? 0 : -EBUSY;
}
static int nrf5_set_channel(const struct device *dev, uint16_t channel)
{
ARG_UNUSED(dev);
LOG_DBG("%u", channel);
if (channel < 11 || channel > 26) {
return -EINVAL;
}
nrf_802154_channel_set(channel);
return 0;
}
static int nrf5_energy_scan_start(const struct device *dev,
uint16_t duration,
energy_scan_done_cb_t done_cb)
{
int err = 0;
ARG_UNUSED(dev);
if (nrf5_data.energy_scan_done == NULL) {
nrf5_data.energy_scan_done = done_cb;
if (nrf_802154_energy_detection(duration * 1000) == false) {
nrf5_data.energy_scan_done = NULL;
err = -EPERM;
}
} else {
err = -EALREADY;
}
return err;
}
static int nrf5_set_pan_id(const struct device *dev, uint16_t pan_id)
{
uint8_t pan_id_le[2];
ARG_UNUSED(dev);
sys_put_le16(pan_id, pan_id_le);
nrf_802154_pan_id_set(pan_id_le);
LOG_DBG("0x%x", pan_id);
return 0;
}
static int nrf5_set_short_addr(const struct device *dev, uint16_t short_addr)
{
uint8_t short_addr_le[2];
ARG_UNUSED(dev);
sys_put_le16(short_addr, short_addr_le);
nrf_802154_short_address_set(short_addr_le);
LOG_DBG("0x%x", short_addr);
return 0;
}
static int nrf5_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
ARG_UNUSED(dev);
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
nrf_802154_extended_address_set(ieee_addr);
return 0;
}
static int nrf5_filter(const struct device *dev, bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return nrf5_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return nrf5_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return nrf5_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int nrf5_set_txpower(const struct device *dev, int16_t dbm)
{
ARG_UNUSED(dev);
LOG_DBG("%d", dbm);
nrf_802154_tx_power_set(dbm);
return 0;
}
static int handle_ack(struct nrf5_802154_data *nrf5_radio)
{
uint8_t ack_len;
struct net_pkt *ack_pkt;
int err = 0;
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_FCS_IN_LENGTH)) {
ack_len = nrf5_radio->ack_frame.psdu[0];
} else {
ack_len = nrf5_radio->ack_frame.psdu[0] - NRF5_FCS_LENGTH;
}
ack_pkt = net_pkt_rx_alloc_with_buffer(nrf5_radio->iface, ack_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!ack_pkt) {
LOG_ERR("No free packet available.");
err = -ENOMEM;
goto free_nrf_ack;
}
/* Upper layers expect the frame to start at the MAC header, skip the
* PHY header (1 byte).
*/
if (net_pkt_write(ack_pkt, nrf5_radio->ack_frame.psdu + 1,
ack_len) < 0) {
LOG_ERR("Failed to write to a packet.");
err = -ENOMEM;
goto free_net_ack;
}
net_pkt_set_ieee802154_lqi(ack_pkt, nrf5_radio->ack_frame.lqi);
net_pkt_set_ieee802154_rssi(ack_pkt, nrf5_radio->ack_frame.rssi);
#if defined(CONFIG_NET_PKT_TIMESTAMP)
struct net_ptp_time timestamp = {
.second = nrf5_radio->ack_frame.time / USEC_PER_SEC,
.nanosecond = (nrf5_radio->ack_frame.time % USEC_PER_SEC) * NSEC_PER_USEC
};
net_pkt_set_timestamp(ack_pkt, &timestamp);
#endif
net_pkt_cursor_init(ack_pkt);
if (ieee802154_radio_handle_ack(nrf5_radio->iface, ack_pkt) != NET_OK) {
LOG_INF("ACK packet not handled - releasing.");
}
free_net_ack:
net_pkt_unref(ack_pkt);
free_nrf_ack:
nrf_802154_buffer_free_raw(nrf5_radio->ack_frame.psdu);
nrf5_radio->ack_frame.psdu = NULL;
return err;
}
static void nrf5_tx_started(const struct device *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
ARG_UNUSED(pkt);
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_TX_STARTED,
(void *)frag);
}
}
static bool nrf5_tx_immediate(struct net_pkt *pkt, uint8_t *payload, bool cca)
{
nrf_802154_transmit_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.cca = cca,
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = net_pkt_ieee802154_txpwr(pkt),
#endif
},
};
return nrf_802154_transmit_raw(payload, &metadata);
}
#if NRF_802154_CSMA_CA_ENABLED
static bool nrf5_tx_csma_ca(struct net_pkt *pkt, uint8_t *payload)
{
nrf_802154_transmit_csma_ca_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = net_pkt_ieee802154_txpwr(pkt),
#endif
},
};
return nrf_802154_transmit_csma_ca_raw(payload, &metadata);
}
#endif
#if defined(CONFIG_NET_PKT_TXTIME)
/**
* @brief Convert 32-bit target time to absolute 64-bit target time.
*/
static uint64_t target_time_convert_to_64_bits(uint32_t target_time)
{
/**
* Target time is provided as two 32-bit integers defining a moment in time
* in microsecond domain. In order to use bit-shifting instead of modulo
* division, calculations are performed in microsecond domain, not in RTC ticks.
*
* The target time can point to a moment in the future, but can be overdue
* as well. In order to determine what's the case and correctly set the
* absolute target time, it's necessary to compare the least significant
* 32 bits of the current time, 64-bit time with the provided 32-bit target
* time. Let's assume that half of the 32-bit range can be used for specifying
* target times in the future, and the other half - in the past.
*/
uint64_t now_us = nrf_802154_time_get();
uint32_t now_us_wrapped = (uint32_t)now_us;
uint32_t time_diff = target_time - now_us_wrapped;
uint64_t result = UINT64_C(0);
if (time_diff < 0x80000000) {
/**
* Target time is assumed to be in the future. Check if a 32-bit overflow
* occurs between the current time and the target time.
*/
if (now_us_wrapped > target_time) {
/**
* Add a 32-bit overflow and replace the least significant 32 bits
* with the provided target time.
*/
result = now_us + UINT32_MAX + 1;
result &= ~(uint64_t)UINT32_MAX;
result |= target_time;
} else {
/**
* Leave the most significant 32 bits and replace the least significant
* 32 bits with the provided target time.
*/
result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time;
}
} else {
/**
* Target time is assumed to be in the past. Check if a 32-bit overflow
* occurs between the target time and the current time.
*/
if (now_us_wrapped > target_time) {
/**
* Leave the most significant 32 bits and replace the least significant
* 32 bits with the provided target time.
*/
result = (now_us & (~(uint64_t)UINT32_MAX)) | target_time;
} else {
/**
* Subtract a 32-bit overflow and replace the least significant
* 32 bits with the provided target time.
*/
result = now_us - UINT32_MAX - 1;
result &= ~(uint64_t)UINT32_MAX;
result |= target_time;
}
}
return result;
}
static bool nrf5_tx_at(struct net_pkt *pkt, uint8_t *payload, bool cca)
{
nrf_802154_transmit_at_metadata_t metadata = {
.frame_props = {
.is_secured = net_pkt_ieee802154_frame_secured(pkt),
.dynamic_data_is_set = net_pkt_ieee802154_mac_hdr_rdy(pkt),
},
.cca = cca,
.channel = nrf_802154_channel_get(),
.tx_power = {
.use_metadata_value = IS_ENABLED(CONFIG_IEEE802154_SELECTIVE_TXPOWER),
#if defined(CONFIG_IEEE802154_SELECTIVE_TXPOWER)
.power = net_pkt_ieee802154_txpwr(pkt),
#endif
},
};
uint64_t tx_at = target_time_convert_to_64_bits(net_pkt_txtime(pkt) / NSEC_PER_USEC);
return nrf_802154_transmit_raw_at(payload, tx_at, &metadata);
}
#endif /* CONFIG_NET_PKT_TXTIME */
static int nrf5_tx(const struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
uint8_t payload_len = frag->len;
uint8_t *payload = frag->data;
bool ret = true;
LOG_DBG("%p (%u)", payload, payload_len);
nrf5_radio->tx_psdu[0] = payload_len + NRF5_FCS_LENGTH;
memcpy(nrf5_radio->tx_psdu + 1, payload, payload_len);
/* Reset semaphore in case ACK was received after timeout */
k_sem_reset(&nrf5_radio->tx_wait);
switch (mode) {
case IEEE802154_TX_MODE_DIRECT:
case IEEE802154_TX_MODE_CCA:
ret = nrf5_tx_immediate(pkt, nrf5_radio->tx_psdu,
mode == IEEE802154_TX_MODE_CCA);
break;
#if NRF_802154_CSMA_CA_ENABLED
case IEEE802154_TX_MODE_CSMA_CA:
ret = nrf5_tx_csma_ca(pkt, nrf5_radio->tx_psdu);
break;
#endif
#if defined(CONFIG_NET_PKT_TXTIME)
case IEEE802154_TX_MODE_TXTIME:
case IEEE802154_TX_MODE_TXTIME_CCA:
__ASSERT_NO_MSG(pkt);
ret = nrf5_tx_at(pkt, nrf5_radio->tx_psdu,
mode == IEEE802154_TX_MODE_TXTIME_CCA);
break;
#endif /* CONFIG_NET_PKT_TXTIME */
default:
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
if (!ret) {
LOG_ERR("Cannot send frame");
return -EIO;
}
nrf5_tx_started(dev, pkt, frag);
LOG_DBG("Sending frame (ch:%d, txpower:%d)",
nrf_802154_channel_get(), nrf_802154_tx_power_get());
/* Wait for the callback from the radio driver. */
k_sem_take(&nrf5_radio->tx_wait, K_FOREVER);
LOG_DBG("Result: %d", nrf5_data.tx_result);
#if defined(CONFIG_IEEE802154_2015)
/*
* When frame encryption by the radio driver is enabled, the frame stored in
* the tx_psdu buffer is:
* 1) authenticated and encrypted in place which causes that after an unsuccessful
* TX attempt, this frame must be propagated back to the upper layer for retransmission.
* The upper layer must ensure that the exact same secured frame is used for
* retransmission
* 2) frame counters are updated in place and for keeping the link frame counter up to date,
* this information must be propagated back to the upper layer
*/
memcpy(payload, nrf5_radio->tx_psdu + 1, payload_len);
#endif
net_pkt_set_ieee802154_frame_secured(pkt, nrf5_radio->tx_frame_is_secured);
net_pkt_set_ieee802154_mac_hdr_rdy(pkt, nrf5_radio->tx_frame_mac_hdr_rdy);
switch (nrf5_radio->tx_result) {
case NRF_802154_TX_ERROR_NONE:
if (nrf5_radio->ack_frame.psdu == NULL) {
/* No ACK was requested. */
return 0;
}
/* Handle ACK packet. */
return handle_ack(nrf5_radio);
case NRF_802154_TX_ERROR_NO_MEM:
return -ENOBUFS;
case NRF_802154_TX_ERROR_BUSY_CHANNEL:
return -EBUSY;
case NRF_802154_TX_ERROR_INVALID_ACK:
case NRF_802154_TX_ERROR_NO_ACK:
return -ENOMSG;
case NRF_802154_TX_ERROR_ABORTED:
case NRF_802154_TX_ERROR_TIMESLOT_DENIED:
case NRF_802154_TX_ERROR_TIMESLOT_ENDED:
default:
return -EIO;
}
}
static uint64_t nrf5_get_time(const struct device *dev)
{
ARG_UNUSED(dev);
return nrf_802154_time_get();
}
static uint8_t nrf5_get_acc(const struct device *dev)
{
ARG_UNUSED(dev);
return CONFIG_IEEE802154_NRF5_DELAY_TRX_ACC;
}
static int nrf5_start(const struct device *dev)
{
ARG_UNUSED(dev);
if (!nrf_802154_receive()) {
LOG_ERR("Failed to enter receive state");
return -EIO;
}
LOG_DBG("nRF5 802154 radio started (channel: %d)",
nrf_802154_channel_get());
return 0;
}
static int nrf5_stop(const struct device *dev)
{
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if (nrf_802154_sleep_if_idle() != NRF_802154_SLEEP_ERROR_NONE) {
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL);
} else {
LOG_WRN("Transition to radio sleep cannot be handled.");
}
return 0;
}
#else
ARG_UNUSED(dev);
if (!nrf_802154_sleep()) {
LOG_ERR("Error while stopping radio");
return -EIO;
}
#endif
LOG_DBG("nRF5 802154 radio stopped");
return 0;
}
#if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS)
static int nrf5_continuous_carrier(const struct device *dev)
{
ARG_UNUSED(dev);
if (!nrf_802154_continuous_carrier()) {
LOG_ERR("Failed to enter continuous carrier state");
return -EIO;
}
LOG_DBG("Continuous carrier wave transmission started (channel: %d)",
nrf_802154_channel_get());
return 0;
}
#endif
#if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
static void nrf5_radio_irq(const void *arg)
{
ARG_UNUSED(arg);
nrf_802154_radio_irq_handler();
}
#endif
static void nrf5_irq_config(const struct device *dev)
{
ARG_UNUSED(dev);
#if !IS_ENABLED(CONFIG_IEEE802154_NRF5_EXT_IRQ_MGMT)
IRQ_CONNECT(RADIO_IRQn, NRF_802154_IRQ_PRIORITY,
nrf5_radio_irq, NULL, 0);
irq_enable(RADIO_IRQn);
#endif
}
static int nrf5_init(const struct device *dev)
{
const struct nrf5_802154_config *nrf5_radio_cfg = NRF5_802154_CFG(dev);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
k_fifo_init(&nrf5_radio->rx_fifo);
k_sem_init(&nrf5_radio->tx_wait, 0, 1);
k_sem_init(&nrf5_radio->cca_wait, 0, 1);
nrf_802154_init();
nrf5_get_capabilities_at_boot();
nrf5_radio_cfg->irq_config_func(dev);
k_thread_create(&nrf5_radio->rx_thread, nrf5_radio->rx_stack,
CONFIG_IEEE802154_NRF5_RX_STACK_SIZE,
nrf5_rx_thread, nrf5_radio, NULL, NULL,
K_PRIO_COOP(2), 0, K_NO_WAIT);
k_thread_name_set(&nrf5_radio->rx_thread, "nrf5_rx");
LOG_INF("nRF5 802154 radio initialized");
return 0;
}
static void nrf5_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct nrf5_802154_data *nrf5_radio = NRF5_802154_DATA(dev);
nrf5_get_eui64(nrf5_radio->mac);
net_if_set_link_addr(iface, nrf5_radio->mac, sizeof(nrf5_radio->mac),
NET_LINK_IEEE802154);
nrf5_radio->iface = iface;
ieee802154_init(iface);
}
#if defined(CONFIG_IEEE802154_2015)
static void nrf5_config_mac_keys(struct ieee802154_key *mac_keys)
{
static nrf_802154_key_id_t stored_key_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE];
static uint8_t stored_ids[NRF_802154_SECURITY_KEY_STORAGE_SIZE];
uint8_t i;
for (i = 0; i < NRF_802154_SECURITY_KEY_STORAGE_SIZE && stored_key_ids[i].p_key_id; i++) {
nrf_802154_security_key_remove(&stored_key_ids[i]);
stored_key_ids[i].p_key_id = NULL;
}
i = 0;
for (struct ieee802154_key *keys = mac_keys; keys->key_value
&& i < NRF_802154_SECURITY_KEY_STORAGE_SIZE; keys++, i++) {
nrf_802154_key_t key = {
.value.p_cleartext_key = keys->key_value,
.id.mode = keys->key_id_mode,
.id.p_key_id = &(keys->key_index),
.type = NRF_802154_KEY_CLEARTEXT,
.frame_counter = 0,
.use_global_frame_counter = !(keys->frame_counter_per_key),
};
__ASSERT_EVAL((void)nrf_802154_security_key_store(&key),
nrf_802154_security_error_t err = nrf_802154_security_key_store(&key),
err == NRF_802154_SECURITY_ERROR_NONE ||
err == NRF_802154_SECURITY_ERROR_ALREADY_PRESENT,
"Storing key failed, err: %d", err);
stored_ids[i] = *key.id.p_key_id;
stored_key_ids[i].mode = key.id.mode;
stored_key_ids[i].p_key_id = &stored_ids[i];
};
}
#endif /* CONFIG_IEEE802154_2015 */
static int nrf5_configure(const struct device *dev,
enum ieee802154_config_type type,
const struct ieee802154_config *config)
{
ARG_UNUSED(dev);
switch (type) {
case IEEE802154_CONFIG_AUTO_ACK_FPB:
if (config->auto_ack_fpb.enabled) {
switch (config->auto_ack_fpb.mode) {
case IEEE802154_FPB_ADDR_MATCH_THREAD:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_THREAD);
break;
case IEEE802154_FPB_ADDR_MATCH_ZIGBEE:
nrf_802154_src_addr_matching_method_set(
NRF_802154_SRC_ADDR_MATCH_ZIGBEE);
break;
default:
return -EINVAL;
}
}
nrf_802154_auto_pending_bit_set(config->auto_ack_fpb.enabled);
break;
case IEEE802154_CONFIG_ACK_FPB:
if (config->ack_fpb.enabled) {
if (!nrf_802154_pending_bit_for_addr_set(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOMEM;
}
break;
}
if (config->ack_fpb.addr != NULL) {
if (!nrf_802154_pending_bit_for_addr_clear(
config->ack_fpb.addr,
config->ack_fpb.extended)) {
return -ENOENT;
}
} else {
nrf_802154_pending_bit_for_addr_reset(
config->ack_fpb.extended);
}
break;
case IEEE802154_CONFIG_PAN_COORDINATOR:
nrf_802154_pan_coord_set(config->pan_coordinator);
break;
case IEEE802154_CONFIG_PROMISCUOUS:
nrf_802154_promiscuous_set(config->promiscuous);
break;
case IEEE802154_CONFIG_EVENT_HANDLER:
nrf5_data.event_handler = config->event_handler;
break;
#if defined(CONFIG_IEEE802154_2015)
case IEEE802154_CONFIG_MAC_KEYS:
nrf5_config_mac_keys(config->mac_keys);
break;
case IEEE802154_CONFIG_FRAME_COUNTER:
nrf_802154_security_global_frame_counter_set(config->frame_counter);
break;
case IEEE802154_CONFIG_FRAME_COUNTER_IF_LARGER:
nrf_802154_security_global_frame_counter_set_if_larger(config->frame_counter);
break;
#endif /* CONFIG_IEEE802154_2015 */
case IEEE802154_CONFIG_ENH_ACK_HEADER_IE: {
uint8_t short_addr_le[SHORT_ADDRESS_SIZE];
uint8_t ext_addr_le[EXTENDED_ADDRESS_SIZE];
sys_put_le16(config->ack_ie.short_addr, short_addr_le);
/**
* The extended address field passed to this function starts
* with the most significant octet and ends with the least
* significant octet (i.e. big endian byte order).
* The IEEE 802.15.4 transmission order mandates this order to be
* reversed (i.e. little endian byte order) in a transmitted frame.
*
* The nrf_802154_ack_data_set expects extended address in transmission
* order.
*/
sys_memcpy_swap(ext_addr_le, config->ack_ie.ext_addr, EXTENDED_ADDRESS_SIZE);
if (config->ack_ie.data_len > 0) {
nrf_802154_ack_data_set(short_addr_le, false, config->ack_ie.data,
config->ack_ie.data_len, NRF_802154_ACK_DATA_IE);
nrf_802154_ack_data_set(ext_addr_le, true, config->ack_ie.data,
config->ack_ie.data_len, NRF_802154_ACK_DATA_IE);
} else {
nrf_802154_ack_data_clear(short_addr_le, false, NRF_802154_ACK_DATA_IE);
nrf_802154_ack_data_clear(ext_addr_le, true, NRF_802154_ACK_DATA_IE);
}
} break;
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
case IEEE802154_CONFIG_CSL_RX_TIME:
/*
* `target_time_convert_to_64_bits()` is a workaround until OpenThread (the only
* CSL user in Zephyr so far) is able to schedule RX windows using 64-bit time.
*/
uint64_t csl_rx_time = target_time_convert_to_64_bits(config->csl_rx_time);
nrf_802154_csl_writer_anchor_time_set(csl_rx_time);
break;
case IEEE802154_CONFIG_RX_SLOT:
/* Note that even if the nrf_802154_receive_at function is not called in time
* (for example due to the call being blocked by higher priority threads) and
* the delayed reception window is not scheduled, the CSL phase will still be
* calculated as if the following reception windows were at times
* anchor_time + n * csl_period. The previously set
* anchor_time will be used for calculations.
*
* `target_time_convert_to_64_bits()` is a workaround until OpenThread
* (the only CSL user in Zephyr so far) is able to schedule RX windows
* using 64-bit time.
*/
uint64_t start = target_time_convert_to_64_bits(config->rx_slot.start);
nrf_802154_receive_at(start, config->rx_slot.duration, config->rx_slot.channel,
DRX_SLOT_RX);
break;
case IEEE802154_CONFIG_CSL_PERIOD:
nrf_802154_csl_writer_period_set(config->csl_period);
break;
#endif /* CONFIG_IEEE802154_CSL_ENDPOINT */
default:
return -EINVAL;
}
return 0;
}
/* nRF5 radio driver callbacks */
void nrf_802154_received_timestamp_raw(uint8_t *data, int8_t power, uint8_t lqi, uint64_t time)
{
for (uint32_t i = 0; i < ARRAY_SIZE(nrf5_data.rx_frames); i++) {
if (nrf5_data.rx_frames[i].psdu != NULL) {
continue;
}
nrf5_data.rx_frames[i].psdu = data;
nrf5_data.rx_frames[i].rssi = power;
nrf5_data.rx_frames[i].lqi = lqi;
#if defined(CONFIG_NET_PKT_TIMESTAMP)
nrf5_data.rx_frames[i].time = nrf_802154_mhr_timestamp_get(time, data[0]);
#endif
if (data[ACK_REQUEST_BYTE] & ACK_REQUEST_BIT) {
nrf5_data.rx_frames[i].ack_fpb = nrf5_data.last_frame_ack_fpb;
} else {
nrf5_data.rx_frames[i].ack_fpb = false;
}
nrf5_data.last_frame_ack_fpb = false;
k_fifo_put(&nrf5_data.rx_fifo, &nrf5_data.rx_frames[i]);
return;
}
__ASSERT(false, "Not enough rx frames allocated for 15.4 driver");
}
void nrf_802154_receive_failed(nrf_802154_rx_error_t error, uint32_t id)
{
const struct device *dev = net_if_get_device(nrf5_data.iface);
#if defined(CONFIG_IEEE802154_CSL_ENDPOINT)
if (id == DRX_SLOT_RX) {
__ASSERT_NO_MSG(nrf5_data.event_handler);
nrf5_data.event_handler(dev, IEEE802154_EVENT_SLEEP, NULL);
if (error == NRF_802154_RX_ERROR_DELAYED_TIMEOUT) {
return;
}
}
#else
ARG_UNUSED(id);
#endif
enum ieee802154_rx_fail_reason reason;
switch (error) {
case NRF_802154_RX_ERROR_INVALID_FRAME:
case NRF_802154_RX_ERROR_DELAYED_TIMEOUT:
reason = IEEE802154_RX_FAIL_NOT_RECEIVED;
break;
case NRF_802154_RX_ERROR_INVALID_FCS:
reason = IEEE802154_RX_FAIL_INVALID_FCS;
break;
case NRF_802154_RX_ERROR_INVALID_DEST_ADDR:
reason = IEEE802154_RX_FAIL_ADDR_FILTERED;
break;
default:
reason = IEEE802154_RX_FAIL_OTHER;
break;
}
if (IS_ENABLED(CONFIG_IEEE802154_NRF5_LOG_RX_FAILURES)) {
LOG_INF("Rx failed, error = %d", error);
}
nrf5_data.last_frame_ack_fpb = false;
if (nrf5_data.event_handler) {
nrf5_data.event_handler(dev, IEEE802154_EVENT_RX_FAILED, (void *)&reason);
}
}
void nrf_802154_tx_ack_started(const uint8_t *data)
{
nrf5_data.last_frame_ack_fpb =
data[FRAME_PENDING_BYTE] & FRAME_PENDING_BIT;
}
void nrf_802154_transmitted_raw(uint8_t *frame,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = NRF_802154_TX_ERROR_NONE;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
nrf5_data.ack_frame.psdu = metadata->data.transmitted.p_ack;
if (nrf5_data.ack_frame.psdu) {
nrf5_data.ack_frame.rssi = metadata->data.transmitted.power;
nrf5_data.ack_frame.lqi = metadata->data.transmitted.lqi;
#if defined(CONFIG_NET_PKT_TIMESTAMP)
nrf5_data.ack_frame.time =
nrf_802154_mhr_timestamp_get(
metadata->data.transmitted.time, nrf5_data.ack_frame.psdu[0]);
#endif
}
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_transmit_failed(uint8_t *frame,
nrf_802154_tx_error_t error,
const nrf_802154_transmit_done_metadata_t *metadata)
{
ARG_UNUSED(frame);
nrf5_data.tx_result = error;
nrf5_data.tx_frame_is_secured = metadata->frame_props.is_secured;
nrf5_data.tx_frame_mac_hdr_rdy = metadata->frame_props.dynamic_data_is_set;
k_sem_give(&nrf5_data.tx_wait);
}
void nrf_802154_cca_done(bool channel_free)
{
nrf5_data.channel_free = channel_free;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_cca_failed(nrf_802154_cca_error_t error)
{
ARG_UNUSED(error);
nrf5_data.channel_free = false;
k_sem_give(&nrf5_data.cca_wait);
}
void nrf_802154_energy_detected(uint8_t result)
{
if (nrf5_data.energy_scan_done != NULL) {
int16_t dbm;
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
dbm = nrf_802154_dbm_from_energy_level_calculate(result);
callback(net_if_get_device(nrf5_data.iface), dbm);
}
}
void nrf_802154_energy_detection_failed(nrf_802154_ed_error_t error)
{
if (nrf5_data.energy_scan_done != NULL) {
energy_scan_done_cb_t callback = nrf5_data.energy_scan_done;
nrf5_data.energy_scan_done = NULL;
callback(net_if_get_device(nrf5_data.iface), SHRT_MAX);
}
}
#if defined(CONFIG_NRF_802154_SER_HOST)
void nrf_802154_serialization_error(const nrf_802154_ser_err_data_t *err)
{
__ASSERT(false, "802.15.4 serialization error: %d", err->reason);
k_oops();
}
#endif
static const struct nrf5_802154_config nrf5_radio_cfg = {
.irq_config_func = nrf5_irq_config,
};
static struct ieee802154_radio_api nrf5_radio_api = {
.iface_api.init = nrf5_iface_init,
.get_capabilities = nrf5_get_capabilities,
.cca = nrf5_cca,
.set_channel = nrf5_set_channel,
.filter = nrf5_filter,
.set_txpower = nrf5_set_txpower,
.start = nrf5_start,
.stop = nrf5_stop,
#if defined(CONFIG_NRF_802154_CARRIER_FUNCTIONS)
.continuous_carrier = nrf5_continuous_carrier,
#endif
.tx = nrf5_tx,
.ed_scan = nrf5_energy_scan_start,
.get_time = nrf5_get_time,
.get_sch_acc = nrf5_get_acc,
.configure = nrf5_configure,
};
#if defined(CONFIG_NET_L2_IEEE802154)
#define L2 IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(IEEE802154_L2)
#define MTU IEEE802154_MTU
#elif defined(CONFIG_NET_L2_OPENTHREAD)
#define L2 OPENTHREAD_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(OPENTHREAD_L2)
#define MTU 1280
#elif defined(CONFIG_NET_L2_CUSTOM_IEEE802154)
#define L2 CUSTOM_IEEE802154_L2
#define L2_CTX_TYPE NET_L2_GET_CTX_TYPE(CUSTOM_IEEE802154_L2)
#define MTU CONFIG_NET_L2_CUSTOM_IEEE802154_MTU
#endif
#if defined(CONFIG_NET_L2_PHY_IEEE802154)
NET_DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
CONFIG_IEEE802154_NRF5_INIT_PRIO, &nrf5_radio_api, L2,
L2_CTX_TYPE, MTU);
#else
DEVICE_DT_INST_DEFINE(0, nrf5_init, NULL, &nrf5_data, &nrf5_radio_cfg,
POST_KERNEL, CONFIG_IEEE802154_NRF5_INIT_PRIO,
&nrf5_radio_api);
#endif