blob: 7003ea07ac5348e497324d3f6d7b01934743c8e0 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <kernel.h>
#include <ksched.h>
#include <spinlock.h>
#include <sched_priq.h>
#include <wait_q.h>
#include <kswap.h>
#include <kernel_arch_func.h>
#include <syscall_handler.h>
#ifdef CONFIG_SCHED_DUMB
#define _priq_run_add _priq_dumb_add
#define _priq_run_remove _priq_dumb_remove
#define _priq_run_best _priq_dumb_best
#else
#define _priq_run_add _priq_rb_add
#define _priq_run_remove _priq_rb_remove
#define _priq_run_best _priq_rb_best
#endif
#ifdef CONFIG_WAITQ_FAST
#define _priq_wait_add _priq_rb_add
#define _priq_wait_remove _priq_rb_remove
#define _priq_wait_best _priq_rb_best
#else
#define _priq_wait_add _priq_dumb_add
#define _priq_wait_remove _priq_dumb_remove
#define _priq_wait_best _priq_dumb_best
#endif
/* the only struct _kernel instance */
struct _kernel _kernel;
static struct k_spinlock sched_lock;
#define LOCKED(lck) for (k_spinlock_key_t __i = {}, \
__key = k_spin_lock(lck); \
!__i.key; \
k_spin_unlock(lck, __key), __i.key = 1)
static inline int _is_preempt(struct k_thread *thread)
{
#ifdef CONFIG_PREEMPT_ENABLED
/* explanation in kernel_struct.h */
return thread->base.preempt <= _PREEMPT_THRESHOLD;
#else
return 0;
#endif
}
static inline int _is_thread_dummy(struct k_thread *thread)
{
return !!(thread->base.thread_state & _THREAD_DUMMY);
}
static inline int _is_idle(struct k_thread *thread)
{
#ifdef CONFIG_SMP
return thread->base.is_idle;
#else
extern struct k_thread * const _idle_thread;
return thread == _idle_thread;
#endif
}
#ifdef _NON_OPTIMIZED_TICKS_PER_SEC
s32_t _ms_to_ticks(s32_t ms)
{
s64_t ms_ticks_per_sec = (s64_t)ms * sys_clock_ticks_per_sec;
return (s32_t)ceiling_fraction(ms_ticks_per_sec, MSEC_PER_SEC);
}
#endif
static struct k_thread *next_up(void)
{
#ifndef CONFIG_SMP
/* In uniprocessor mode, we can leave the current thread in
* the queue (actually we have to, otherwise the assembly
* context switch code for all architectures would be
* responsible for putting it back in _Swap and ISR return!),
* which makes this choice simple.
*/
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
return th ? th : _current_cpu->idle_thread;
#else
/* Under SMP, the "cache" mechanism for selecting the next
* thread doesn't work, so we have more work to do to test
* _current against the best choice from the queue.
*/
int active = !_is_thread_prevented_from_running(_current);
int queued = _is_thread_queued(_current);
struct k_thread *th = _priq_run_best(&_kernel.ready_q.runq);
/* Idle thread if nothing else */
if (!th) {
th = _current_cpu->idle_thread;
}
/* Stay with current unless it's already been put back in the
* queue and something better is available (c.f. timeslicing,
* yield)
*/
if (active && !queued && !_is_t1_higher_prio_than_t2(th, _current)) {
th = _current;
}
/* Put _current back into the queue if necessary */
if (th != _current && !queued) {
_priq_run_add(&_kernel.ready_q.runq, _current);
}
/* Remove the thread we're about to run from the queue (which
* potentially might not be there, but that's OK)
*/
_priq_run_remove(&_kernel.ready_q.runq, th);
return th;
#endif
}
static void update_cache(void)
{
#ifndef CONFIG_SMP
_kernel.ready_q.cache = next_up();
#endif
}
void _add_thread_to_ready_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_run_add(&_kernel.ready_q.runq, thread);
_mark_thread_as_queued(thread);
update_cache();
}
}
void _move_thread_to_end_of_prio_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
_priq_run_add(&_kernel.ready_q.runq, thread);
_mark_thread_as_queued(thread);
update_cache();
}
}
void _remove_thread_from_ready_q(struct k_thread *thread)
{
LOCKED(&sched_lock) {
if (_is_thread_queued(thread)) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
_mark_thread_as_not_queued(thread);
update_cache();
}
}
}
static void pend(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
_remove_thread_from_ready_q(thread);
_mark_thread_as_pending(thread);
/* The timeout handling is currently synchronized external to
* the scheduler using the legacy global lock. Should fix
* that.
*/
if (timeout != K_FOREVER) {
s32_t ticks = _TICK_ALIGN + _ms_to_ticks(timeout);
int key = irq_lock();
_add_thread_timeout(thread, wait_q, ticks);
irq_unlock(key);
}
if (wait_q) {
#ifdef CONFIG_WAITQ_FAST
thread->base.pended_on = wait_q;
#endif
_priq_wait_add(&wait_q->waitq, thread);
}
#ifdef CONFIG_KERNEL_EVENT_LOGGER_THREAD
_sys_k_event_logger_thread_pend(thread);
#endif
}
void _pend_thread(struct k_thread *thread, _wait_q_t *wait_q, s32_t timeout)
{
__ASSERT_NO_MSG(thread == _current || _is_thread_dummy(thread));
pend(thread, wait_q, timeout);
}
static _wait_q_t *pended_on(struct k_thread *thread)
{
#ifdef CONFIG_WAITQ_FAST
__ASSERT_NO_MSG(thread->base.pended_on);
return thread->base.pended_on;
#else
ARG_UNUSED(thread);
return NULL;
#endif
}
struct k_thread *_find_first_thread_to_unpend(_wait_q_t *wait_q,
struct k_thread *from)
{
ARG_UNUSED(from);
struct k_thread *ret = NULL;
LOCKED(&sched_lock) {
ret = _priq_wait_best(&wait_q->waitq);
}
return ret;
}
void _unpend_thread_no_timeout(struct k_thread *thread)
{
LOCKED(&sched_lock) {
_priq_wait_remove(&pended_on(thread)->waitq, thread);
_mark_thread_as_not_pending(thread);
}
#if defined(CONFIG_ASSERT) && defined(CONFIG_WAITQ_FAST)
thread->base.pended_on = NULL;
#endif
}
int _pend_current_thread(int key, _wait_q_t *wait_q, s32_t timeout)
{
pend(_current, wait_q, timeout);
return _Swap(key);
}
struct k_thread *_unpend_first_thread(_wait_q_t *wait_q)
{
struct k_thread *t = _unpend1_no_timeout(wait_q);
if (t) {
_abort_thread_timeout(t);
}
return t;
}
void _unpend_thread(struct k_thread *thread)
{
_unpend_thread_no_timeout(thread);
_abort_thread_timeout(thread);
}
/* FIXME: this API is glitchy when used in SMP. If the thread is
* currently scheduled on the other CPU, it will silently set it's
* priority but nothing will cause a reschedule until the next
* interrupt. An audit seems to show that all current usage is to set
* priorities on either _current or a pended thread, though, so it's
* fine for now.
*/
void _thread_priority_set(struct k_thread *thread, int prio)
{
int need_sched = 0;
LOCKED(&sched_lock) {
need_sched = _is_thread_ready(thread);
if (need_sched) {
_priq_run_remove(&_kernel.ready_q.runq, thread);
thread->base.prio = prio;
_priq_run_add(&_kernel.ready_q.runq, thread);
update_cache();
} else {
thread->base.prio = prio;
}
}
if (need_sched) {
_reschedule(irq_lock());
}
}
int _reschedule(int key)
{
if (!_is_in_isr() &&
_is_preempt(_current) &&
_get_next_ready_thread() != _current) {
return _Swap(key);
}
irq_unlock(key);
return 0;
}
void k_sched_lock(void)
{
_sched_lock();
}
void k_sched_unlock(void)
{
#ifdef CONFIG_PREEMPT_ENABLED
__ASSERT(_current->base.sched_locked != 0, "");
__ASSERT(!_is_in_isr(), "");
int key = irq_lock();
/* compiler_barrier() not needed, comes from irq_lock() */
++_current->base.sched_locked;
K_DEBUG("scheduler unlocked (%p:%d)\n",
_current, _current->base.sched_locked);
_reschedule(key);
#endif
}
#ifdef CONFIG_SMP
struct k_thread *_get_next_ready_thread(void)
{
struct k_thread *ret = 0;
LOCKED(&sched_lock) {
ret = next_up();
}
return ret;
}
#endif
#ifdef CONFIG_USE_SWITCH
void *_get_next_switch_handle(void *interrupted)
{
if (!_is_preempt(_current) &&
!(_current->base.thread_state & _THREAD_DEAD)) {
return interrupted;
}
_current->switch_handle = interrupted;
LOCKED(&sched_lock) {
struct k_thread *next = next_up();
if (next != _current) {
_current = next;
}
}
_check_stack_sentinel();
return _current->switch_handle;
}
#endif
void _priq_dumb_add(sys_dlist_t *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!_is_idle(thread));
SYS_DLIST_FOR_EACH_CONTAINER(pq, t, base.qnode_dlist) {
if (_is_t1_higher_prio_than_t2(thread, t)) {
sys_dlist_insert_before(pq, &t->base.qnode_dlist,
&thread->base.qnode_dlist);
return;
}
}
sys_dlist_append(pq, &thread->base.qnode_dlist);
}
void _priq_dumb_remove(sys_dlist_t *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!_is_idle(thread));
sys_dlist_remove(&thread->base.qnode_dlist);
}
struct k_thread *_priq_dumb_best(sys_dlist_t *pq)
{
return CONTAINER_OF(sys_dlist_peek_head(pq),
struct k_thread, base.qnode_dlist);
}
int _priq_rb_lessthan(struct rbnode *a, struct rbnode *b)
{
struct k_thread *ta, *tb;
ta = CONTAINER_OF(a, struct k_thread, base.qnode_rb);
tb = CONTAINER_OF(b, struct k_thread, base.qnode_rb);
if (_is_t1_higher_prio_than_t2(ta, tb)) {
return 1;
} else if (_is_t1_higher_prio_than_t2(tb, ta)) {
return 0;
} else {
return ta->base.order_key < tb->base.order_key ? 1 : 0;
}
}
void _priq_rb_add(struct _priq_rb *pq, struct k_thread *thread)
{
struct k_thread *t;
__ASSERT_NO_MSG(!_is_idle(thread));
thread->base.order_key = pq->next_order_key++;
/* Renumber at wraparound. This is tiny code, and in practice
* will almost never be hit on real systems. BUT on very
* long-running systems where a priq never completely empties
* AND that contains very large numbers of threads, it can be
* a latency glitch to loop over all the threads like this.
*/
if (!pq->next_order_key) {
RB_FOR_EACH_CONTAINER(&pq->tree, t, base.qnode_rb) {
t->base.order_key = pq->next_order_key++;
}
}
rb_insert(&pq->tree, &thread->base.qnode_rb);
}
void _priq_rb_remove(struct _priq_rb *pq, struct k_thread *thread)
{
__ASSERT_NO_MSG(!_is_idle(thread));
rb_remove(&pq->tree, &thread->base.qnode_rb);
if (!pq->tree.root) {
pq->next_order_key = 0;
}
}
struct k_thread *_priq_rb_best(struct _priq_rb *pq)
{
struct rbnode *n = rb_get_min(&pq->tree);
return CONTAINER_OF(n, struct k_thread, base.qnode_rb);
}
#ifdef CONFIG_TIMESLICING
extern s32_t _time_slice_duration; /* Measured in ms */
extern s32_t _time_slice_elapsed; /* Measured in ms */
extern int _time_slice_prio_ceiling;
void k_sched_time_slice_set(s32_t duration_in_ms, int prio)
{
__ASSERT(duration_in_ms >= 0, "");
__ASSERT((prio >= 0) && (prio < CONFIG_NUM_PREEMPT_PRIORITIES), "");
_time_slice_duration = duration_in_ms;
_time_slice_elapsed = 0;
_time_slice_prio_ceiling = prio;
}
int _is_thread_time_slicing(struct k_thread *thread)
{
int ret = 0;
/* Should fix API. Doesn't make sense for non-running threads
* to call this
*/
__ASSERT_NO_MSG(thread == _current);
if (_time_slice_duration <= 0 || !_is_preempt(thread) ||
_is_prio_higher(thread->base.prio, _time_slice_prio_ceiling)) {
return 0;
}
LOCKED(&sched_lock) {
struct k_thread *next = _priq_run_best(&_kernel.ready_q.runq);
if (next) {
ret = thread->base.prio == next->base.prio;
}
}
return ret;
}
/* Must be called with interrupts locked */
/* Should be called only immediately before a thread switch */
void _update_time_slice_before_swap(void)
{
#ifdef CONFIG_TICKLESS_KERNEL
if (!_is_thread_time_slicing(_get_next_ready_thread())) {
return;
}
u32_t remaining = _get_remaining_program_time();
if (!remaining || (_time_slice_duration < remaining)) {
_set_time(_time_slice_duration);
} else {
/* Account previous elapsed time and reprogram
* timer with remaining time
*/
_set_time(remaining);
}
#endif
/* Restart time slice count at new thread switch */
_time_slice_elapsed = 0;
}
#endif /* CONFIG_TIMESLICING */
int _unpend_all(_wait_q_t *waitq)
{
int need_sched = 0;
struct k_thread *th;
while ((th = _waitq_head(waitq))) {
_unpend_thread(th);
_ready_thread(th);
need_sched = 1;
}
return need_sched;
}
void _sched_init(void)
{
#ifdef CONFIG_SCHED_DUMB
sys_dlist_init(&_kernel.ready_q.runq);
#else
_kernel.ready_q.runq = (struct _priq_rb) {
.tree = {
.lessthan_fn = _priq_rb_lessthan,
}
};
#endif
}
int _impl_k_thread_priority_get(k_tid_t thread)
{
return thread->base.prio;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE(k_thread_priority_get, K_OBJ_THREAD,
struct k_thread *);
#endif
void _impl_k_thread_priority_set(k_tid_t tid, int prio)
{
/*
* Use NULL, since we cannot know what the entry point is (we do not
* keep track of it) and idle cannot change its priority.
*/
_ASSERT_VALID_PRIO(prio, NULL);
__ASSERT(!_is_in_isr(), "");
struct k_thread *thread = (struct k_thread *)tid;
_thread_priority_set(thread, prio);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_thread_priority_set, thread_p, prio)
{
struct k_thread *thread = (struct k_thread *)thread_p;
Z_OOPS(Z_SYSCALL_OBJ(thread, K_OBJ_THREAD));
Z_OOPS(Z_SYSCALL_VERIFY_MSG(_is_valid_prio(prio, NULL),
"invalid thread priority %d", (int)prio));
Z_OOPS(Z_SYSCALL_VERIFY_MSG((s8_t)prio >= thread->base.prio,
"thread priority may only be downgraded (%d < %d)",
prio, thread->base.prio));
_impl_k_thread_priority_set((k_tid_t)thread, prio);
return 0;
}
#endif
void _impl_k_yield(void)
{
__ASSERT(!_is_in_isr(), "");
if (!_is_idle(_current)) {
_move_thread_to_end_of_prio_q(_current);
}
if (_get_next_ready_thread() != _current) {
_Swap(irq_lock());
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE_VOID(k_yield);
#endif
void _impl_k_sleep(s32_t duration)
{
#ifdef CONFIG_MULTITHREADING
/* volatile to guarantee that irq_lock() is executed after ticks is
* populated
*/
volatile s32_t ticks;
unsigned int key;
__ASSERT(!_is_in_isr(), "");
__ASSERT(duration != K_FOREVER, "");
K_DEBUG("thread %p for %d ns\n", _current, duration);
/* wait of 0 ms is treated as a 'yield' */
if (duration == 0) {
k_yield();
return;
}
ticks = _TICK_ALIGN + _ms_to_ticks(duration);
key = irq_lock();
_remove_thread_from_ready_q(_current);
_add_thread_timeout(_current, NULL, ticks);
_Swap(key);
#endif
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER(k_sleep, duration)
{
/* FIXME there were some discussions recently on whether we should
* relax this, thread would be unscheduled until k_wakeup issued
*/
Z_OOPS(Z_SYSCALL_VERIFY_MSG(duration != K_FOREVER,
"sleeping forever not allowed"));
_impl_k_sleep(duration);
return 0;
}
#endif
void _impl_k_wakeup(k_tid_t thread)
{
int key = irq_lock();
/* verify first if thread is not waiting on an object */
if (_is_thread_pending(thread)) {
irq_unlock(key);
return;
}
if (_abort_thread_timeout(thread) == _INACTIVE) {
irq_unlock(key);
return;
}
_ready_thread(thread);
if (_is_in_isr()) {
irq_unlock(key);
} else {
_reschedule(key);
}
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER1_SIMPLE_VOID(k_wakeup, K_OBJ_THREAD, k_tid_t);
#endif
k_tid_t _impl_k_current_get(void)
{
return _current;
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_current_get);
#endif
int _impl_k_is_preempt_thread(void)
{
return !_is_in_isr() && _is_preempt(_current);
}
#ifdef CONFIG_USERSPACE
Z_SYSCALL_HANDLER0_SIMPLE(k_is_preempt_thread);
#endif