blob: 2334750535f30e00b6485b0ed862dcd040a89d5c [file] [log] [blame]
/* adc_qmsi.c - QMSI ADC driver */
/*
* Copyright (c) 2016 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <init.h>
#include <kernel.h>
#include <string.h>
#include <stdlib.h>
#include <board.h>
#include <adc.h>
#include <arch/cpu.h>
#include <atomic.h>
#include "qm_isr.h"
#include "qm_adc.h"
#include "clk.h"
enum {
ADC_STATE_IDLE,
ADC_STATE_BUSY,
ADC_STATE_ERROR
};
struct adc_info {
atomic_t state;
struct k_sem device_sync_sem;
struct k_sem sem;
};
static void adc_config_irq(void);
static qm_adc_config_t cfg;
#if (CONFIG_ADC_QMSI_INTERRUPT)
static struct adc_info *adc_context;
static void complete_callback(void *data, int error, qm_adc_status_t status,
qm_adc_cb_source_t source)
{
if (adc_context) {
if (error) {
adc_context->state = ADC_STATE_ERROR;
}
k_sem_give(&adc_context->device_sync_sem);
}
}
#endif
static void adc_lock(struct adc_info *data)
{
k_sem_take(&data->sem, K_FOREVER);
data->state = ADC_STATE_BUSY;
}
static void adc_unlock(struct adc_info *data)
{
k_sem_give(&data->sem);
data->state = ADC_STATE_IDLE;
}
#if (CONFIG_ADC_QMSI_CALIBRATION)
static void adc_qmsi_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_CAL);
qm_adc_calibrate(QM_ADC_0);
adc_unlock(info);
}
#else
static void adc_qmsi_enable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_NORM_NO_CAL);
adc_unlock(info);
}
#endif /* CONFIG_ADC_QMSI_CALIBRATION */
static void adc_qmsi_disable(struct device *dev)
{
struct adc_info *info = dev->driver_data;
adc_lock(info);
/* Go to deep sleep */
qm_adc_set_mode(QM_ADC_0, QM_ADC_MODE_DEEP_PWR_DOWN);
adc_unlock(info);
}
#if (CONFIG_ADC_QMSI_POLL)
static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = 0;
qm_adc_xfer_t xfer;
qm_adc_status_t status;
struct adc_info *info = dev->driver_data;
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table
*/
xfer.ch_len = 1;
xfer.samples = (qm_adc_sample_t *)seq_tbl->entries[i].buffer;
/* buffer length (bytes) the number of samples, the QMSI Driver
* does not allow more than QM_ADC_FIFO_LEN samples at the time
* in polling mode, if that happens, the qm_adc_convert api will
* return with an error
*/
xfer.samples_len =
(seq_tbl->entries[i].buffer_length)/sizeof(qm_adc_sample_t);
xfer.callback = NULL;
xfer.callback_data = NULL;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_adc_set_config(QM_ADC_0, &cfg) != 0) {
ret = -EINVAL;
adc_unlock(info);
break;
}
/* Run the conversion, here the function will poll for the
* samples. The function will constantly read the status
* register to check if the number of samples required has been
* captured
*/
if (qm_adc_convert(QM_ADC_0, &xfer, &status) != 0) {
ret = -EIO;
adc_unlock(info);
break;
}
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#else
static int adc_qmsi_read(struct device *dev, struct adc_seq_table *seq_tbl)
{
int i, ret = 0;
qm_adc_xfer_t xfer;
struct adc_info *info = dev->driver_data;
for (i = 0; i < seq_tbl->num_entries; i++) {
xfer.ch = (qm_adc_channel_t *)&seq_tbl->entries[i].channel_id;
/* Just one channel at the time using the Zephyr sequence table */
xfer.ch_len = 1;
xfer.samples =
(qm_adc_sample_t *)seq_tbl->entries[i].buffer;
xfer.samples_len =
(seq_tbl->entries[i].buffer_length)/sizeof(qm_adc_sample_t);
xfer.callback = complete_callback;
xfer.callback_data = NULL;
cfg.window = seq_tbl->entries[i].sampling_delay;
adc_lock(info);
if (qm_adc_set_config(QM_ADC_0, &cfg) != 0) {
ret = -EINVAL;
adc_unlock(info);
break;
}
/* ADC info used by the callbacks */
adc_context = info;
/* This is the interrupt driven API, will generate and interrupt and
* call the complete_callback function once the samples have been
* obtained
*/
if (qm_adc_irq_convert(QM_ADC_0, &xfer) != 0) {
adc_context = NULL;
ret = -EIO;
adc_unlock(info);
break;
}
/* Wait for the interrupt to finish */
k_sem_take(&info->device_sync_sem, K_FOREVER);
if (info->state == ADC_STATE_ERROR) {
ret = -EIO;
adc_unlock(info);
break;
}
adc_context = NULL;
/* Successful Analog to Digital conversion */
adc_unlock(info);
}
return ret;
}
#endif /* CONFIG_ADC_QMSI_POLL */
static const struct adc_driver_api api_funcs = {
.enable = adc_qmsi_enable,
.disable = adc_qmsi_disable,
.read = adc_qmsi_read,
};
static int adc_qmsi_init(struct device *dev)
{
struct adc_info *info = dev->driver_data;
/* Enable the ADC and set the clock divisor */
clk_periph_enable(CLK_PERIPH_CLK | CLK_PERIPH_ADC |
CLK_PERIPH_ADC_REGISTER);
/* ADC clock divider*/
clk_adc_set_div(CONFIG_ADC_QMSI_CLOCK_RATIO);
/* Set up config */
/* Clock cycles between the start of each sample */
cfg.window = CONFIG_ADC_QMSI_SERIAL_DELAY;
cfg.resolution = CONFIG_ADC_QMSI_SAMPLE_WIDTH;
qm_adc_set_config(QM_ADC_0, &cfg);
k_sem_init(&info->device_sync_sem, 0, UINT_MAX);
k_sem_init(&info->sem, 0, UINT_MAX);
k_sem_give(&info->sem);
info->state = ADC_STATE_IDLE;
adc_config_irq();
return 0;
}
static struct adc_info adc_info_dev;
DEVICE_AND_API_INIT(adc_qmsi, CONFIG_ADC_0_NAME, &adc_qmsi_init,
&adc_info_dev, NULL,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
(void *)&api_funcs);
static void adc_config_irq(void)
{
IRQ_CONNECT(QM_IRQ_ADC_0_CAL_INT, CONFIG_ADC_0_IRQ_PRI,
qm_adc_0_cal_isr, NULL, (IOAPIC_LEVEL | IOAPIC_HIGH));
irq_enable(QM_IRQ_ADC_0_CAL_INT);
QM_INTERRUPT_ROUTER->adc_0_cal_int_mask &= ~BIT(0);
}