blob: c1bafdbc1dcc8ada4e7bc907277e65392e48d525 [file] [log] [blame]
/*
* Copyright (c) 2010-2016 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
*
* @brief Kernel semaphore object.
*
* The semaphores are of the 'counting' type, i.e. each 'give' operation will
* increment the internal count by 1, if no fiber is pending on it. The 'init'
* call initializes the count to 0. Following multiple 'give' operations, the
* same number of 'take' operations can be performed without the calling fiber
* having to pend on the semaphore, or the calling task having to poll.
*/
#include <kernel.h>
#include <kernel_structs.h>
#include <debug/object_tracing_common.h>
#include <toolchain.h>
#include <sections.h>
#include <wait_q.h>
#include <misc/dlist.h>
#include <ksched.h>
#include <init.h>
#ifdef CONFIG_SEMAPHORE_GROUPS
struct sem_desc {
/* node in list of semaphores */
sys_dnode_t semg_node;
/* thread waiting for semaphores */
struct k_thread *thread;
/* semaphore on which to wait */
struct k_sem *sem;
};
struct sem_thread {
/* dummy thread, only the thread base */
struct _thread_base dummy;
/* descriptor containing real thread , sem, and group info */
struct sem_desc desc;
};
#endif
extern struct k_sem _k_sem_list_start[];
extern struct k_sem _k_sem_list_end[];
struct k_sem *_trace_list_k_sem;
#ifdef CONFIG_OBJECT_TRACING
/*
* Complete initialization of statically defined semaphores.
*/
static int init_sem_module(struct device *dev)
{
ARG_UNUSED(dev);
struct k_sem *sem;
for (sem = _k_sem_list_start; sem < _k_sem_list_end; sem++) {
SYS_TRACING_OBJ_INIT(k_sem, sem);
}
return 0;
}
SYS_INIT(init_sem_module, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJECT_TRACING */
void k_sem_init(struct k_sem *sem, unsigned int initial_count,
unsigned int limit)
{
__ASSERT(limit != 0, "limit cannot be zero");
sem->count = initial_count;
sem->limit = limit;
sys_dlist_init(&sem->wait_q);
_INIT_OBJ_POLL_EVENT(sem);
SYS_TRACING_OBJ_INIT(k_sem, sem);
}
#ifdef CONFIG_SEMAPHORE_GROUPS
int k_sem_group_take(struct k_sem *sem_array[], struct k_sem **sem,
int32_t timeout)
{
unsigned int key;
struct k_sem *item = *sem_array;
int num = 0;
__ASSERT(sem_array[0] != K_END, "Empty semaphore list");
key = irq_lock();
do {
if (item->count > 0) {
item->count--; /* Available semaphore found */
irq_unlock(key);
*sem = item;
return 0;
}
num++;
item = sem_array[num];
} while (item != K_END);
if (timeout == K_NO_WAIT) {
irq_unlock(key);
*sem = NULL;
return -EBUSY;
}
struct sem_thread wait_objects[num];
int32_t priority = k_thread_priority_get(_current);
sys_dlist_t list;
sys_dlist_init(&list);
_current->base.swap_data = &list;
for (int i = 0; i < num; i++) {
_init_thread_base(&wait_objects[i].dummy, priority,
_THREAD_DUMMY, 0);
sys_dlist_append(&list, &wait_objects[i].desc.semg_node);
wait_objects[i].desc.thread = _current;
wait_objects[i].desc.sem = sem_array[i];
_pend_thread((struct k_thread *)&wait_objects[i].dummy,
&sem_array[i]->wait_q, timeout);
}
/*
* Pend the current thread on a dummy wait queue, adding it _after_ all
* the dummy threads on the _timeout_q, but expiring on the same tick,
* which will cause it to be _prepended_ to the dummy threads. See
* description of _add_timeout() for details.
*/
_wait_q_t wait_q;
sys_dlist_init(&wait_q);
_pend_current_thread(&wait_q, timeout);
if (_Swap(key) != 0) {
*sem = NULL;
return -EAGAIN;
}
/* The accepted semaphore is the only one left on the list */
struct sem_desc *desc = (struct sem_desc *)sys_dlist_get(&list);
*sem = desc->sem;
return 0;
}
/* cancel all but specified semaphore in list if part of a semphore group */
static void handle_sem_group(struct k_sem *sem, struct sem_thread *sem_thread)
{
struct sem_desc *desc = NULL;
sys_dlist_t *list;
sys_dnode_t *node;
sys_dnode_t *next;
list = (sys_dlist_t *)sem_thread->desc.thread->base.swap_data;
node = sys_dlist_peek_head(list);
__ASSERT(node != NULL, "");
do {
next = sys_dlist_peek_next(list, node);
desc = (struct sem_desc *)node;
sem_thread = CONTAINER_OF(desc, struct sem_thread, desc);
struct k_thread *dummy = (struct k_thread *)&sem_thread->dummy;
/*
* This is tricky: due to the fact that the timeouts expiring
* at the same time are queued in reverse order, we know that,
* since the caller of this function has already verified that
* the timeout of the real thread has not expired and since it
* was queued after the dummy threads, causing it to be the
* first to be unpended, that the timeouts of the dummy threads
* have not expired. Thus, we do not have to handle the case
* where the timeout of the dummy thread might have expired.
*/
_abort_thread_timeout(dummy);
_unpend_thread(dummy);
if (desc->sem != sem) {
sys_dlist_remove(node);
}
node = next;
} while (node != NULL);
/* if node was not NULL, desc is not NULL: no need to check */
/*
* As this code may be executed several times by a semaphore group give
* operation, it is important to ensure that the attempt to ready the
* master thread is done only once.
*/
if (!_is_thread_ready(desc->thread)) {
_abort_thread_timeout(desc->thread);
_mark_thread_as_not_pending(desc->thread);
if (_is_thread_ready(desc->thread)) {
_add_thread_to_ready_q(desc->thread);
}
}
_set_thread_return_value(desc->thread, 0);
}
#else
#define handle_sem_group(sem, thread) 0
#endif
/* returns 1 if a reschedule must take place, 0 otherwise */
static inline int handle_poll_event(struct k_sem *sem)
{
#ifdef CONFIG_POLL
uint32_t state = K_POLL_STATE_SEM_AVAILABLE;
return sem->poll_event ?
_handle_obj_poll_event(&sem->poll_event, state) : 0;
#else
return 0;
#endif
}
static inline void increment_count_up_to_limit(struct k_sem *sem)
{
sem->count += (sem->count != sem->limit);
}
/* returns 1 if _Swap() will need to be invoked, 0 otherwise */
static int do_sem_give(struct k_sem *sem)
{
#ifdef CONFIG_SEMAPHORE_GROUPS
struct k_thread *thread = NULL;
again:
thread = _find_first_thread_to_unpend(&sem->wait_q, thread);
if (!thread) {
increment_count_up_to_limit(sem);
return handle_poll_event(sem);
}
if (unlikely(_is_thread_dummy(thread))) {
/*
* The awakened thread is a dummy struct sem_thread and thus
* was involved in a semaphore group operation.
*/
struct sem_thread *sem_thread = (struct sem_thread *)thread;
struct k_thread *real_thread = sem_thread->desc.thread;
/*
* This is an extremely tricky way of handling the fact that
* the current sem_give might have happened from an ISR while
* the timeout handling code is running, going through the list
* of expired timeouts.
*
* We have to be able to handle all timeouts on a
* k_sem_group_take operation as one. We do that by checking if
* the timeout of the real thread has expired or not. We can do
* this, because of the way the timeouts are queued in the
* kernel's timeout_q: timeouts expiring on the same tick are
* queued in the _reverse_ order that they arrive. It is done
* this way to save time with interrupts locked. By knowing
* this, and by adding the real thread _last_ to the timeout_q,
* we know that it is queued _before_ all the dummy threads
* from the k_sem_group_take operation. This allows us to check
* that, if the real thread's timeout has not expired, then all
* dummy threads' timeouts have not expired either. If the real
* thread's timeout has expired, then the dummy threads'
* timeouts will expire or have expired already during the
* current handling of timeouts, and the timeout code will take
* care of signalling the waiter that its operation has
* timedout. In that case, we look for the next thread not part
* of the same k_sem_group_take operation to give it the
* semaphore.
*/
if (_is_thread_timeout_expired(real_thread)) {
goto again;
}
/*
* Do not dequeue the dummy thread: that will be done when
* looping through the list of dummy waiters in
* handle_sem_group().
*/
handle_sem_group(sem, sem_thread);
} else {
_unpend_thread(thread);
(void)_abort_thread_timeout(thread);
_ready_thread(thread);
_set_thread_return_value(thread, 0);
}
#else
struct k_thread *thread = _unpend_first_thread(&sem->wait_q);
if (!thread) {
increment_count_up_to_limit(sem);
return handle_poll_event(sem);
}
(void)_abort_thread_timeout(thread);
_ready_thread(thread);
_set_thread_return_value(thread, 0);
#endif
return !_is_in_isr() && _must_switch_threads();
}
/*
* This function is meant to be called only by
* _sys_event_logger_put_non_preemptible(), which itself is really meant to be
* called only by _sys_k_event_logger_context_switch(), used within a context
* switch to log the event.
*
* WARNING:
* It must be called with interrupts already locked.
* It cannot be called for a sempahore part of a group.
*/
void _sem_give_non_preemptible(struct k_sem *sem)
{
struct k_thread *thread;
thread = _unpend_first_thread(&sem->wait_q);
if (!thread) {
increment_count_up_to_limit(sem);
return;
}
_abort_thread_timeout(thread);
_ready_thread(thread);
_set_thread_return_value(thread, 0);
}
#ifdef CONFIG_SEMAPHORE_GROUPS
void k_sem_group_give(struct k_sem *sem_array[])
{
int swap_needed = 0;
unsigned int key;
__ASSERT(sem_array[0] != K_END, "Empty semaphore list");
key = irq_lock();
for (int i = 0; sem_array[i] != K_END; i++) {
swap_needed |= do_sem_give(sem_array[i]);
}
if (swap_needed) {
_Swap(key);
} else {
irq_unlock(key);
}
}
void k_sem_group_reset(struct k_sem *sem_array[])
{
unsigned int key;
key = irq_lock();
for (int i = 0; sem_array[i] != K_END; i++) {
sem_array[i]->count = 0;
}
irq_unlock(key);
}
#endif
void k_sem_give(struct k_sem *sem)
{
unsigned int key;
key = irq_lock();
if (do_sem_give(sem)) {
_Swap(key);
} else {
irq_unlock(key);
}
}
int k_sem_take(struct k_sem *sem, int32_t timeout)
{
__ASSERT(!_is_in_isr() || timeout == K_NO_WAIT, "");
unsigned int key = irq_lock();
if (likely(sem->count > 0)) {
sem->count--;
irq_unlock(key);
return 0;
}
if (timeout == K_NO_WAIT) {
irq_unlock(key);
return -EBUSY;
}
_pend_current_thread(&sem->wait_q, timeout);
return _Swap(key);
}