| /* |
| * Copyright (c) 2017 Erwin Rol <erwin@erwinrol.com> |
| * Copyright (c) 2018 Nordic Semiconductor ASA |
| * Copyright (c) 2017 Exati Tecnologia Ltda. |
| * Copyright (c) 2020 STMicroelectronics. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_rng |
| |
| #include <kernel.h> |
| #include <device.h> |
| #include <drivers/entropy.h> |
| #include <random/rand32.h> |
| #include <init.h> |
| #include <sys/__assert.h> |
| #include <sys/util.h> |
| #include <errno.h> |
| #include <soc.h> |
| #include <stm32_ll_bus.h> |
| #include <stm32_ll_rcc.h> |
| #include <stm32_ll_rng.h> |
| #include <stm32_ll_system.h> |
| #include <sys/printk.h> |
| #include <drivers/clock_control.h> |
| #include <drivers/clock_control/stm32_clock_control.h> |
| #include "stm32_hsem.h" |
| |
| #define IRQN DT_INST_IRQN(0) |
| #define IRQ_PRIO DT_INST_IRQ(0, priority) |
| |
| /* |
| * This driver need to take into account all STM32 family: |
| * - simple rng without harware fifo and no DMA. |
| * - Variable delay between two consecutive random numbers |
| * (depending on family and clock settings) |
| * |
| * |
| * Due to the first byte in a stream of bytes being more costly on |
| * some platforms a "water system" inspired algorithm is used to |
| * amortize the cost of the first byte. |
| * |
| * The algorithm will delay generation of entropy until the amount of |
| * bytes goes below THRESHOLD, at which point it will generate entropy |
| * until the BUF_LEN limit is reached. |
| * |
| * The entropy level is checked at the end of every consumption of |
| * entropy. |
| * |
| */ |
| |
| struct rng_pool { |
| uint8_t first_alloc; |
| uint8_t first_read; |
| uint8_t last; |
| uint8_t mask; |
| uint8_t threshold; |
| uint8_t buffer[0]; |
| }; |
| |
| #define RNG_POOL_DEFINE(name, len) uint8_t name[sizeof(struct rng_pool) + (len)] |
| |
| BUILD_ASSERT((CONFIG_ENTROPY_STM32_ISR_POOL_SIZE & |
| (CONFIG_ENTROPY_STM32_ISR_POOL_SIZE - 1)) == 0, |
| "The CONFIG_ENTROPY_STM32_ISR_POOL_SIZE must be a power of 2!"); |
| |
| BUILD_ASSERT((CONFIG_ENTROPY_STM32_THR_POOL_SIZE & |
| (CONFIG_ENTROPY_STM32_THR_POOL_SIZE - 1)) == 0, |
| "The CONFIG_ENTROPY_STM32_THR_POOL_SIZE must be a power of 2!"); |
| |
| struct entropy_stm32_rng_dev_cfg { |
| struct stm32_pclken pclken; |
| }; |
| |
| struct entropy_stm32_rng_dev_data { |
| RNG_TypeDef *rng; |
| const struct device *clock; |
| struct k_sem sem_lock; |
| struct k_sem sem_sync; |
| |
| RNG_POOL_DEFINE(isr, CONFIG_ENTROPY_STM32_ISR_POOL_SIZE); |
| RNG_POOL_DEFINE(thr, CONFIG_ENTROPY_STM32_THR_POOL_SIZE); |
| }; |
| |
| #define DEV_DATA(dev) \ |
| ((struct entropy_stm32_rng_dev_data *)(dev)->data) |
| |
| #define DEV_CFG(dev) \ |
| ((const struct entropy_stm32_rng_dev_cfg *)(dev)->config) |
| |
| |
| static const struct entropy_stm32_rng_dev_cfg entropy_stm32_rng_config = { |
| .pclken = { .bus = DT_INST_CLOCKS_CELL(0, bus), |
| .enr = DT_INST_CLOCKS_CELL(0, bits) }, |
| }; |
| |
| static struct entropy_stm32_rng_dev_data entropy_stm32_rng_data = { |
| .rng = (RNG_TypeDef *)DT_INST_REG_ADDR(0), |
| }; |
| |
| static int entropy_stm32_got_error(RNG_TypeDef *rng) |
| { |
| __ASSERT_NO_MSG(rng != NULL); |
| |
| if (LL_RNG_IsActiveFlag_CECS(rng)) { |
| return 1; |
| } |
| |
| if (LL_RNG_IsActiveFlag_SECS(rng)) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int random_byte_get(void) |
| { |
| int retval = -EAGAIN; |
| unsigned int key; |
| |
| key = irq_lock(); |
| |
| if ((LL_RNG_IsActiveFlag_DRDY(entropy_stm32_rng_data.rng) == 1)) { |
| if (entropy_stm32_got_error(entropy_stm32_rng_data.rng)) { |
| retval = -EIO; |
| } else { |
| retval = LL_RNG_ReadRandData32( |
| entropy_stm32_rng_data.rng); |
| } |
| } |
| |
| irq_unlock(key); |
| |
| return retval; |
| } |
| |
| #pragma GCC push_options |
| #if defined(CONFIG_BT_CTLR_FAST_ENC) |
| #pragma GCC optimize ("Ofast") |
| #endif |
| static uint16_t rng_pool_get(struct rng_pool *rngp, uint8_t *buf, uint16_t len) |
| { |
| uint32_t last = rngp->last; |
| uint32_t mask = rngp->mask; |
| uint8_t *dst = buf; |
| uint32_t first, available; |
| uint32_t other_read_in_progress; |
| unsigned int key; |
| |
| key = irq_lock(); |
| first = rngp->first_alloc; |
| |
| /* |
| * The other_read_in_progress is non-zero if rngp->first_read != first, |
| * which means that lower-priority code (which was interrupted by this |
| * call) already allocated area for read. |
| */ |
| other_read_in_progress = (rngp->first_read ^ first); |
| |
| available = (last - first) & mask; |
| if (available < len) { |
| len = available; |
| } |
| |
| /* |
| * Move alloc index forward to signal, that part of the buffer is |
| * now reserved for this call. |
| */ |
| rngp->first_alloc = (first + len) & mask; |
| irq_unlock(key); |
| |
| while (likely(len--)) { |
| *dst++ = rngp->buffer[first]; |
| first = (first + 1) & mask; |
| } |
| |
| /* |
| * If this call is the last one accessing the pool, move read index |
| * to signal that all allocated regions are now read and could be |
| * overwritten. |
| */ |
| if (likely(!other_read_in_progress)) { |
| key = irq_lock(); |
| rngp->first_read = rngp->first_alloc; |
| irq_unlock(key); |
| } |
| |
| len = dst - buf; |
| available = available - len; |
| if (available <= rngp->threshold) { |
| LL_RNG_EnableIT(entropy_stm32_rng_data.rng); |
| } |
| |
| return len; |
| } |
| #pragma GCC pop_options |
| |
| static int rng_pool_put(struct rng_pool *rngp, uint8_t byte) |
| { |
| uint8_t first = rngp->first_read; |
| uint8_t last = rngp->last; |
| uint8_t mask = rngp->mask; |
| |
| /* Signal error if the pool is full. */ |
| if (((last - first) & mask) == mask) { |
| return -ENOBUFS; |
| } |
| |
| rngp->buffer[last] = byte; |
| rngp->last = (last + 1) & mask; |
| |
| return 0; |
| } |
| |
| static void rng_pool_init(struct rng_pool *rngp, uint16_t size, |
| uint8_t threshold) |
| { |
| rngp->first_alloc = 0U; |
| rngp->first_read = 0U; |
| rngp->last = 0U; |
| rngp->mask = size - 1; |
| rngp->threshold = threshold; |
| } |
| |
| static void stm32_rng_isr(const void *arg) |
| { |
| int byte, ret; |
| |
| ARG_UNUSED(arg); |
| |
| byte = random_byte_get(); |
| if (byte < 0) { |
| return; |
| } |
| |
| ret = rng_pool_put((struct rng_pool *)(entropy_stm32_rng_data.isr), |
| byte); |
| if (ret < 0) { |
| ret = rng_pool_put( |
| (struct rng_pool *)(entropy_stm32_rng_data.thr), |
| byte); |
| if (ret < 0) { |
| LL_RNG_DisableIT(entropy_stm32_rng_data.rng); |
| } |
| |
| k_sem_give(&entropy_stm32_rng_data.sem_sync); |
| } |
| } |
| |
| static int entropy_stm32_rng_get_entropy(const struct device *device, |
| uint8_t *buf, |
| uint16_t len) |
| { |
| /* Check if this API is called on correct driver instance. */ |
| __ASSERT_NO_MSG(&entropy_stm32_rng_data == DEV_DATA(device)); |
| |
| while (len) { |
| uint16_t bytes; |
| |
| k_sem_take(&entropy_stm32_rng_data.sem_lock, K_FOREVER); |
| bytes = rng_pool_get( |
| (struct rng_pool *)(entropy_stm32_rng_data.thr), |
| buf, len); |
| k_sem_give(&entropy_stm32_rng_data.sem_lock); |
| |
| if (bytes == 0U) { |
| /* Pool is empty: Sleep until next interrupt. */ |
| k_sem_take(&entropy_stm32_rng_data.sem_sync, K_FOREVER); |
| continue; |
| } |
| |
| len -= bytes; |
| buf += bytes; |
| } |
| |
| return 0; |
| } |
| |
| static int entropy_stm32_rng_get_entropy_isr(const struct device *dev, |
| uint8_t *buf, |
| uint16_t len, |
| uint32_t flags) |
| { |
| uint16_t cnt = len; |
| |
| /* Check if this API is called on correct driver instance. */ |
| __ASSERT_NO_MSG(&entropy_stm32_rng_data == DEV_DATA(dev)); |
| |
| if (likely((flags & ENTROPY_BUSYWAIT) == 0U)) { |
| return rng_pool_get( |
| (struct rng_pool *)(entropy_stm32_rng_data.isr), |
| buf, len); |
| } |
| |
| if (len) { |
| unsigned int key; |
| int irq_enabled; |
| |
| key = irq_lock(); |
| irq_enabled = irq_is_enabled(IRQN); |
| irq_disable(IRQN); |
| irq_unlock(key); |
| |
| /* Clear NVIC pending bit. This ensures that a subsequent |
| * RNG event will set the Cortex-M single-bit event register |
| * to 1 (the bit is set when NVIC pending IRQ status is |
| * changed from 0 to 1) |
| */ |
| NVIC_ClearPendingIRQ(IRQN); |
| |
| do { |
| int byte; |
| |
| while (LL_RNG_IsActiveFlag_DRDY( |
| entropy_stm32_rng_data.rng) != 1) { |
| /* |
| * To guarantee waking up from the event, the |
| * SEV-On-Pend feature must be enabled (enabled |
| * during ARCH initialization). |
| * |
| * DSB is recommended by spec before WFE (to |
| * guarantee completion of memory transactions) |
| */ |
| __DSB(); |
| __WFE(); |
| __SEV(); |
| __WFE(); |
| } |
| |
| byte = random_byte_get(); |
| NVIC_ClearPendingIRQ(IRQN); |
| |
| if (byte < 0) { |
| continue; |
| } |
| |
| buf[--len] = byte; |
| } while (len); |
| |
| if (irq_enabled) { |
| irq_enable(IRQN); |
| } |
| } |
| |
| return cnt; |
| } |
| |
| static int entropy_stm32_rng_init(const struct device *dev) |
| { |
| struct entropy_stm32_rng_dev_data *dev_data; |
| const struct entropy_stm32_rng_dev_cfg *dev_cfg; |
| int res; |
| |
| __ASSERT_NO_MSG(dev != NULL); |
| |
| dev_data = DEV_DATA(dev); |
| dev_cfg = DEV_CFG(dev); |
| |
| __ASSERT_NO_MSG(dev_data != NULL); |
| __ASSERT_NO_MSG(dev_cfg != NULL); |
| |
| #if CONFIG_SOC_SERIES_STM32L4X |
| /* Configure PLLSA11 to enable 48M domain */ |
| LL_RCC_PLLSAI1_ConfigDomain_48M(LL_RCC_PLLSOURCE_MSI, |
| LL_RCC_PLLM_DIV_1, |
| 24, LL_RCC_PLLSAI1Q_DIV_2); |
| |
| /* Enable PLLSA1 */ |
| LL_RCC_PLLSAI1_Enable(); |
| |
| /* Enable PLLSAI1 output mapped on 48MHz domain clock */ |
| LL_RCC_PLLSAI1_EnableDomain_48M(); |
| |
| /* Wait for PLLSA1 ready flag */ |
| while (LL_RCC_PLLSAI1_IsReady() != 1) { |
| } |
| |
| /* Write the peripherals independent clock configuration register : |
| * choose PLLSAI1 source as the 48 MHz clock is needed for the RNG |
| * Linear Feedback Shift Register |
| */ |
| LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_PLLSAI1); |
| #elif defined(RCC_CR2_HSI48ON) || defined(RCC_CR_HSI48ON) \ |
| || defined(RCC_CRRCR_HSI48ON) |
| |
| #if CONFIG_SOC_SERIES_STM32L0X |
| /* We need SYSCFG to control VREFINT, so make sure it is clocked */ |
| if (!LL_APB2_GRP1_IsEnabledClock(LL_APB2_GRP1_PERIPH_SYSCFG)) { |
| return -EINVAL; |
| } |
| /* HSI48 requires VREFINT (see RM0376 section 7.2.4). */ |
| LL_SYSCFG_VREFINT_EnableHSI48(); |
| #endif /* CONFIG_SOC_SERIES_STM32L0X */ |
| |
| z_stm32_hsem_lock(CFG_HW_CLK48_CONFIG_SEMID, HSEM_LOCK_DEFAULT_RETRY); |
| /* Use the HSI48 for the RNG */ |
| LL_RCC_HSI48_Enable(); |
| while (!LL_RCC_HSI48_IsReady()) { |
| /* Wait for HSI48 to become ready */ |
| } |
| |
| LL_RCC_SetRNGClockSource(LL_RCC_RNG_CLKSOURCE_HSI48); |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32WBX) |
| /* Specially for STM32WB, don't unlock the HSEM to prevent M0 core |
| * to disable HSI48 clock used for RNG. |
| */ |
| z_stm32_hsem_unlock(CFG_HW_CLK48_CONFIG_SEMID); |
| #endif /* CONFIG_SOC_SERIES_STM32WBX */ |
| |
| #endif /* CONFIG_SOC_SERIES_STM32L4X */ |
| |
| dev_data->clock = device_get_binding(STM32_CLOCK_CONTROL_NAME); |
| __ASSERT_NO_MSG(dev_data->clock != NULL); |
| |
| res = clock_control_on(dev_data->clock, |
| (clock_control_subsys_t *)&dev_cfg->pclken); |
| __ASSERT_NO_MSG(res == 0); |
| |
| LL_RNG_EnableIT(dev_data->rng); |
| |
| LL_RNG_Enable(dev_data->rng); |
| |
| |
| |
| /* Locking semaphore initialized to 1 (unlocked) */ |
| k_sem_init(&dev_data->sem_lock, 1, 1); |
| |
| /* Synching semaphore */ |
| k_sem_init(&dev_data->sem_sync, 0, 1); |
| |
| rng_pool_init((struct rng_pool *)(dev_data->thr), |
| CONFIG_ENTROPY_STM32_THR_POOL_SIZE, |
| CONFIG_ENTROPY_STM32_THR_THRESHOLD); |
| rng_pool_init((struct rng_pool *)(dev_data->isr), |
| CONFIG_ENTROPY_STM32_ISR_POOL_SIZE, |
| CONFIG_ENTROPY_STM32_ISR_THRESHOLD); |
| |
| IRQ_CONNECT(IRQN, IRQ_PRIO, stm32_rng_isr, &entropy_stm32_rng_data, 0); |
| irq_enable(IRQN); |
| |
| return 0; |
| } |
| |
| static const struct entropy_driver_api entropy_stm32_rng_api = { |
| .get_entropy = entropy_stm32_rng_get_entropy, |
| .get_entropy_isr = entropy_stm32_rng_get_entropy_isr |
| }; |
| |
| DEVICE_DT_INST_DEFINE(0, |
| entropy_stm32_rng_init, device_pm_control_nop, |
| &entropy_stm32_rng_data, &entropy_stm32_rng_config, |
| PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, |
| &entropy_stm32_rng_api); |