| /* |
| * Copyright 2022 NXP |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <zephyr/drivers/disk.h> |
| #include <zephyr/drivers/sdhc.h> |
| #include <zephyr/logging/log.h> |
| #include <zephyr/sd/sd.h> |
| #include <zephyr/sd/sd_spec.h> |
| #include <zephyr/sys/byteorder.h> |
| #include <zephyr/kernel.h> |
| |
| #include "sd_utils.h" |
| |
| LOG_MODULE_DECLARE(sd, CONFIG_SD_LOG_LEVEL); |
| |
| /* Read card status. Return 0 if card is inactive */ |
| int sdmmc_read_status(struct sd_card *card) |
| { |
| struct sdhc_command cmd = {0}; |
| int ret; |
| |
| cmd.opcode = SD_SEND_STATUS; |
| if (!card->host_props.is_spi) { |
| cmd.arg = (card->relative_addr << 16U); |
| } |
| cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R2); |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| return SD_RETRY; |
| } |
| if (card->host_props.is_spi) { |
| /* Check R2 response bits */ |
| if ((cmd.response[0U] & SDHC_SPI_R2_CARD_LOCKED) || |
| (cmd.response[0U] & SDHC_SPI_R2_UNLOCK_FAIL)) { |
| return -EACCES; |
| } else if ((cmd.response[0U] & SDHC_SPI_R2_WP_VIOLATION) || |
| (cmd.response[0U] & SDHC_SPI_R2_ERASE_PARAM) || |
| (cmd.response[0U] & SDHC_SPI_R2_OUT_OF_RANGE)) { |
| return -EINVAL; |
| } else if ((cmd.response[0U] & SDHC_SPI_R2_ERR) || |
| (cmd.response[0U] & SDHC_SPI_R2_CC_ERR) || |
| (cmd.response[0U] & SDHC_SPI_R2_ECC_FAIL)) { |
| return -EIO; |
| } |
| /* Otherwise, no error in R2 response */ |
| return 0; |
| } |
| /* Otherwise, check native card response */ |
| if ((cmd.response[0U] & SD_R1_RDY_DATA) && |
| (SD_R1_CURRENT_STATE(cmd.response[0U]) == SDMMC_R1_TRANSFER)) { |
| return 0; |
| } |
| /* Valid response, the card is busy */ |
| return -EBUSY; |
| } |
| |
| /* Waits for SD card to be ready for data. Returns 0 if card is ready */ |
| int sdmmc_wait_ready(struct sd_card *card) |
| { |
| int ret, timeout = CONFIG_SD_DATA_TIMEOUT * 1000; |
| bool busy = true; |
| |
| do { |
| busy = sdhc_card_busy(card->sdhc); |
| if (!busy) { |
| /* Check card status */ |
| ret = sd_retry(sdmmc_read_status, card, CONFIG_SD_RETRY_COUNT); |
| busy = (ret != 0); |
| } else { |
| /* Delay 125us before polling again */ |
| k_busy_wait(125); |
| timeout -= 125; |
| } |
| } while (busy && (timeout > 0)); |
| return busy; |
| } |
| |
| static inline void sdmmc_decode_csd(struct sd_csd *csd, uint32_t *raw_csd, uint32_t *blk_count, |
| uint32_t *blk_size) |
| { |
| uint32_t tmp_blk_count, tmp_blk_size; |
| |
| csd->csd_structure = (uint8_t)((raw_csd[3U] & 0xC0000000U) >> 30U); |
| csd->read_time1 = (uint8_t)((raw_csd[3U] & 0xFF0000U) >> 16U); |
| csd->read_time2 = (uint8_t)((raw_csd[3U] & 0xFF00U) >> 8U); |
| csd->xfer_rate = (uint8_t)(raw_csd[3U] & 0xFFU); |
| csd->cmd_class = (uint16_t)((raw_csd[2U] & 0xFFF00000U) >> 20U); |
| csd->read_blk_len = (uint8_t)((raw_csd[2U] & 0xF0000U) >> 16U); |
| if (raw_csd[2U] & 0x8000U) { |
| csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; |
| } |
| if (raw_csd[2U] & 0x4000U) { |
| csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; |
| } |
| if (raw_csd[2U] & 0x2000U) { |
| csd->flags |= SD_CSD_READ_BLK_MISALIGN_FLAG; |
| } |
| if (raw_csd[2U] & 0x1000U) { |
| csd->flags |= SD_CSD_DSR_IMPLEMENTED_FLAG; |
| } |
| |
| switch (csd->csd_structure) { |
| case 0: |
| csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FFU) << 2U); |
| csd->device_size |= (uint32_t)((raw_csd[1U] & 0xC0000000U) >> 30U); |
| csd->read_current_min = (uint8_t)((raw_csd[1U] & 0x38000000U) >> 27U); |
| csd->read_current_max = (uint8_t)((raw_csd[1U] & 0x7000000U) >> 24U); |
| csd->write_current_min = (uint8_t)((raw_csd[1U] & 0xE00000U) >> 20U); |
| csd->write_current_max = (uint8_t)((raw_csd[1U] & 0x1C0000U) >> 18U); |
| csd->dev_size_mul = (uint8_t)((raw_csd[1U] & 0x38000U) >> 15U); |
| |
| /* Get card total block count and block size. */ |
| tmp_blk_count = ((csd->device_size + 1U) << (csd->dev_size_mul + 2U)); |
| tmp_blk_size = (1U << (csd->read_blk_len)); |
| if (tmp_blk_size != SDMMC_DEFAULT_BLOCK_SIZE) { |
| tmp_blk_count = (tmp_blk_count * tmp_blk_size); |
| tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; |
| tmp_blk_count = (tmp_blk_count / tmp_blk_size); |
| } |
| if (blk_count) { |
| *blk_count = tmp_blk_count; |
| } |
| if (blk_size) { |
| *blk_size = tmp_blk_size; |
| } |
| break; |
| case 1: |
| tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; |
| |
| csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FU) << 16U); |
| csd->device_size |= (uint32_t)((raw_csd[1U] & 0xFFFF0000U) >> 16U); |
| |
| tmp_blk_count = ((csd->device_size + 1U) * 1024U); |
| if (blk_count) { |
| *blk_count = tmp_blk_count; |
| } |
| if (blk_size) { |
| *blk_size = tmp_blk_size; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| if ((uint8_t)((raw_csd[1U] & 0x4000U) >> 14U)) { |
| csd->flags |= SD_CSD_ERASE_BLK_EN_FLAG; |
| } |
| csd->erase_size = (uint8_t)((raw_csd[1U] & 0x3F80U) >> 7U); |
| csd->write_prtect_size = (uint8_t)(raw_csd[1U] & 0x7FU); |
| csd->write_speed_factor = (uint8_t)((raw_csd[0U] & 0x1C000000U) >> 26U); |
| csd->write_blk_len = (uint8_t)((raw_csd[0U] & 0x3C00000U) >> 22U); |
| if ((uint8_t)((raw_csd[0U] & 0x200000U) >> 21U)) { |
| csd->flags |= SD_CSD_WRITE_BLK_PARTIAL_FLAG; |
| } |
| if ((uint8_t)((raw_csd[0U] & 0x8000U) >> 15U)) { |
| csd->flags |= SD_CSD_FILE_FMT_GRP_FLAG; |
| } |
| if ((uint8_t)((raw_csd[0U] & 0x4000U) >> 14U)) { |
| csd->flags |= SD_CSD_COPY_FLAG; |
| } |
| if ((uint8_t)((raw_csd[0U] & 0x2000U) >> 13U)) { |
| csd->flags |= SD_CSD_PERMANENT_WRITE_PROTECT_FLAG; |
| } |
| if ((uint8_t)((raw_csd[0U] & 0x1000U) >> 12U)) { |
| csd->flags |= SD_CSD_TMP_WRITE_PROTECT_FLAG; |
| } |
| csd->file_fmt = (uint8_t)((raw_csd[0U] & 0xC00U) >> 10U); |
| } |
| |
| static inline void sdmmc_decode_cid(struct sd_cid *cid, uint32_t *raw_cid) |
| { |
| cid->manufacturer = (uint8_t)((raw_cid[3U] & 0xFF000000U) >> 24U); |
| cid->application = (uint16_t)((raw_cid[3U] & 0xFFFF00U) >> 8U); |
| |
| cid->name[0U] = (uint8_t)((raw_cid[3U] & 0xFFU)); |
| cid->name[1U] = (uint8_t)((raw_cid[2U] & 0xFF000000U) >> 24U); |
| cid->name[2U] = (uint8_t)((raw_cid[2U] & 0xFF0000U) >> 16U); |
| cid->name[3U] = (uint8_t)((raw_cid[2U] & 0xFF00U) >> 8U); |
| cid->name[4U] = (uint8_t)((raw_cid[2U] & 0xFFU)); |
| |
| cid->version = (uint8_t)((raw_cid[1U] & 0xFF000000U) >> 24U); |
| |
| cid->ser_num = (uint32_t)((raw_cid[1U] & 0xFFFFFFU) << 8U); |
| cid->ser_num |= (uint32_t)((raw_cid[0U] & 0xFF000000U) >> 24U); |
| |
| cid->date = (uint16_t)((raw_cid[0U] & 0xFFF00U) >> 8U); |
| } |
| |
| /* Reads card id/csd register (in SPI mode) */ |
| static int sdmmc_spi_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t *cxd) |
| { |
| struct sdhc_command cmd = {0}; |
| struct sdhc_data data = {0}; |
| int ret, i; |
| /* Use internal card buffer for data transfer */ |
| uint32_t *cxd_be = (uint32_t *)card->card_buffer; |
| |
| cmd.opcode = opcode; |
| cmd.arg = 0; |
| cmd.response_type = SD_SPI_RSP_TYPE_R1; |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| /* CID/CSD is 16 bytes */ |
| data.block_size = 16; |
| data.blocks = 1U; |
| data.data = cxd_be; |
| data.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| ret = sdhc_request(card->sdhc, &cmd, &data); |
| if (ret) { |
| LOG_DBG("CMD%d failed: %d", opcode, ret); |
| } |
| /* Swap endianness of CXD */ |
| for (i = 0; i < 4; i++) { |
| cxd[3 - i] = sys_be32_to_cpu(cxd_be[i]); |
| } |
| return 0; |
| } |
| |
| /* Reads card id/csd register (native SD mode */ |
| static int sdmmc_read_cxd(struct sd_card *card, uint32_t opcode, uint32_t rca, uint32_t *cxd) |
| { |
| struct sdhc_command cmd = {0}; |
| int ret; |
| |
| cmd.opcode = opcode; |
| cmd.arg = (rca << 16); |
| cmd.response_type = SD_RSP_TYPE_R2; |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| LOG_DBG("CMD%d failed: %d", opcode, ret); |
| return ret; |
| } |
| /* CSD/CID is 16 bytes */ |
| memcpy(cxd, cmd.response, 16); |
| return 0; |
| } |
| |
| /* Read card specific data register */ |
| int sdmmc_read_csd(struct sd_card *card) |
| { |
| int ret; |
| uint32_t csd[4]; |
| /* Keep CSD on stack for reduced RAM usage */ |
| struct sd_csd card_csd; |
| |
| if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { |
| ret = sdmmc_spi_read_cxd(card, SD_SEND_CSD, csd); |
| } else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { |
| ret = sdmmc_read_cxd(card, SD_SEND_CSD, card->relative_addr, csd); |
| } else { |
| /* The host controller must run in either native or SPI mode */ |
| return -ENOTSUP; |
| } |
| if (ret) { |
| return ret; |
| } |
| sdmmc_decode_csd(&card_csd, csd, &card->block_count, &card->block_size); |
| LOG_DBG("Card block count %d, block size %d", card->block_count, card->block_size); |
| return 0; |
| } |
| |
| /* Reads card identification register, and decodes it */ |
| int card_read_cid(struct sd_card *card) |
| { |
| uint32_t cid[4]; |
| int ret; |
| #if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK) |
| /* Keep CID on stack for reduced RAM usage */ |
| struct sd_cid card_cid; |
| #endif |
| |
| if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { |
| ret = sdmmc_spi_read_cxd(card, SD_SEND_CID, cid); |
| } else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { |
| ret = sdmmc_read_cxd(card, SD_ALL_SEND_CID, 0, cid); |
| } else { |
| /* The host controller must run in either native or SPI mode */ |
| return -ENOTSUP; |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| #if defined(CONFIG_MMC_STACK) |
| if (card->type == CARD_MMC) { |
| LOG_INF("CID decoding not supported for MMC"); |
| return 0; |
| } |
| #endif |
| #if defined(CONFIG_SDMMC_STACK) || defined(CONFIG_SDIO_STACK) |
| /* Decode SD CID */ |
| sdmmc_decode_cid(&card_cid, cid); |
| LOG_DBG("Card MID: 0x%x, OID: %c%c", card_cid.manufacturer, |
| ((char *)&card_cid.application)[0], ((char *)&card_cid.application)[1]); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Implements signal voltage switch procedure described in section 3.6.1 of |
| * SD specification. |
| */ |
| int sdmmc_switch_voltage(struct sd_card *card) |
| { |
| int ret, sd_clock; |
| struct sdhc_command cmd = {0}; |
| |
| /* Check to make sure card supports 1.8V */ |
| if (!(card->flags & SD_1800MV_FLAG)) { |
| /* Do not attempt to switch voltages */ |
| LOG_WRN("SD card reports as SDHC/SDXC, but does not support 1.8V"); |
| return 0; |
| } |
| /* Send CMD11 to request a voltage switch */ |
| cmd.opcode = SD_VOL_SWITCH; |
| cmd.arg = 0U; |
| cmd.response_type = SD_RSP_TYPE_R1; |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| LOG_DBG("CMD11 failed"); |
| return ret; |
| } |
| /* Check R1 response for error */ |
| ret = sd_check_response(&cmd); |
| if (ret) { |
| LOG_DBG("SD response to CMD11 indicates error"); |
| return ret; |
| } |
| /* |
| * Card should drive CMD and DAT[3:0] signals low at the next clock |
| * cycle. Some cards will only drive these |
| * lines low briefly, so we should check as soon as possible |
| */ |
| if (!(sdhc_card_busy(card->sdhc))) { |
| /* Delay 1ms to allow card to drive lines low */ |
| sd_delay(1); |
| if (!sdhc_card_busy(card->sdhc)) { |
| /* Card did not drive CMD and DAT lines low */ |
| LOG_DBG("Card did not drive DAT lines low"); |
| return -EAGAIN; |
| } |
| } |
| /* |
| * Per SD spec (section "Timing to Switch Signal Voltage"), |
| * host must gate clock at least 5ms. |
| */ |
| sd_clock = card->bus_io.clock; |
| card->bus_io.clock = 0; |
| ret = sdhc_set_io(card->sdhc, &card->bus_io); |
| if (ret) { |
| LOG_DBG("Failed to gate SD clock"); |
| return ret; |
| } |
| /* Now that clock is gated, change signal voltage */ |
| card->bus_io.signal_voltage = SD_VOL_1_8_V; |
| ret = sdhc_set_io(card->sdhc, &card->bus_io); |
| if (ret) { |
| LOG_DBG("Failed to switch SD host to 1.8V"); |
| return ret; |
| } |
| sd_delay(10); /* Gate for 10ms, even though spec requires 5 */ |
| /* Restart the clock */ |
| card->bus_io.clock = sd_clock; |
| ret = sdhc_set_io(card->sdhc, &card->bus_io); |
| if (ret) { |
| LOG_ERR("Failed to restart SD clock"); |
| return ret; |
| } |
| /* |
| * If SD does not drive at least one of |
| * DAT[3:0] high within 1ms, switch failed |
| */ |
| sd_delay(1); |
| if (sdhc_card_busy(card->sdhc)) { |
| LOG_DBG("Card failed to switch voltages"); |
| return -EAGAIN; |
| } |
| card->card_voltage = SD_VOL_1_8_V; |
| LOG_INF("Card switched to 1.8V signaling"); |
| return 0; |
| } |
| |
| /* |
| * Requests card to publish a new relative card address, and move from |
| * identification to data mode |
| */ |
| int sdmmc_request_rca(struct sd_card *card) |
| { |
| struct sdhc_command cmd = {0}; |
| int ret; |
| |
| cmd.opcode = SD_SEND_RELATIVE_ADDR; |
| cmd.arg = 0; |
| cmd.response_type = SD_RSP_TYPE_R6; |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| /* Issue CMD3 until card responds with nonzero RCA */ |
| do { |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| LOG_DBG("CMD3 failed"); |
| return ret; |
| } |
| /* Card RCA is in upper 16 bits of response */ |
| card->relative_addr = ((cmd.response[0U] & 0xFFFF0000) >> 16U); |
| } while (card->relative_addr == 0U); |
| LOG_DBG("Card relative addr: %d", card->relative_addr); |
| return 0; |
| } |
| |
| /* |
| * Selects card, moving it into data transfer mode |
| */ |
| int sdmmc_select_card(struct sd_card *card) |
| { |
| struct sdhc_command cmd = {0}; |
| int ret; |
| |
| cmd.opcode = SD_SELECT_CARD; |
| cmd.arg = ((card->relative_addr) << 16U); |
| cmd.response_type = SD_RSP_TYPE_R1; |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| LOG_DBG("CMD7 failed"); |
| return ret; |
| } |
| ret = sd_check_response(&cmd); |
| if (ret) { |
| LOG_DBG("CMD7 reports error"); |
| return ret; |
| } |
| return 0; |
| } |
| |
| /* Helper to send SD app command */ |
| int card_app_command(struct sd_card *card, int relative_card_address) |
| { |
| struct sdhc_command cmd = {0}; |
| int ret; |
| |
| cmd.opcode = SD_APP_CMD; |
| cmd.arg = relative_card_address << 16U; |
| cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| ret = sdhc_request(card->sdhc, &cmd, NULL); |
| if (ret) { |
| /* We want to retry transmission */ |
| return SD_RETRY; |
| } |
| ret = sd_check_response(&cmd); |
| if (ret) { |
| LOG_WRN("SD app command failed with R1 response of 0x%X", cmd.response[0]); |
| return -EIO; |
| } |
| /* Check application command flag to determine if card is ready for APP CMD */ |
| if ((!card->host_props.is_spi) && !(cmd.response[0U] & SD_R1_APP_CMD)) { |
| /* Command succeeded, but card not ready for app command. No APP CMD support */ |
| return -ENOTSUP; |
| } |
| return 0; |
| } |
| |
| static int card_read(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks) |
| { |
| int ret; |
| struct sdhc_command cmd = {0}; |
| struct sdhc_data data = {0}; |
| |
| /* |
| * Note: The SD specification allows for CMD23 to be sent before a |
| * transfer in order to set the block length (often preferable). |
| * The specification also requires that CMD12 be sent to stop a transfer. |
| * However, the host specification defines support for "Auto CMD23" and |
| * "Auto CMD12", where the host sends CMD23 and CMD12 automatically to |
| * remove the overhead of interrupts in software from sending these |
| * commands. Therefore, we will not handle CMD12 or CMD23 at this layer. |
| * The host SDHC driver is expected to recognize CMD17, CMD18, CMD24, |
| * and CMD25 as special read/write commands and handle CMD23 and |
| * CMD12 appropriately. |
| */ |
| cmd.opcode = (num_blocks == 1U) ? SD_READ_SINGLE_BLOCK : SD_READ_MULTIPLE_BLOCK; |
| if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) { |
| /* SDSC cards require block size in bytes, not blocks */ |
| cmd.arg = start_block * card->block_size; |
| } else { |
| cmd.arg = start_block; |
| } |
| cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| cmd.retries = CONFIG_SD_DATA_RETRIES; |
| |
| data.block_addr = start_block; |
| data.block_size = card->block_size; |
| data.blocks = num_blocks; |
| data.data = rbuf; |
| data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; |
| |
| LOG_DBG("READ: Sector = %u, Count = %u", start_block, num_blocks); |
| |
| ret = sdhc_request(card->sdhc, &cmd, &data); |
| if (ret) { |
| LOG_ERR("Failed to read from SDMMC %d", ret); |
| return ret; |
| } |
| |
| /* Verify card is back in transfer state after read */ |
| ret = sdmmc_wait_ready(card); |
| if (ret) { |
| LOG_ERR("Card did not return to ready state"); |
| k_mutex_unlock(&card->lock); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /* Reads data from SD card memory card */ |
| int card_read_blocks(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks) |
| { |
| int ret; |
| uint32_t rlen; |
| uint32_t sector; |
| uint8_t *buf_offset; |
| |
| if ((start_block + num_blocks) > card->block_count) { |
| return -EINVAL; |
| } |
| if (card->type == CARD_SDIO) { |
| LOG_WRN("SDIO does not support MMC commands"); |
| return -ENOTSUP; |
| } |
| ret = k_mutex_lock(&card->lock, K_NO_WAIT); |
| if (ret) { |
| LOG_WRN("Could not get SD card mutex"); |
| return -EBUSY; |
| } |
| |
| /* |
| * If the buffer we are provided with is aligned, we can use it |
| * directly. Otherwise, we need to use the card's internal buffer |
| * and memcpy the data back out |
| */ |
| if ((((uintptr_t)rbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) { |
| /* lower bits of address are set, not aligned. Use internal buffer */ |
| LOG_DBG("Unaligned buffer access to SD card may incur performance penalty"); |
| if (sizeof(card->card_buffer) < card->block_size) { |
| LOG_ERR("Card buffer size needs to be increased for " |
| "unaligned writes to work"); |
| k_mutex_unlock(&card->lock); |
| return -ENOBUFS; |
| } |
| rlen = sizeof(card->card_buffer) / card->block_size; |
| sector = 0; |
| buf_offset = rbuf; |
| while (sector < num_blocks) { |
| /* Read from disk to card buffer */ |
| ret = card_read(card, card->card_buffer, sector + start_block, rlen); |
| if (ret) { |
| LOG_ERR("Write failed"); |
| k_mutex_unlock(&card->lock); |
| return ret; |
| } |
| /* Copy data from card buffer */ |
| memcpy(buf_offset, card->card_buffer, rlen * card->block_size); |
| /* Increase sector count and buffer offset */ |
| sector += rlen; |
| buf_offset += rlen * card->block_size; |
| } |
| } else { |
| /* Aligned buffers can be used directly */ |
| ret = card_read(card, rbuf, start_block, num_blocks); |
| if (ret) { |
| LOG_ERR("Card read failed"); |
| k_mutex_unlock(&card->lock); |
| return ret; |
| } |
| } |
| k_mutex_unlock(&card->lock); |
| return 0; |
| } |
| |
| /* |
| * Sends ACMD22 (number of written blocks) to see how many blocks were written |
| * to a card |
| */ |
| static int card_query_written(struct sd_card *card, uint32_t *num_written) |
| { |
| int ret; |
| struct sdhc_command cmd = {0}; |
| struct sdhc_data data = {0}; |
| uint32_t *blocks = (uint32_t *)card->card_buffer; |
| |
| ret = card_app_command(card, card->relative_addr); |
| if (ret) { |
| LOG_DBG("App CMD for ACMD22 failed"); |
| return ret; |
| } |
| |
| cmd.opcode = SD_APP_SEND_NUM_WRITTEN_BLK; |
| cmd.arg = 0; |
| cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| |
| data.block_size = 4U; |
| data.blocks = 1U; |
| data.data = blocks; |
| data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; |
| |
| ret = sdhc_request(card->sdhc, &cmd, &data); |
| if (ret) { |
| LOG_DBG("ACMD22 failed: %d", ret); |
| return ret; |
| } |
| ret = sd_check_response(&cmd); |
| if (ret) { |
| LOG_DBG("ACMD22 reports error"); |
| return ret; |
| } |
| |
| /* Decode blocks */ |
| *num_written = sys_be32_to_cpu(blocks[0]); |
| return 0; |
| } |
| |
| static int card_write(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block, |
| uint32_t num_blocks) |
| { |
| int ret; |
| uint32_t blocks; |
| struct sdhc_command cmd = {0}; |
| struct sdhc_data data = {0}; |
| |
| /* |
| * See the note in card_read() above. We will not issue CMD23 |
| * or CMD12, and expect the host to handle those details. |
| */ |
| cmd.opcode = (num_blocks == 1) ? SD_WRITE_SINGLE_BLOCK : SD_WRITE_MULTIPLE_BLOCK; |
| if (!(card->flags & SD_HIGH_CAPACITY_FLAG)) { |
| /* SDSC cards require block size in bytes, not blocks */ |
| cmd.arg = start_block * card->block_size; |
| } else { |
| cmd.arg = start_block; |
| } |
| cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); |
| cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; |
| cmd.retries = CONFIG_SD_DATA_RETRIES; |
| |
| data.block_addr = start_block; |
| data.block_size = card->block_size; |
| data.blocks = num_blocks; |
| data.data = (uint8_t *)wbuf; |
| data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; |
| |
| LOG_DBG("WRITE: Sector = %u, Count = %u", start_block, num_blocks); |
| |
| ret = sdhc_request(card->sdhc, &cmd, &data); |
| if (ret) { |
| LOG_DBG("Write failed: %d", ret); |
| ret = sdmmc_wait_ready(card); |
| if (ret) { |
| return ret; |
| } |
| /* Query card to see how many blocks were actually written */ |
| ret = card_query_written(card, &blocks); |
| if (ret) { |
| return ret; |
| } |
| LOG_ERR("Only %d blocks of %d were written", blocks, num_blocks); |
| return -EIO; |
| } |
| /* Verify card is back in transfer state after write */ |
| ret = sdmmc_wait_ready(card); |
| if (ret) { |
| LOG_ERR("Card did not return to ready state"); |
| return -ETIMEDOUT; |
| } |
| return 0; |
| } |
| |
| /* Writes data to SD card memory card */ |
| int card_write_blocks(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block, |
| uint32_t num_blocks) |
| { |
| int ret; |
| uint32_t wlen; |
| uint32_t sector; |
| const uint8_t *buf_offset; |
| |
| if ((start_block + num_blocks) > card->block_count) { |
| return -EINVAL; |
| } |
| if (card->type == CARD_SDIO) { |
| LOG_WRN("SDIO does not support MMC commands"); |
| return -ENOTSUP; |
| } |
| ret = k_mutex_lock(&card->lock, K_NO_WAIT); |
| if (ret) { |
| LOG_WRN("Could not get SD card mutex"); |
| return -EBUSY; |
| } |
| /* |
| * If the buffer we are provided with is aligned, we can use it |
| * directly. Otherwise, we need to use the card's internal buffer |
| * and memcpy the data back out |
| */ |
| if ((((uintptr_t)wbuf) & (CONFIG_SDHC_BUFFER_ALIGNMENT - 1)) != 0) { |
| /* lower bits of address are set, not aligned. Use internal buffer */ |
| LOG_DBG("Unaligned buffer access to SD card may incur performance penalty"); |
| if (sizeof(card->card_buffer) < card->block_size) { |
| LOG_ERR("Card buffer size needs to be increased for " |
| "unaligned writes to work"); |
| k_mutex_unlock(&card->lock); |
| return -ENOBUFS; |
| } |
| wlen = sizeof(card->card_buffer) / card->block_size; |
| sector = 0; |
| buf_offset = wbuf; |
| while (sector < num_blocks) { |
| /* Copy data into card buffer */ |
| memcpy(card->card_buffer, buf_offset, wlen * card->block_size); |
| /* Write card buffer to disk */ |
| ret = card_write(card, card->card_buffer, sector + start_block, wlen); |
| if (ret) { |
| LOG_ERR("Write failed"); |
| k_mutex_unlock(&card->lock); |
| return ret; |
| } |
| /* Increase sector count and buffer offset */ |
| sector += wlen; |
| buf_offset += wlen * card->block_size; |
| } |
| } else { |
| /* We can use aligned buffers directly */ |
| ret = card_write(card, wbuf, start_block, num_blocks); |
| if (ret) { |
| LOG_ERR("Write failed"); |
| k_mutex_unlock(&card->lock); |
| return ret; |
| } |
| } |
| k_mutex_unlock(&card->lock); |
| return 0; |
| } |
| |
| /* IO Control handler for SD MMC */ |
| int card_ioctl(struct sd_card *card, uint8_t cmd, void *buf) |
| { |
| switch (cmd) { |
| case DISK_IOCTL_GET_SECTOR_COUNT: |
| (*(uint32_t *)buf) = card->block_count; |
| break; |
| case DISK_IOCTL_GET_SECTOR_SIZE: |
| case DISK_IOCTL_GET_ERASE_BLOCK_SZ: |
| (*(uint32_t *)buf) = card->block_size; |
| break; |
| case DISK_IOCTL_CTRL_SYNC: |
| /* Ensure card is not busy with data write. |
| * Note that SD stack does not support enabling caching, so |
| * cache flush is not required here |
| */ |
| return sdmmc_wait_ready(card); |
| default: |
| return -ENOTSUP; |
| } |
| return 0; |
| } |