blob: 9d96969765c1893718d82ff3c1e7606a6da98b13 [file] [log] [blame]
/*
* Copyright (c) 2017 Linaro Limited
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <string.h>
#include <zephyr/kernel.h>
#include <zephyr/devicetree.h>
#include <zephyr/sys/printk.h>
#include <zephyr/logging/log.h>
#include <zephyr/shell/shell.h>
#include <zephyr/drivers/flash.h>
#include <zephyr/device.h>
LOG_MODULE_REGISTER(app);
#define PR_SHELL(shell, fmt, ...) \
shell_fprintf(shell, SHELL_NORMAL, fmt, ##__VA_ARGS__)
#define PR_ERROR(shell, fmt, ...) \
shell_fprintf(shell, SHELL_ERROR, fmt, ##__VA_ARGS__)
#define PR_INFO(shell, fmt, ...) \
shell_fprintf(shell, SHELL_INFO, fmt, ##__VA_ARGS__)
#define PR_WARNING(shell, fmt, ...) \
shell_fprintf(shell, SHELL_WARNING, fmt, ##__VA_ARGS__)
/* Command usage info. */
#define WRITE_BLOCK_SIZE_HELP \
("Print the device's write block size. This is the smallest amount" \
" of data which may be written to the device, in bytes.")
#define READ_HELP \
("<off> <len>\n" \
"Read <len> bytes from device offset <off>.")
#define ERASE_HELP \
("<off> <len>\n\n" \
"Erase <len> bytes from device offset <off>, " \
"subject to hardware page limitations.")
#define WRITE_HELP \
("<off> <byte1> [... byteN]\n\n" \
"Write given bytes, starting at device offset <off>.\n" \
"Pages must be erased before they can be written.")
#define WRITE_UNALIGNED_HELP \
("<off> <byte1> [... byteN]\n\n" \
"Write given bytes, starting at device offset <off>.\n" \
"Being unaligned, affected memory areas are backed up, erased, protected" \
" and then overwritten.\n" \
"This command is designed to test writing to large flash pages.")
#define WRITE_PATTERN_HELP \
("<off> <len>\n\n" \
"Writes a pattern of (0x00 0x01 .. 0xFF 0x00 ..) of length" \
"<len> at the offset <off>.\n" \
"Unaligned writing is used, i.e. protection and erasing are automated." \
"This command is designed to test writing to large flash pages.")
#ifdef CONFIG_FLASH_PAGE_LAYOUT
#define PAGE_COUNT_HELP \
"\n\nPrint the number of pages on the flash device."
#define PAGE_LAYOUT_HELP \
("[start_page] [end_page]\n\n" \
"Print layout of flash pages in the range [start_page, end_page]," \
" which is inclusive. By default, all pages are printed.")
#define PAGE_READ_HELP \
("<page> <len> OR <page> <off> <len>\n\n" \
"Read <len> bytes from given page, starting at page offset <off>," \
"or offset 0 if not given. No checks are made that bytes read are" \
" all within the page.")
#define PAGE_ERASE_HELP \
("<page> [num]\n\n" \
"Erase [num] pages (default 1), starting at page <page>.")
#define PAGE_WRITE_HELP \
("<page> <off> <byte1> [... byteN]\n\n" \
"Write given bytes to given page, starting at page offset <off>." \
" No checks are made that the bytes all fall within the page." \
" Pages must be erased before they can be written.")
#endif
#define SET_DEV_HELP \
("<device_name>\n\n" \
"Set flash device by name. If a flash device was not found," \
" this command must be run first to bind a device to this module.")
#if (CONFIG_SHELL_ARGC_MAX > 4)
#define ARGC_MAX (CONFIG_SHELL_ARGC_MAX - 4)
#else
#error Please increase CONFIG_SHELL_ARGC_MAX parameter.
#endif
static const struct device *flash_device =
DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_flash_controller));
static int check_flash_device(const struct shell *shell)
{
if (flash_device == NULL) {
PR_ERROR(shell, "Flash device is unknown."
" Run set_device first.\n");
return -ENODEV;
}
return 0;
}
static void dump_buffer(const struct shell *shell, uint8_t *buf, size_t size)
{
bool newline = false;
uint8_t *p = buf;
while (size >= 16) {
PR_SHELL(shell, "%02x %02x %02x %02x | %02x %02x %02x %02x | "
"%02x %02x %02x %02x | %02x %02x %02x %02x\n",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7],
p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]);
p += 16;
size -= 16;
}
if (size >= 8) {
PR_SHELL(shell, "%02x %02x %02x %02x | %02x %02x %02x %02x | ",
p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
p += 8;
size -= 8;
newline = true;
}
if (size >= 4) {
PR_SHELL(shell, "%02x %02x %02x %02x | ",
p[0], p[1], p[2], p[3]);
p += 4;
size -= 4;
newline = true;
}
while (size--) {
PR_SHELL(shell, "%02x ", *p++);
newline = true;
}
if (newline) {
PR_SHELL(shell, "\n");
}
}
static int parse_ul(const char *str, unsigned long *result)
{
char *end;
unsigned long val;
val = strtoul(str, &end, 0);
if (*str == '\0' || *end != '\0') {
return -EINVAL;
}
*result = val;
return 0;
}
static int parse_u8(const char *str, uint8_t *result)
{
unsigned long val;
if (parse_ul(str, &val) || val > 0xff) {
return -EINVAL;
}
*result = (uint8_t)val;
return 0;
}
/* Read bytes, dumping contents to console and printing on error. */
static int do_read(const struct shell *shell, off_t offset, size_t len)
{
uint8_t buf[64];
int ret;
while (len > sizeof(buf)) {
ret = flash_read(flash_device, offset, buf, sizeof(buf));
if (ret) {
goto err_read;
}
dump_buffer(shell, buf, sizeof(buf));
len -= sizeof(buf);
offset += sizeof(buf);
}
ret = flash_read(flash_device, offset, buf, len);
if (ret) {
goto err_read;
}
dump_buffer(shell, buf, len);
return 0;
err_read:
PR_ERROR(shell, "flash_read error: %d\n", ret);
return ret;
}
/* Erase area and printing on error. */
static int do_erase(const struct shell *shell, off_t offset, size_t size)
{
int ret;
ret = flash_erase(flash_device, offset, size);
if (ret) {
PR_ERROR(shell, "flash_erase failed (err:%d).\n", ret);
return ret;
}
return ret;
}
/* Write bytes and printing on error. */
static int do_write(const struct shell *shell, off_t offset, uint8_t *buf,
size_t len, bool read_back)
{
int ret;
ret = flash_write(flash_device, offset, buf, len);
if (ret) {
PR_ERROR(shell, "flash_write failed (err:%d).\n", ret);
return ret;
}
if (read_back) {
PR_SHELL(shell, "Reading back written bytes:\n");
ret = do_read(shell, offset, len);
}
return ret;
}
static int do_write_unaligned(const struct shell *shell, off_t offset, uint8_t *buf,
size_t len, bool read_back)
{
int ret = 0;
size_t page_size = flash_get_write_block_size(flash_device);
size_t size_before = offset % page_size;
size_t size_after = page_size - ((size_before + len) % page_size);
size_t aligned_size = size_before + len + size_after;
off_t start_page = offset - size_before;
off_t last_page = start_page + aligned_size - page_size;
bool single_page_write = (size_before + len < page_size);
char *before_data;
char *after_data;
if (0 == size_before && 0 == size_after) {
/* Aligned write */
flash_erase(flash_device, offset, len);
flash_write(flash_device, offset, buf, len);
return 0;
}
before_data = k_malloc(page_size);
after_data = k_malloc(page_size);
if (!before_data || !after_data) {
PR_ERROR(shell, "No heap memory for flash manipulation\n");
ret = -ENOMEM;
goto free_buffers;
}
/* Stash useful data from the pages that will be affected. */
if (single_page_write) {
/* Read old data before new data is written. */
if (size_before) {
flash_read(flash_device, start_page, before_data, size_before);
}
/* Fill the with new data. */
memcpy(before_data + size_before, buf, len);
/* Fill the last part of old data. */
if (size_after) {
flash_read(flash_device, offset + len,
before_data + size_before + len,
size_after);
}
} else {
/* Multipage write, different start and end pages. */
if (size_before) {
flash_read(flash_device, start_page, before_data,
size_before);
/* Fill the rest with new data. */
memcpy(before_data + size_before, buf,
page_size - size_before);
}
if (size_after) {
/* Copy ending part of new data. */
memcpy((void *)after_data,
(void *)(buf + len -
((len + size_before) % page_size)),
page_size - size_after);
/* Copy ending part of flash page. */
flash_read(flash_device, offset + len,
after_data + (page_size - size_after),
size_after);
}
}
/* Erase all the pages that overlap with new data. */
flash_erase(flash_device, start_page, aligned_size);
/* Write stashed and new data. */
if (single_page_write || size_before > 0) {
/* Write first page if available. */
flash_write(flash_device, start_page, before_data,
page_size);
}
if (!single_page_write) {
size_t middle_data_len = aligned_size;
off_t middle_page_start = start_page;
off_t data_offset = (off_t)buf;
/* Write the middle bit if available */
if (size_before > 0) {
middle_page_start += page_size;
middle_data_len -= page_size;
data_offset += (page_size - size_before);
}
if (size_after > 0) {
middle_data_len -= page_size;
}
if (middle_data_len > 0) {
flash_write(flash_device, middle_page_start,
(const void *)data_offset,
middle_data_len);
}
/* Write the last page if needed. */
if (size_after > 0) {
flash_write(flash_device, last_page, after_data,
page_size);
}
}
if (read_back) {
PR_SHELL(shell, "Reading back written bytes:\n");
ret = do_read(shell, offset, len);
}
free_buffers:
k_free(before_data);
k_free(after_data);
return ret;
}
static int cmd_write_block_size(const struct shell *shell, size_t argc,
char **argv)
{
ARG_UNUSED(argc);
ARG_UNUSED(argv);
int err = check_flash_device(shell);
if (!err) {
PR_SHELL(shell, "%zu\n",
flash_get_write_block_size(flash_device));
}
return err;
}
static int cmd_read(const struct shell *shell, size_t argc, char **argv)
{
int err = check_flash_device(shell);
unsigned long int offset, len;
if (err) {
goto exit;
}
if (parse_ul(argv[1], &offset) || parse_ul(argv[2], &len)) {
PR_ERROR(shell, "Invalid arguments.\n");
err = -EINVAL;
goto exit;
}
err = do_read(shell, offset, len);
exit:
return err;
}
static int cmd_erase(const struct shell *shell, size_t argc, char **argv)
{
int err = check_flash_device(shell);
unsigned long int offset;
unsigned long int size;
if (err) {
goto exit;
}
if (parse_ul(argv[1], &offset) || parse_ul(argv[2], &size)) {
PR_ERROR(shell, "Invalid arguments.\n");
err = -EINVAL;
goto exit;
}
err = do_erase(shell, (off_t)offset, (size_t)size);
exit:
return err;
}
static int cmd_write_template(const struct shell *shell, size_t argc, char **argv, bool unaligned)
{
unsigned long int i, offset;
uint8_t buf[ARGC_MAX];
int err = check_flash_device(shell);
if (err) {
goto exit;
}
err = parse_ul(argv[1], &offset);
if (err) {
PR_ERROR(shell, "Invalid argument.\n");
goto exit;
}
if ((argc - 2) > ARGC_MAX) {
/* Can only happen if Zephyr limit is increased. */
PR_ERROR(shell, "At most %lu bytes can be written.\n"
"In order to write more bytes please increase"
" parameter: CONFIG_SHELL_ARGC_MAX.\n",
(unsigned long)ARGC_MAX);
err = -EINVAL;
goto exit;
}
/* skip cmd name and offset */
argc -= 2;
argv += 2;
for (i = 0; i < argc; i++) {
if (parse_u8(argv[i], &buf[i])) {
PR_ERROR(shell, "Argument %lu (%s) is not a byte.\n"
"Bytes shall be passed in decimal"
" notation.\n",
i + 1, argv[i]);
err = -EINVAL;
goto exit;
}
}
if (!unaligned) {
err = do_write(shell, offset, buf, i, true);
} else {
err = do_write_unaligned(shell, offset, buf, i, true);
}
exit:
return err;
}
static int cmd_write(const struct shell *shell, size_t argc, char **argv)
{
return cmd_write_template(shell, argc, argv, false);
}
static int cmd_write_unaligned(const struct shell *shell, size_t argc, char **argv)
{
return cmd_write_template(shell, argc, argv, true);
}
static int cmd_write_pattern(const struct shell *shell, size_t argc, char **argv)
{
int err = check_flash_device(shell);
unsigned long int offset, len, i;
static uint8_t *buf;
if (err) {
goto exit;
}
if (parse_ul(argv[1], &offset) || parse_ul(argv[2], &len)) {
PR_ERROR(shell, "Invalid arguments.\n");
err = -EINVAL;
goto exit;
}
buf = k_malloc(len);
if (!buf) {
PR_ERROR(shell, "No heap memory for data pattern\n");
err = -ENOMEM;
goto exit;
}
for (i = 0; i < len; i++) {
buf[i] = i & 0xFF;
}
err = do_write_unaligned(shell, offset, buf, i, true);
k_free(buf);
exit:
return err;
}
#ifdef CONFIG_FLASH_PAGE_LAYOUT
static int cmd_page_count(const struct shell *shell, size_t argc, char **argv)
{
ARG_UNUSED(argv);
ARG_UNUSED(argc);
int err = check_flash_device(shell);
size_t page_count;
if (!err) {
page_count = flash_get_page_count(flash_device);
PR_SHELL(shell, "Flash device contains %lu pages.\n",
(unsigned long int)page_count);
}
return err;
}
struct page_layout_data {
unsigned long int start_page;
unsigned long int end_page;
const struct shell *shell;
};
static bool page_layout_cb(const struct flash_pages_info *info, void *datav)
{
struct page_layout_data *data = datav;
unsigned long int sz;
if (info->index < data->start_page) {
return true;
} else if (info->index > data->end_page) {
return false;
}
sz = info->size;
PR_SHELL(data->shell,
"\tPage %u: start 0x%08x, length 0x%lx (%lu, %lu KB)\n",
info->index, (uint32_t)info->start_offset, sz, sz, sz / KB(1));
return true;
}
static int cmd_page_layout(const struct shell *shell, size_t argc, char **argv)
{
unsigned long int start_page, end_page;
struct page_layout_data data;
int err = check_flash_device(shell);
if (err) {
goto bail;
}
switch (argc) {
case 1:
start_page = 0;
end_page = flash_get_page_count(flash_device) - 1;
break;
case 2:
if (parse_ul(argv[1], &start_page)) {
err = -EINVAL;
goto bail;
}
end_page = flash_get_page_count(flash_device) - 1;
break;
case 3:
if (parse_ul(argv[1], &start_page) ||
parse_ul(argv[2], &end_page)) {
err = -EINVAL;
goto bail;
}
break;
default:
PR_ERROR(shell, "Invalid argument count.\n");
return -EINVAL;
}
data.start_page = start_page;
data.end_page = end_page;
data.shell = shell;
flash_page_foreach(flash_device, page_layout_cb, &data);
return 0;
bail:
PR_ERROR(shell, "Invalid arguments.\n");
return err;
}
static int cmd_page_read(const struct shell *shell, size_t argc, char **argv)
{
unsigned long int page, offset, len;
struct flash_pages_info info;
int ret;
ret = check_flash_device(shell);
if (ret) {
return ret;
}
if (argc == 3) {
if (parse_ul(argv[1], &page) || parse_ul(argv[2], &len)) {
ret = -EINVAL;
goto bail;
}
offset = 0;
} else if (parse_ul(argv[1], &page) || parse_ul(argv[2], &offset) ||
parse_ul(argv[3], &len)) {
ret = -EINVAL;
goto bail;
}
ret = flash_get_page_info_by_idx(flash_device, page, &info);
if (ret) {
PR_ERROR(shell, "Function flash_page_info_by_idx returned an"
" error: %d\n", ret);
return ret;
}
offset += info.start_offset;
ret = do_read(shell, offset, len);
return ret;
bail:
PR_ERROR(shell, "Invalid arguments.\n");
return ret;
}
static int cmd_page_erase(const struct shell *shell, size_t argc, char **argv)
{
struct flash_pages_info info;
unsigned long int i, page, num;
int ret;
ret = check_flash_device(shell);
if (ret) {
return ret;
}
if (parse_ul(argv[1], &page)) {
ret = -EINVAL;
goto bail;
}
if (argc == 2) {
num = 1;
} else if (parse_ul(argv[2], &num)) {
goto bail;
}
for (i = 0; i < num; i++) {
ret = flash_get_page_info_by_idx(flash_device, page + i, &info);
if (ret) {
PR_ERROR(shell, "flash_get_page_info_by_idx error:"
" %d\n", ret);
return ret;
}
PR_SHELL(shell, "Erasing page %u (start offset 0x%x,"
" size 0x%x)\n",
info.index, (uint32_t)info.start_offset, (uint32_t)info.size);
ret = do_erase(shell, info.start_offset, (uint32_t)info.size);
if (ret) {
return ret;
}
}
return ret;
bail:
PR_ERROR(shell, "Invalid arguments.\n");
return ret;
}
static int cmd_page_write(const struct shell *shell, size_t argc, char **argv)
{
struct flash_pages_info info;
unsigned long int page, off;
uint8_t buf[ARGC_MAX];
size_t i;
int ret;
ret = check_flash_device(shell);
if (ret) {
return ret;
}
if (parse_ul(argv[1], &page) || parse_ul(argv[2], &off)) {
ret = -EINVAL;
goto bail;
}
argc -= 3;
argv += 3;
for (i = 0; i < argc; i++) {
if (parse_u8(argv[i], &buf[i])) {
PR_ERROR(shell, "Argument %d (%s) is not a byte.\n",
(int)i + 2, argv[i]);
ret = -EINVAL;
goto bail;
}
}
ret = flash_get_page_info_by_idx(flash_device, page, &info);
if (ret) {
PR_ERROR(shell, "flash_get_page_info_by_idx: %d\n", ret);
return ret;
}
ret = do_write(shell, info.start_offset + off, buf, i, true);
return ret;
bail:
PR_ERROR(shell, "Invalid arguments.\n");
return ret;
}
#endif /* CONFIG_FLASH_PAGE_LAYOUT */
static int cmd_set_dev(const struct shell *shell, size_t argc, char **argv)
{
const struct device *dev;
const char *name;
name = argv[1];
/* Run command. */
dev = device_get_binding(name);
if (!dev) {
PR_ERROR(shell, "No device named %s.\n", name);
return -ENOEXEC;
}
if (flash_device) {
PR_SHELL(shell, "Leaving behind device %s\n",
flash_device->name);
}
flash_device = dev;
return 0;
}
void main(void)
{
if (device_is_ready(flash_device)) {
printk("Found flash controller %s.\n", flash_device->name);
printk("Flash I/O commands can be run.\n");
} else {
flash_device = NULL;
printk("**Flash controller not ready or not found!**\n");
printk("Run set_device <name> to specify one "
"before using other commands.\n");
}
}
SHELL_STATIC_SUBCMD_SET_CREATE(sub_flash,
/* Alphabetically sorted to ensure correct Tab autocompletion. */
SHELL_CMD_ARG(erase, NULL, ERASE_HELP, cmd_erase, 3, 0),
#ifdef CONFIG_FLASH_PAGE_LAYOUT
SHELL_CMD_ARG(page_count, NULL, PAGE_COUNT_HELP, cmd_page_count, 1, 0),
SHELL_CMD_ARG(page_erase, NULL, PAGE_ERASE_HELP, cmd_page_erase, 2, 1),
SHELL_CMD_ARG(page_layout, NULL, PAGE_LAYOUT_HELP,
cmd_page_layout, 1, 2),
SHELL_CMD_ARG(page_read, NULL, PAGE_READ_HELP, cmd_page_read, 3, 1),
SHELL_CMD_ARG(page_write, NULL, PAGE_WRITE_HELP,
cmd_page_write, 3, 255),
#endif
SHELL_CMD_ARG(read, NULL, READ_HELP, cmd_read, 3, 0),
SHELL_CMD_ARG(set_device, NULL, SET_DEV_HELP, cmd_set_dev, 2, 0),
SHELL_CMD_ARG(write, NULL, WRITE_HELP, cmd_write, 3, 255),
SHELL_CMD_ARG(write_block_size, NULL, WRITE_BLOCK_SIZE_HELP,
cmd_write_block_size, 1, 0),
SHELL_CMD_ARG(write_unaligned, NULL, WRITE_UNALIGNED_HELP,
cmd_write_unaligned, 3, 255),
SHELL_CMD_ARG(write_pattern, NULL, WRITE_PATTERN_HELP,
cmd_write_pattern, 3, 255),
SHELL_SUBCMD_SET_END /* Array terminated. */
);
SHELL_CMD_REGISTER(flash_sample, &sub_flash, "Flash related commands.", NULL);