blob: 92592ce0d9fb375b0b55280d62e149ca3315517a [file] [log] [blame]
/* udp.c - UDP specific code for echo server */
/*
* Copyright (c) 2017 Intel Corporation.
* Copyright (c) 2018 Nordic Semiconductor ASA.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(net_echo_server_sample, LOG_LEVEL_DBG);
#include <zephyr/kernel.h>
#include <errno.h>
#include <stdio.h>
#include <zephyr/net/socket.h>
#include <zephyr/net/tls_credentials.h>
#include "common.h"
#include "certificate.h"
static void process_udp4(void);
static void process_udp6(void);
K_THREAD_DEFINE(udp4_thread_id, STACK_SIZE,
process_udp4, NULL, NULL, NULL,
THREAD_PRIORITY,
IS_ENABLED(CONFIG_USERSPACE) ? K_USER : 0, -1);
K_THREAD_DEFINE(udp6_thread_id, STACK_SIZE,
process_udp6, NULL, NULL, NULL,
THREAD_PRIORITY,
IS_ENABLED(CONFIG_USERSPACE) ? K_USER : 0, -1);
static int start_udp_proto(struct data *data, struct sockaddr *bind_addr,
socklen_t bind_addrlen)
{
int ret;
#if defined(CONFIG_NET_SOCKETS_SOCKOPT_TLS)
data->udp.sock = socket(bind_addr->sa_family, SOCK_DGRAM,
IPPROTO_DTLS_1_2);
#else
data->udp.sock = socket(bind_addr->sa_family, SOCK_DGRAM, IPPROTO_UDP);
#endif
if (data->udp.sock < 0) {
NET_ERR("Failed to create UDP socket (%s): %d", data->proto,
errno);
return -errno;
}
#if defined(CONFIG_NET_SOCKETS_SOCKOPT_TLS)
sec_tag_t sec_tag_list[] = {
SERVER_CERTIFICATE_TAG,
#if defined(CONFIG_MBEDTLS_KEY_EXCHANGE_PSK_ENABLED)
PSK_TAG,
#endif
};
int role = TLS_DTLS_ROLE_SERVER;
ret = setsockopt(data->udp.sock, SOL_TLS, TLS_SEC_TAG_LIST,
sec_tag_list, sizeof(sec_tag_list));
if (ret < 0) {
NET_ERR("Failed to set UDP secure option (%s): %d", data->proto,
errno);
ret = -errno;
}
/* Set role to DTLS server. */
ret = setsockopt(data->udp.sock, SOL_TLS, TLS_DTLS_ROLE,
&role, sizeof(role));
if (ret < 0) {
NET_ERR("Failed to set DTLS role secure option (%s): %d",
data->proto, errno);
ret = -errno;
}
#endif
ret = bind(data->udp.sock, bind_addr, bind_addrlen);
if (ret < 0) {
NET_ERR("Failed to bind UDP socket (%s): %d", data->proto,
errno);
ret = -errno;
}
return ret;
}
static int process_udp(struct data *data)
{
int ret = 0;
int received;
struct sockaddr client_addr;
socklen_t client_addr_len;
NET_INFO("Waiting for UDP packets on port %d (%s)...",
MY_PORT, data->proto);
do {
client_addr_len = sizeof(client_addr);
received = recvfrom(data->udp.sock, data->udp.recv_buffer,
sizeof(data->udp.recv_buffer), 0,
&client_addr, &client_addr_len);
if (received < 0) {
/* Socket error */
NET_ERR("UDP (%s): Connection error %d", data->proto,
errno);
ret = -errno;
break;
} else if (received) {
atomic_add(&data->udp.bytes_received, received);
}
ret = sendto(data->udp.sock, data->udp.recv_buffer, received, 0,
&client_addr, client_addr_len);
if (ret < 0) {
NET_ERR("UDP (%s): Failed to send %d", data->proto,
errno);
ret = -errno;
break;
}
if (++data->udp.counter % 1000 == 0U) {
NET_INFO("%s UDP: Sent %u packets", data->proto,
data->udp.counter);
}
NET_DBG("UDP (%s): Received and replied with %d bytes",
data->proto, received);
} while (true);
return ret;
}
static void process_udp4(void)
{
int ret;
struct sockaddr_in addr4;
(void)memset(&addr4, 0, sizeof(addr4));
addr4.sin_family = AF_INET;
addr4.sin_port = htons(MY_PORT);
ret = start_udp_proto(&conf.ipv4, (struct sockaddr *)&addr4,
sizeof(addr4));
if (ret < 0) {
quit();
return;
}
k_work_reschedule(&conf.ipv4.udp.stats_print, K_SECONDS(STATS_TIMER));
while (ret == 0) {
ret = process_udp(&conf.ipv4);
if (ret < 0) {
quit();
}
}
}
static void process_udp6(void)
{
int ret;
struct sockaddr_in6 addr6;
(void)memset(&addr6, 0, sizeof(addr6));
addr6.sin6_family = AF_INET6;
addr6.sin6_port = htons(MY_PORT);
ret = start_udp_proto(&conf.ipv6, (struct sockaddr *)&addr6,
sizeof(addr6));
if (ret < 0) {
quit();
return;
}
k_work_reschedule(&conf.ipv6.udp.stats_print, K_SECONDS(STATS_TIMER));
while (ret == 0) {
ret = process_udp(&conf.ipv6);
if (ret < 0) {
quit();
}
}
}
static void print_stats(struct k_work *work)
{
struct k_work_delayable *dwork = k_work_delayable_from_work(work);
struct data *data = CONTAINER_OF(dwork, struct data, udp.stats_print);
int total_received = atomic_get(&data->udp.bytes_received);
if (total_received) {
if ((total_received / STATS_TIMER) < 1024) {
LOG_INF("%s UDP: Received %d B/sec", data->proto,
total_received / STATS_TIMER);
} else {
LOG_INF("%s UDP: Received %d KiB/sec", data->proto,
total_received / 1024 / STATS_TIMER);
}
atomic_set(&data->udp.bytes_received, 0);
}
k_work_reschedule(&data->udp.stats_print, K_SECONDS(STATS_TIMER));
}
void start_udp(void)
{
if (IS_ENABLED(CONFIG_NET_IPV6)) {
#if defined(CONFIG_USERSPACE)
k_mem_domain_add_thread(&app_domain, udp6_thread_id);
#endif
k_work_init_delayable(&conf.ipv6.udp.stats_print, print_stats);
k_thread_name_set(udp6_thread_id, "udp6");
k_thread_start(udp6_thread_id);
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
#if defined(CONFIG_USERSPACE)
k_mem_domain_add_thread(&app_domain, udp4_thread_id);
#endif
k_work_init_delayable(&conf.ipv4.udp.stats_print, print_stats);
k_thread_name_set(udp4_thread_id, "udp4");
k_thread_start(udp4_thread_id);
}
}
void stop_udp(void)
{
/* Not very graceful way to close a thread, but as we may be blocked
* in recvfrom call it seems to be necessary
*/
if (IS_ENABLED(CONFIG_NET_IPV6)) {
k_thread_abort(udp6_thread_id);
if (conf.ipv6.udp.sock >= 0) {
(void)close(conf.ipv6.udp.sock);
}
}
if (IS_ENABLED(CONFIG_NET_IPV4)) {
k_thread_abort(udp4_thread_id);
if (conf.ipv4.udp.sock >= 0) {
(void)close(conf.ipv4.udp.sock);
}
}
}