blob: 219398175f7d4f491e89f486bbd7ae9602c4e275 [file] [log] [blame]
/*
* Copyright (c) 2016 Freescale Semiconductor, Inc.
* Copyright (c) 2017, NXP
* Copyright (c) 2018 Foundries.io
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <device.h>
#include <drivers/gpio.h>
#include <soc.h>
#include <fsl_common.h>
#include <fsl_port.h>
#include <drivers/clock_control.h>
#include "gpio_utils.h"
struct gpio_rv32m1_config {
/* gpio_driver_config needs to be first */
struct gpio_driver_config common;
GPIO_Type *gpio_base;
PORT_Type *port_base;
unsigned int flags;
char *clock_controller;
clock_control_subsys_t clock_subsys;
int (*irq_config_func)(struct device *dev);
};
struct gpio_rv32m1_data {
/* gpio_driver_data needs to be first */
struct gpio_driver_data common;
/* port ISR callback routine address */
sys_slist_t callbacks;
/* pin callback routine enable flags, by pin number */
u32_t pin_callback_enables;
};
static u32_t get_port_pcr_irqc_value_from_flags(struct device *dev,
u32_t pin, enum gpio_int_mode mode,
enum gpio_int_trig trig)
{
port_interrupt_t port_interrupt = 0;
if (mode == GPIO_INT_MODE_DISABLED) {
port_interrupt = kPORT_InterruptOrDMADisabled;
} else {
if (mode == GPIO_INT_MODE_LEVEL) {
if (trig == GPIO_INT_TRIG_LOW) {
port_interrupt = kPORT_InterruptLogicZero;
} else {
port_interrupt = kPORT_InterruptLogicOne;
}
} else {
switch (trig) {
case GPIO_INT_TRIG_LOW:
port_interrupt = kPORT_InterruptFallingEdge;
break;
case GPIO_INT_TRIG_HIGH:
port_interrupt = kPORT_InterruptRisingEdge;
break;
case GPIO_INT_TRIG_BOTH:
port_interrupt = kPORT_InterruptEitherEdge;
break;
}
}
}
return PORT_PCR_IRQC(port_interrupt);
}
static int gpio_rv32m1_configure(struct device *dev,
int access_op, u32_t pin, int flags)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
PORT_Type *port_base = config->port_base;
struct gpio_rv32m1_data *data = dev->driver_data;
u32_t mask = 0U;
u32_t pcr = 0U;
u8_t i;
/* Check for an invalid pin number */
if (pin >= ARRAY_SIZE(port_base->PCR)) {
return -EINVAL;
}
/* Check for an invalid pin configuration */
if ((flags & GPIO_INT_ENABLE) && ((flags & GPIO_INPUT) == 0)) {
return -EINVAL;
}
if (((flags & GPIO_INPUT) != 0) && ((flags & GPIO_OUTPUT) != 0)) {
return -ENOTSUP;
}
if ((flags & GPIO_SINGLE_ENDED) != 0) {
return -ENOTSUP;
}
/* Check if GPIO port supports interrupts */
if ((flags & GPIO_INT_ENABLE) &&
((config->flags & GPIO_INT_ENABLE) == 0U)) {
return -ENOTSUP;
}
/* The flags contain options that require touching registers in the
* GPIO module and the corresponding PORT module.
*
* Start with the GPIO module and set up the pin direction register.
* 0 - pin is input, 1 - pin is output
*/
if (access_op == GPIO_ACCESS_BY_PIN) {
switch (flags & GPIO_DIR_MASK) {
case GPIO_INPUT:
gpio_base->PDDR &= ~BIT(pin);
break;
case GPIO_OUTPUT:
if ((flags & GPIO_OUTPUT_INIT_HIGH) != 0) {
gpio_base->PSOR = BIT(pin);
} else if ((flags & GPIO_OUTPUT_INIT_LOW) != 0) {
gpio_base->PCOR = BIT(pin);
}
gpio_base->PDDR |= BIT(pin);
break;
default:
return -ENOTSUP;
}
} else { /* GPIO_ACCESS_BY_PORT */
if ((flags & GPIO_INPUT) != 0) {
gpio_base->PDDR = 0x0;
} else { /* GPIO_OUTPUT */
gpio_base->PDDR = 0xFFFFFFFF;
}
}
/* Now do the PORT module. Figure out the pullup/pulldown
* configuration, but don't write it to the PCR register yet.
*/
mask |= PORT_PCR_PE_MASK | PORT_PCR_PS_MASK;
if ((flags & GPIO_PULL_UP) != 0) {
/* Enable the pull and select the pullup resistor. */
pcr |= PORT_PCR_PE_MASK | PORT_PCR_PS_MASK;
} else if ((flags & GPIO_PULL_DOWN) != 0) {
/* Enable the pull and select the pulldown resistor (deselect
* the pullup resistor.
*/
pcr |= PORT_PCR_PE_MASK;
}
/* Still in the PORT module. Figure out the interrupt configuration,
* but don't write it to the PCR register yet.
*/
mask |= PORT_PCR_IRQC_MASK;
/* Now we can write the PORT PCR register(s). If accessing by pin, we
* only need to write one PCR register. Otherwise, write all the PCR
* registers in the PORT module (one for each pin).
*/
if (access_op == GPIO_ACCESS_BY_PIN) {
port_base->PCR[pin] = (port_base->PCR[pin] & ~mask) | pcr;
WRITE_BIT(data->pin_callback_enables, pin,
flags & GPIO_INT_ENABLE);
} else { /* GPIO_ACCESS_BY_PORT */
for (i = 0U; i < ARRAY_SIZE(port_base->PCR); i++) {
port_base->PCR[i] = (port_base->PCR[pin] & ~mask) | pcr;
}
if (flags & GPIO_INT_ENABLE) {
data->pin_callback_enables = 0xFFFFFFFF;
} else {
data->pin_callback_enables = 0x0;
}
}
return 0;
}
static int gpio_rv32m1_write(struct device *dev,
int access_op, u32_t pin, u32_t value)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
if (access_op == GPIO_ACCESS_BY_PIN) {
if (value) {
/* Set the data output for the corresponding pin.
* Writing zeros to the other bits leaves the data
* output unchanged for the other pins.
*/
gpio_base->PSOR = BIT(pin);
} else {
/* Clear the data output for the corresponding pin.
* Writing zeros to the other bits leaves the data
* output unchanged for the other pins.
*/
gpio_base->PCOR = BIT(pin);
}
} else { /* GPIO_ACCESS_BY_PORT */
/* Write the data output for all the pins */
gpio_base->PDOR = value;
}
return 0;
}
static int gpio_rv32m1_read(struct device *dev,
int access_op, u32_t pin, u32_t *value)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
*value = gpio_base->PDIR;
if (access_op == GPIO_ACCESS_BY_PIN) {
*value = (*value & BIT(pin)) >> pin;
}
/* nothing more to do for GPIO_ACCESS_BY_PORT */
return 0;
}
static int gpio_rv32m1_port_get_raw(struct device *dev, u32_t *value)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
*value = gpio_base->PDIR;
return 0;
}
static int gpio_rv32m1_port_set_masked_raw(struct device *dev, u32_t mask,
u32_t value)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
gpio_base->PDOR = (gpio_base->PDOR & ~mask) | (mask & value);
return 0;
}
static int gpio_rv32m1_port_set_bits_raw(struct device *dev, u32_t mask)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
gpio_base->PSOR = mask;
return 0;
}
static int gpio_rv32m1_port_clear_bits_raw(struct device *dev, u32_t mask)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
gpio_base->PCOR = mask;
return 0;
}
static int gpio_rv32m1_port_toggle_bits(struct device *dev, u32_t mask)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
GPIO_Type *gpio_base = config->gpio_base;
gpio_base->PTOR = mask;
return 0;
}
static int gpio_rv32m1_pin_interrupt_configure(struct device *dev,
unsigned int pin, enum gpio_int_mode mode,
enum gpio_int_trig trig)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
PORT_Type *port_base = config->port_base;
struct gpio_rv32m1_data *data = dev->driver_data;
/* Check for an invalid pin number */
if (pin >= ARRAY_SIZE(port_base->PCR)) {
return -EINVAL;
}
/* Check if GPIO port supports interrupts */
if ((mode != GPIO_INT_MODE_DISABLED) &&
((config->flags & GPIO_INT_ENABLE) == 0U)) {
return -ENOTSUP;
}
u32_t pcr = get_port_pcr_irqc_value_from_flags(dev, pin, mode, trig);
port_base->PCR[pin] = (port_base->PCR[pin] & ~PORT_PCR_IRQC_MASK) | pcr;
WRITE_BIT(data->pin_callback_enables, pin, mode != GPIO_INT_DISABLE);
return 0;
}
static int gpio_rv32m1_manage_callback(struct device *dev,
struct gpio_callback *callback, bool set)
{
struct gpio_rv32m1_data *data = dev->driver_data;
gpio_manage_callback(&data->callbacks, callback, set);
return 0;
}
static int gpio_rv32m1_enable_callback(struct device *dev,
u32_t pin)
{
struct gpio_rv32m1_data *data = dev->driver_data;
data->pin_callback_enables |= BIT(pin);
return 0;
}
static int gpio_rv32m1_disable_callback(struct device *dev,
u32_t pin)
{
struct gpio_rv32m1_data *data = dev->driver_data;
data->pin_callback_enables &= ~BIT(pin);
return 0;
}
static void gpio_rv32m1_port_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct gpio_rv32m1_config *config = dev->config->config_info;
struct gpio_rv32m1_data *data = dev->driver_data;
u32_t enabled_int, int_status;
int_status = config->port_base->ISFR;
enabled_int = int_status & data->pin_callback_enables;
/* Clear the port interrupts before invoking callbacks */
config->port_base->ISFR = enabled_int;
gpio_fire_callbacks(&data->callbacks, dev, enabled_int);
}
static int gpio_rv32m1_init(struct device *dev)
{
const struct gpio_rv32m1_config *config = dev->config->config_info;
struct device *clk;
int ret;
if (config->clock_controller) {
clk = device_get_binding(config->clock_controller);
if (!clk) {
return -ENODEV;
}
ret = clock_control_on(clk, config->clock_subsys);
if (ret < 0) {
return ret;
}
}
return config->irq_config_func(dev);
}
static const struct gpio_driver_api gpio_rv32m1_driver_api = {
.config = gpio_rv32m1_configure,
.write = gpio_rv32m1_write,
.read = gpio_rv32m1_read,
.port_get_raw = gpio_rv32m1_port_get_raw,
.port_set_masked_raw = gpio_rv32m1_port_set_masked_raw,
.port_set_bits_raw = gpio_rv32m1_port_set_bits_raw,
.port_clear_bits_raw = gpio_rv32m1_port_clear_bits_raw,
.port_toggle_bits = gpio_rv32m1_port_toggle_bits,
.pin_interrupt_configure = gpio_rv32m1_pin_interrupt_configure,
.manage_callback = gpio_rv32m1_manage_callback,
.enable_callback = gpio_rv32m1_enable_callback,
.disable_callback = gpio_rv32m1_disable_callback,
};
#ifdef CONFIG_GPIO_RV32M1_PORTA
static int gpio_rv32m1_porta_init(struct device *dev);
static const struct gpio_rv32m1_config gpio_rv32m1_porta_config = {
.common = {
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(DT_INST_0_OPENISA_RV32M1_GPIO_NGPIOS),
},
.gpio_base = (GPIO_Type *) DT_OPENISA_RV32M1_GPIO_GPIO_A_BASE_ADDRESS,
.port_base = PORTA,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_A_IRQ_0
.flags = GPIO_INT_ENABLE,
#else
.flags = 0,
#endif
.irq_config_func = gpio_rv32m1_porta_init,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_A_CLOCK_CONTROLLER
.clock_controller = DT_OPENISA_RV32M1_GPIO_GPIO_A_CLOCK_CONTROLLER,
.clock_subsys = (clock_control_subsys_t)
DT_OPENISA_RV32M1_GPIO_GPIO_A_CLOCK_NAME,
#else
.clock_controller = NULL,
#endif
};
static struct gpio_rv32m1_data gpio_rv32m1_porta_data;
DEVICE_AND_API_INIT(gpio_rv32m1_porta, DT_OPENISA_RV32M1_GPIO_GPIO_A_LABEL,
gpio_rv32m1_init,
&gpio_rv32m1_porta_data, &gpio_rv32m1_porta_config,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&gpio_rv32m1_driver_api);
static int gpio_rv32m1_porta_init(struct device *dev)
{
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_A_IRQ_0
IRQ_CONNECT(DT_OPENISA_RV32M1_GPIO_GPIO_A_IRQ_0,
0,
gpio_rv32m1_port_isr, DEVICE_GET(gpio_rv32m1_porta), 0);
irq_enable(DT_OPENISA_RV32M1_GPIO_GPIO_A_IRQ_0);
return 0;
#else
return -1;
#endif
}
#endif /* CONFIG_GPIO_RV32M1_PORTA */
#ifdef CONFIG_GPIO_RV32M1_PORTB
static int gpio_rv32m1_portb_init(struct device *dev);
static const struct gpio_rv32m1_config gpio_rv32m1_portb_config = {
.common = {
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(DT_INST_1_OPENISA_RV32M1_GPIO_NGPIOS),
},
.gpio_base = (GPIO_Type *) DT_OPENISA_RV32M1_GPIO_GPIO_B_BASE_ADDRESS,
.port_base = PORTB,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_B_IRQ_0
.flags = GPIO_INT_ENABLE,
#else
.flags = 0,
#endif
.irq_config_func = gpio_rv32m1_portb_init,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_B_CLOCK_CONTROLLER
.clock_controller = DT_OPENISA_RV32M1_GPIO_GPIO_B_CLOCK_CONTROLLER,
.clock_subsys = (clock_control_subsys_t)
DT_OPENISA_RV32M1_GPIO_GPIO_B_CLOCK_NAME,
#else
.clock_controller = NULL,
#endif
};
static struct gpio_rv32m1_data gpio_rv32m1_portb_data;
DEVICE_AND_API_INIT(gpio_rv32m1_portb, DT_OPENISA_RV32M1_GPIO_GPIO_B_LABEL,
gpio_rv32m1_init,
&gpio_rv32m1_portb_data, &gpio_rv32m1_portb_config,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&gpio_rv32m1_driver_api);
static int gpio_rv32m1_portb_init(struct device *dev)
{
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_B_IRQ_0
IRQ_CONNECT(DT_OPENISA_RV32M1_GPIO_GPIO_B_IRQ_0,
0,
gpio_rv32m1_port_isr, DEVICE_GET(gpio_rv32m1_portb), 0);
irq_enable(DT_OPENISA_RV32M1_GPIO_GPIO_B_IRQ_0);
return 0;
#else
return -1;
#endif
}
#endif /* CONFIG_GPIO_RV32M1_PORTB */
#ifdef CONFIG_GPIO_RV32M1_PORTC
static int gpio_rv32m1_portc_init(struct device *dev);
static const struct gpio_rv32m1_config gpio_rv32m1_portc_config = {
.common = {
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(DT_INST_2_OPENISA_RV32M1_GPIO_NGPIOS),
},
.gpio_base = (GPIO_Type *) DT_OPENISA_RV32M1_GPIO_GPIO_C_BASE_ADDRESS,
.port_base = PORTC,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_C_IRQ_0
.flags = GPIO_INT_ENABLE,
#else
.flags = 0,
#endif
.irq_config_func = gpio_rv32m1_portc_init,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_C_CLOCK_CONTROLLER
.clock_controller = DT_OPENISA_RV32M1_GPIO_GPIO_C_CLOCK_CONTROLLER,
.clock_subsys = (clock_control_subsys_t)
DT_OPENISA_RV32M1_GPIO_GPIO_C_CLOCK_NAME,
#else
.clock_controller = NULL,
#endif
};
static struct gpio_rv32m1_data gpio_rv32m1_portc_data;
DEVICE_AND_API_INIT(gpio_rv32m1_portc, DT_OPENISA_RV32M1_GPIO_GPIO_C_LABEL,
gpio_rv32m1_init,
&gpio_rv32m1_portc_data, &gpio_rv32m1_portc_config,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&gpio_rv32m1_driver_api);
static int gpio_rv32m1_portc_init(struct device *dev)
{
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_C_IRQ_0
IRQ_CONNECT(DT_OPENISA_RV32M1_GPIO_GPIO_C_IRQ_0,
0,
gpio_rv32m1_port_isr, DEVICE_GET(gpio_rv32m1_portc), 0);
irq_enable(DT_OPENISA_RV32M1_GPIO_GPIO_C_IRQ_0);
return 0;
#else
return -1;
#endif
}
#endif /* CONFIG_GPIO_RV32M1_PORTC */
#ifdef CONFIG_GPIO_RV32M1_PORTD
static int gpio_rv32m1_portd_init(struct device *dev);
static const struct gpio_rv32m1_config gpio_rv32m1_portd_config = {
.common = {
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(DT_INST_3_OPENISA_RV32M1_GPIO_NGPIOS),
},
.gpio_base = (GPIO_Type *) DT_OPENISA_RV32M1_GPIO_GPIO_D_BASE_ADDRESS,
.port_base = PORTD,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_D_IRQ_0
.flags = GPIO_INT_ENABLE,
#else
.flags = 0,
#endif
.irq_config_func = gpio_rv32m1_portd_init,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_D_CLOCK_CONTROLLER
.clock_controller = DT_OPENISA_RV32M1_GPIO_GPIO_D_CLOCK_CONTROLLER,
.clock_subsys = (clock_control_subsys_t)
DT_OPENISA_RV32M1_GPIO_GPIO_D_CLOCK_NAME,
#else
.clock_controller = NULL,
#endif
};
static struct gpio_rv32m1_data gpio_rv32m1_portd_data;
DEVICE_AND_API_INIT(gpio_rv32m1_portd, DT_OPENISA_RV32M1_GPIO_GPIO_D_LABEL,
gpio_rv32m1_init,
&gpio_rv32m1_portd_data, &gpio_rv32m1_portd_config,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&gpio_rv32m1_driver_api);
static int gpio_rv32m1_portd_init(struct device *dev)
{
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_D_IRQ_0
IRQ_CONNECT(DT_OPENISA_RV32M1_GPIO_GPIO_D_IRQ_0,
0,
gpio_rv32m1_port_isr, DEVICE_GET(gpio_rv32m1_portd), 0);
irq_enable(DT_OPENISA_RV32M1_GPIO_GPIO_D_IRQ_0);
return 0;
#else
return -1;
#endif
}
#endif /* CONFIG_GPIO_RV32M1_PORTD */
#ifdef CONFIG_GPIO_RV32M1_PORTE
static int gpio_rv32m1_porte_init(struct device *dev);
static const struct gpio_rv32m1_config gpio_rv32m1_porte_config = {
.common = {
.port_pin_mask = GPIO_PORT_PIN_MASK_FROM_NGPIOS(DT_INST_4_OPENISA_RV32M1_GPIO_NGPIOS),
},
.gpio_base = (GPIO_Type *) DT_OPENISA_RV32M1_GPIO_GPIO_E_BASE_ADDRESS,
.port_base = PORTE,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_E_IRQ_0
.flags = GPIO_INT_ENABLE,
#else
.flags = 0,
#endif
.irq_config_func = gpio_rv32m1_porte_init,
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_E_CLOCK_CONTROLLER
.clock_controller = DT_OPENISA_RV32M1_GPIO_GPIO_E_CLOCK_CONTROLLER,
.clock_subsys = (clock_control_subsys_t)
DT_OPENISA_RV32M1_GPIO_GPIO_E_CLOCK_NAME,
#else
.clock_controller = NULL,
#endif
};
static struct gpio_rv32m1_data gpio_rv32m1_porte_data;
DEVICE_AND_API_INIT(gpio_rv32m1_porte, DT_OPENISA_RV32M1_GPIO_GPIO_E_LABEL,
gpio_rv32m1_init,
&gpio_rv32m1_porte_data, &gpio_rv32m1_porte_config,
POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&gpio_rv32m1_driver_api);
static int gpio_rv32m1_porte_init(struct device *dev)
{
#ifdef DT_OPENISA_RV32M1_GPIO_GPIO_E_IRQ_0
IRQ_CONNECT(DT_OPENISA_RV32M1_GPIO_GPIO_E_IRQ_0,
0,
gpio_rv32m1_port_isr, DEVICE_GET(gpio_rv32m1_porte), 0);
irq_enable(DT_OPENISA_RV32M1_GPIO_GPIO_E_IRQ_0);
return 0;
#else
return -1;
#endif
}
#endif /* CONFIG_GPIO_RV32M1_PORTE */