|  | /* | 
|  | * Copyright (c) 2010-2014 Wind River Systems, Inc. | 
|  | * | 
|  | * SPDX-License-Identifier: Apache-2.0 | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * @file | 
|  | * @brief Kernel initialization module | 
|  | * | 
|  | * This module contains routines that are used to initialize the kernel. | 
|  | */ | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <stdbool.h> | 
|  | #include <string.h> | 
|  | #include <offsets_short.h> | 
|  | #include <zephyr/kernel.h> | 
|  | #include <zephyr/sys/printk.h> | 
|  | #include <zephyr/debug/stack.h> | 
|  | #include <zephyr/random/random.h> | 
|  | #include <zephyr/linker/sections.h> | 
|  | #include <zephyr/toolchain.h> | 
|  | #include <zephyr/kernel_structs.h> | 
|  | #include <zephyr/device.h> | 
|  | #include <zephyr/init.h> | 
|  | #include <zephyr/linker/linker-defs.h> | 
|  | #include <zephyr/platform/hooks.h> | 
|  | #include <ksched.h> | 
|  | #include <kthread.h> | 
|  | #include <zephyr/sys/dlist.h> | 
|  | #include <kernel_internal.h> | 
|  | #include <zephyr/drivers/entropy.h> | 
|  | #include <zephyr/logging/log_ctrl.h> | 
|  | #include <zephyr/tracing/tracing.h> | 
|  | #include <zephyr/debug/gcov.h> | 
|  | #include <kswap.h> | 
|  | #include <zephyr/timing/timing.h> | 
|  | #include <zephyr/logging/log.h> | 
|  | #include <zephyr/pm/device_runtime.h> | 
|  | #include <zephyr/internal/syscall_handler.h> | 
|  | LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL); | 
|  |  | 
|  | /* the only struct z_kernel instance */ | 
|  | __pinned_bss | 
|  | struct z_kernel _kernel; | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | __pinned_bss atomic_t _cpus_active; | 
|  | #endif | 
|  |  | 
|  | /* init/main and idle threads */ | 
|  | K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); | 
|  | struct k_thread z_main_thread; | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | __pinned_bss | 
|  | struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS]; | 
|  |  | 
|  | static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks, | 
|  | CONFIG_MP_MAX_NUM_CPUS, | 
|  | CONFIG_IDLE_STACK_SIZE); | 
|  |  | 
|  | static void z_init_static_threads(void) | 
|  | { | 
|  | STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { | 
|  | z_setup_new_thread( | 
|  | thread_data->init_thread, | 
|  | thread_data->init_stack, | 
|  | thread_data->init_stack_size, | 
|  | thread_data->init_entry, | 
|  | thread_data->init_p1, | 
|  | thread_data->init_p2, | 
|  | thread_data->init_p3, | 
|  | thread_data->init_prio, | 
|  | thread_data->init_options, | 
|  | thread_data->init_name); | 
|  |  | 
|  | thread_data->init_thread->init_data = thread_data; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | STRUCT_SECTION_FOREACH(k_object_assignment, pos) { | 
|  | for (int i = 0; pos->objects[i] != NULL; i++) { | 
|  | k_object_access_grant(pos->objects[i], | 
|  | pos->thread); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_USERSPACE */ | 
|  |  | 
|  | /* | 
|  | * Non-legacy static threads may be started immediately or | 
|  | * after a previously specified delay. Even though the | 
|  | * scheduler is locked, ticks can still be delivered and | 
|  | * processed. Take a sched lock to prevent them from running | 
|  | * until they are all started. | 
|  | * | 
|  | * Note that static threads defined using the legacy API have a | 
|  | * delay of K_FOREVER. | 
|  | */ | 
|  | k_sched_lock(); | 
|  | STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) { | 
|  | k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data); | 
|  |  | 
|  | if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) { | 
|  | thread_schedule_new(thread_data->init_thread, | 
|  | init_delay); | 
|  | } | 
|  | } | 
|  | k_sched_unlock(); | 
|  | } | 
|  | #else | 
|  | #define z_init_static_threads() do { } while (false) | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  |  | 
|  | extern const struct init_entry __init_start[]; | 
|  | extern const struct init_entry __init_EARLY_start[]; | 
|  | extern const struct init_entry __init_PRE_KERNEL_1_start[]; | 
|  | extern const struct init_entry __init_PRE_KERNEL_2_start[]; | 
|  | extern const struct init_entry __init_POST_KERNEL_start[]; | 
|  | extern const struct init_entry __init_APPLICATION_start[]; | 
|  | extern const struct init_entry __init_end[]; | 
|  |  | 
|  | enum init_level { | 
|  | INIT_LEVEL_EARLY = 0, | 
|  | INIT_LEVEL_PRE_KERNEL_1, | 
|  | INIT_LEVEL_PRE_KERNEL_2, | 
|  | INIT_LEVEL_POST_KERNEL, | 
|  | INIT_LEVEL_APPLICATION, | 
|  | #ifdef CONFIG_SMP | 
|  | INIT_LEVEL_SMP, | 
|  | #endif /* CONFIG_SMP */ | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | extern const struct init_entry __init_SMP_start[]; | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * storage space for the interrupt stack | 
|  | * | 
|  | * Note: This area is used as the system stack during kernel initialization, | 
|  | * since the kernel hasn't yet set up its own stack areas. The dual purposing | 
|  | * of this area is safe since interrupts are disabled until the kernel context | 
|  | * switches to the init thread. | 
|  | */ | 
|  | K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks, | 
|  | CONFIG_MP_MAX_NUM_CPUS, | 
|  | CONFIG_ISR_STACK_SIZE); | 
|  |  | 
|  | extern void idle(void *unused1, void *unused2, void *unused3); | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_SYSTEM | 
|  | static struct k_obj_type obj_type_cpu; | 
|  | static struct k_obj_type obj_type_kernel; | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM | 
|  | static struct k_obj_core_stats_desc  cpu_stats_desc = { | 
|  | .raw_size = sizeof(struct k_cycle_stats), | 
|  | .query_size = sizeof(struct k_thread_runtime_stats), | 
|  | .raw   = z_cpu_stats_raw, | 
|  | .query = z_cpu_stats_query, | 
|  | .reset = NULL, | 
|  | .disable = NULL, | 
|  | .enable  = NULL, | 
|  | }; | 
|  |  | 
|  | static struct k_obj_core_stats_desc  kernel_stats_desc = { | 
|  | .raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS, | 
|  | .query_size = sizeof(struct k_thread_runtime_stats), | 
|  | .raw   = z_kernel_stats_raw, | 
|  | .query = z_kernel_stats_query, | 
|  | .reset = NULL, | 
|  | .disable = NULL, | 
|  | .enable  = NULL, | 
|  | }; | 
|  | #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ | 
|  | #endif /* CONFIG_OBJ_CORE_SYSTEM */ | 
|  |  | 
|  | /* LCOV_EXCL_START | 
|  | * | 
|  | * This code is called so early in the boot process that code coverage | 
|  | * doesn't work properly. In addition, not all arches call this code, | 
|  | * some like x86 do this with optimized assembly | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * @brief equivalent of memset() for early boot usage | 
|  | * | 
|  | * Architectures that can't safely use the regular (optimized) memset very | 
|  | * early during boot because e.g. hardware isn't yet sufficiently initialized | 
|  | * may override this with their own safe implementation. | 
|  | */ | 
|  | __boot_func | 
|  | void __weak z_early_memset(void *dst, int c, size_t n) | 
|  | { | 
|  | (void) memset(dst, c, n); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief equivalent of memcpy() for early boot usage | 
|  | * | 
|  | * Architectures that can't safely use the regular (optimized) memcpy very | 
|  | * early during boot because e.g. hardware isn't yet sufficiently initialized | 
|  | * may override this with their own safe implementation. | 
|  | */ | 
|  | __boot_func | 
|  | void __weak z_early_memcpy(void *dst, const void *src, size_t n) | 
|  | { | 
|  | (void) memcpy(dst, src, n); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Clear BSS | 
|  | * | 
|  | * This routine clears the BSS region, so all bytes are 0. | 
|  | */ | 
|  | __boot_func | 
|  | void z_bss_zero(void) | 
|  | { | 
|  | if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | z_early_memset(__bss_start, 0, __bss_end - __bss_start); | 
|  | #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ccm)) | 
|  | z_early_memset(&__ccm_bss_start, 0, | 
|  | (uintptr_t) &__ccm_bss_end | 
|  | - (uintptr_t) &__ccm_bss_start); | 
|  | #endif | 
|  | #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_dtcm)) | 
|  | z_early_memset(&__dtcm_bss_start, 0, | 
|  | (uintptr_t) &__dtcm_bss_end | 
|  | - (uintptr_t) &__dtcm_bss_start); | 
|  | #endif | 
|  | #if DT_NODE_HAS_STATUS_OKAY(DT_CHOSEN(zephyr_ocm)) | 
|  | z_early_memset(&__ocm_bss_start, 0, | 
|  | (uintptr_t) &__ocm_bss_end | 
|  | - (uintptr_t) &__ocm_bss_start); | 
|  | #endif | 
|  | #ifdef CONFIG_CODE_DATA_RELOCATION | 
|  | extern void bss_zeroing_relocation(void); | 
|  |  | 
|  | bss_zeroing_relocation(); | 
|  | #endif	/* CONFIG_CODE_DATA_RELOCATION */ | 
|  | #ifdef CONFIG_COVERAGE_GCOV | 
|  | z_early_memset(&__gcov_bss_start, 0, | 
|  | ((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start)); | 
|  | #endif /* CONFIG_COVERAGE_GCOV */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_LINKER_USE_BOOT_SECTION | 
|  | /** | 
|  | * @brief Clear BSS within the bot region | 
|  | * | 
|  | * This routine clears the BSS within the boot region. | 
|  | * This is separate from z_bss_zero() as boot region may | 
|  | * contain symbols required for the boot process before | 
|  | * paging is initialized. | 
|  | */ | 
|  | __boot_func | 
|  | void z_bss_zero_boot(void) | 
|  | { | 
|  | z_early_memset(&lnkr_boot_bss_start, 0, | 
|  | (uintptr_t)&lnkr_boot_bss_end | 
|  | - (uintptr_t)&lnkr_boot_bss_start); | 
|  | } | 
|  | #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ | 
|  |  | 
|  | #ifdef CONFIG_LINKER_USE_PINNED_SECTION | 
|  | /** | 
|  | * @brief Clear BSS within the pinned region | 
|  | * | 
|  | * This routine clears the BSS within the pinned region. | 
|  | * This is separate from z_bss_zero() as pinned region may | 
|  | * contain symbols required for the boot process before | 
|  | * paging is initialized. | 
|  | */ | 
|  | #ifdef CONFIG_LINKER_USE_BOOT_SECTION | 
|  | __boot_func | 
|  | #else | 
|  | __pinned_func | 
|  | #endif /* CONFIG_LINKER_USE_BOOT_SECTION */ | 
|  | void z_bss_zero_pinned(void) | 
|  | { | 
|  | z_early_memset(&lnkr_pinned_bss_start, 0, | 
|  | (uintptr_t)&lnkr_pinned_bss_end | 
|  | - (uintptr_t)&lnkr_pinned_bss_start); | 
|  | } | 
|  | #endif /* CONFIG_LINKER_USE_PINNED_SECTION */ | 
|  |  | 
|  | #ifdef CONFIG_REQUIRES_STACK_CANARIES | 
|  | #ifdef CONFIG_STACK_CANARIES_TLS | 
|  | extern Z_THREAD_LOCAL volatile uintptr_t __stack_chk_guard; | 
|  | #else | 
|  | extern volatile uintptr_t __stack_chk_guard; | 
|  | #endif /* CONFIG_STACK_CANARIES_TLS */ | 
|  | #endif /* CONFIG_REQUIRES_STACK_CANARIES */ | 
|  |  | 
|  | /* LCOV_EXCL_STOP */ | 
|  |  | 
|  | __pinned_bss | 
|  | bool z_sys_post_kernel; | 
|  |  | 
|  | static int do_device_init(const struct device *dev) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (dev->ops.init != NULL) { | 
|  | rc = dev->ops.init(dev); | 
|  | /* Mark device initialized. If initialization | 
|  | * failed, record the error condition. | 
|  | */ | 
|  | if (rc != 0) { | 
|  | if (rc < 0) { | 
|  | rc = -rc; | 
|  | } | 
|  | if (rc > UINT8_MAX) { | 
|  | rc = UINT8_MAX; | 
|  | } | 
|  | dev->state->init_res = rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | dev->state->initialized = true; | 
|  |  | 
|  | if (rc == 0) { | 
|  | /* Run automatic device runtime enablement */ | 
|  | (void)pm_device_runtime_auto_enable(dev); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * @brief Execute all the init entry initialization functions at a given level | 
|  | * | 
|  | * @details Invokes the initialization routine for each init entry object | 
|  | * created by the INIT_ENTRY_DEFINE() macro using the specified level. | 
|  | * The linker script places the init entry objects in memory in the order | 
|  | * they need to be invoked, with symbols indicating where one level leaves | 
|  | * off and the next one begins. | 
|  | * | 
|  | * @param level init level to run. | 
|  | */ | 
|  | static void z_sys_init_run_level(enum init_level level) | 
|  | { | 
|  | static const struct init_entry *levels[] = { | 
|  | __init_EARLY_start, | 
|  | __init_PRE_KERNEL_1_start, | 
|  | __init_PRE_KERNEL_2_start, | 
|  | __init_POST_KERNEL_start, | 
|  | __init_APPLICATION_start, | 
|  | #ifdef CONFIG_SMP | 
|  | __init_SMP_start, | 
|  | #endif /* CONFIG_SMP */ | 
|  | /* End marker */ | 
|  | __init_end, | 
|  | }; | 
|  | const struct init_entry *entry; | 
|  |  | 
|  | for (entry = levels[level]; entry < levels[level+1]; entry++) { | 
|  | const struct device *dev = entry->dev; | 
|  | int result = 0; | 
|  |  | 
|  | sys_trace_sys_init_enter(entry, level); | 
|  | if (dev != NULL) { | 
|  | if ((dev->flags & DEVICE_FLAG_INIT_DEFERRED) == 0U) { | 
|  | result = do_device_init(dev); | 
|  | } | 
|  | } else { | 
|  | result = entry->init_fn(); | 
|  | } | 
|  | sys_trace_sys_init_exit(entry, level, result); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | int z_impl_device_init(const struct device *dev) | 
|  | { | 
|  | if (dev->state->initialized) { | 
|  | return -EALREADY; | 
|  | } | 
|  |  | 
|  | return do_device_init(dev); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_USERSPACE | 
|  | static inline int z_vrfy_device_init(const struct device *dev) | 
|  | { | 
|  | K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY)); | 
|  |  | 
|  | return z_impl_device_init(dev); | 
|  | } | 
|  | #include <zephyr/syscalls/device_init_mrsh.c> | 
|  | #endif | 
|  |  | 
|  | extern void boot_banner(void); | 
|  |  | 
|  | #ifdef CONFIG_BOOTARGS | 
|  | extern const char *get_bootargs(void); | 
|  | static char **prepare_main_args(int *argc) | 
|  | { | 
|  | #ifdef CONFIG_DYNAMIC_BOOTARGS | 
|  | const char *bootargs = get_bootargs(); | 
|  | #else | 
|  | const char bootargs[] = CONFIG_BOOTARGS_STRING; | 
|  | #endif | 
|  |  | 
|  | /* beginning of the buffer contains argument's strings, end of it contains argvs */ | 
|  | static char args_buf[CONFIG_BOOTARGS_ARGS_BUFFER_SIZE]; | 
|  | char *strings_end = (char *)args_buf; | 
|  | char **argv_begin = (char **)WB_DN( | 
|  | args_buf + CONFIG_BOOTARGS_ARGS_BUFFER_SIZE - sizeof(char *)); | 
|  | int i = 0; | 
|  |  | 
|  | *argc = 0; | 
|  | *argv_begin = NULL; | 
|  |  | 
|  | #ifdef CONFIG_DYNAMIC_BOOTARGS | 
|  | if (!bootargs) { | 
|  | return argv_begin; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | while (isspace(bootargs[i])) { | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (bootargs[i] == '\0') { | 
|  | return argv_begin; | 
|  | } | 
|  |  | 
|  | if (strings_end + sizeof(char *) >= (char *)argv_begin) { | 
|  | LOG_WRN("not enough space in args buffer to accommodate all bootargs" | 
|  | " - bootargs truncated"); | 
|  | return argv_begin; | 
|  | } | 
|  |  | 
|  | argv_begin--; | 
|  | memmove(argv_begin, argv_begin + 1, *argc * sizeof(char *)); | 
|  | argv_begin[*argc] = strings_end; | 
|  |  | 
|  | bool quoted = false; | 
|  |  | 
|  | if (bootargs[i] == '\"' || bootargs[i] == '\'') { | 
|  | char delimiter = bootargs[i]; | 
|  |  | 
|  | for (int j = i + 1; bootargs[j] != '\0'; j++) { | 
|  | if (bootargs[j] == delimiter) { | 
|  | quoted = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (quoted) { | 
|  | char delimiter  = bootargs[i]; | 
|  |  | 
|  | i++; /* strip quotes */ | 
|  | while (bootargs[i] != delimiter | 
|  | && strings_end < (char *)argv_begin) { | 
|  | *strings_end++ = bootargs[i++]; | 
|  | } | 
|  | i++; /* strip quotes */ | 
|  | } else { | 
|  | while (!isspace(bootargs[i]) | 
|  | && bootargs[i] != '\0' | 
|  | && strings_end < (char *)argv_begin) { | 
|  | *strings_end++ = bootargs[i++]; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (strings_end < (char *)argv_begin) { | 
|  | *strings_end++ = '\0'; | 
|  | } else { | 
|  | LOG_WRN("not enough space in args buffer to accommodate all bootargs" | 
|  | " - bootargs truncated"); | 
|  | argv_begin[*argc] = NULL; | 
|  | return argv_begin; | 
|  | } | 
|  | (*argc)++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * @brief Mainline for kernel's background thread | 
|  | * | 
|  | * This routine completes kernel initialization by invoking the remaining | 
|  | * init functions, then invokes application's main() routine. | 
|  | */ | 
|  | __boot_func | 
|  | static void bg_thread_main(void *unused1, void *unused2, void *unused3) | 
|  | { | 
|  | ARG_UNUSED(unused1); | 
|  | ARG_UNUSED(unused2); | 
|  | ARG_UNUSED(unused3); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* Invoked here such that backing store or eviction algorithms may | 
|  | * initialize kernel objects, and that all POST_KERNEL and later tasks | 
|  | * may perform memory management tasks (except for | 
|  | * k_mem_map_phys_bare() which is allowed at any time) | 
|  | */ | 
|  | z_mem_manage_init(); | 
|  | #endif /* CONFIG_MMU */ | 
|  | z_sys_post_kernel = true; | 
|  |  | 
|  | #if CONFIG_IRQ_OFFLOAD | 
|  | arch_irq_offload_init(); | 
|  | #endif | 
|  | z_sys_init_run_level(INIT_LEVEL_POST_KERNEL); | 
|  | #if CONFIG_SOC_LATE_INIT_HOOK | 
|  | soc_late_init_hook(); | 
|  | #endif | 
|  | #if CONFIG_BOARD_LATE_INIT_HOOK | 
|  | board_late_init_hook(); | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0) | 
|  | z_stack_adjust_initialized = 1; | 
|  | #endif /* CONFIG_STACK_POINTER_RANDOM */ | 
|  | boot_banner(); | 
|  |  | 
|  | void z_init_static(void); | 
|  | z_init_static(); | 
|  |  | 
|  | /* Final init level before app starts */ | 
|  | z_sys_init_run_level(INIT_LEVEL_APPLICATION); | 
|  |  | 
|  | z_init_static_threads(); | 
|  |  | 
|  | #ifdef CONFIG_KERNEL_COHERENCE | 
|  | __ASSERT_NO_MSG(arch_mem_coherent(&_kernel)); | 
|  | #endif /* CONFIG_KERNEL_COHERENCE */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) { | 
|  | z_smp_init(); | 
|  | } | 
|  | z_sys_init_run_level(INIT_LEVEL_SMP); | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | z_mem_manage_boot_finish(); | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | #ifdef CONFIG_BOOTARGS | 
|  | extern int main(int, char **); | 
|  |  | 
|  | int argc = 0; | 
|  | char **argv = prepare_main_args(&argc); | 
|  | (void)main(argc, argv); | 
|  | #else | 
|  | extern int main(void); | 
|  |  | 
|  | (void)main(); | 
|  | #endif /* CONFIG_BOOTARGS */ | 
|  |  | 
|  | /* Mark non-essential since main() has no more work to do */ | 
|  | z_thread_essential_clear(&z_main_thread); | 
|  |  | 
|  | #ifdef CONFIG_COVERAGE_DUMP | 
|  | /* Dump coverage data once the main() has exited. */ | 
|  | gcov_coverage_dump(); | 
|  | #endif /* CONFIG_COVERAGE_DUMP */ | 
|  | } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ | 
|  |  | 
|  | #if defined(CONFIG_MULTITHREADING) | 
|  | __boot_func | 
|  | static void init_idle_thread(int i) | 
|  | { | 
|  | struct k_thread *thread = &z_idle_threads[i]; | 
|  | k_thread_stack_t *stack = z_idle_stacks[i]; | 
|  | size_t stack_size = K_KERNEL_STACK_SIZEOF(z_idle_stacks[i]); | 
|  |  | 
|  | #ifdef CONFIG_THREAD_NAME | 
|  |  | 
|  | #if CONFIG_MP_MAX_NUM_CPUS > 1 | 
|  | char tname[8]; | 
|  | snprintk(tname, 8, "idle %02d", i); | 
|  | #else | 
|  | char *tname = "idle"; | 
|  | #endif /* CONFIG_MP_MAX_NUM_CPUS */ | 
|  |  | 
|  | #else | 
|  | char *tname = NULL; | 
|  | #endif /* CONFIG_THREAD_NAME */ | 
|  |  | 
|  | z_setup_new_thread(thread, stack, | 
|  | stack_size, idle, &_kernel.cpus[i], | 
|  | NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL, | 
|  | tname); | 
|  | z_mark_thread_as_not_sleeping(thread); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | thread->base.is_idle = 1U; | 
|  | #endif /* CONFIG_SMP */ | 
|  | } | 
|  |  | 
|  | void z_init_cpu(int id) | 
|  | { | 
|  | init_idle_thread(id); | 
|  | _kernel.cpus[id].idle_thread = &z_idle_threads[id]; | 
|  | _kernel.cpus[id].id = id; | 
|  | _kernel.cpus[id].irq_stack = | 
|  | (K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) + | 
|  | K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id])); | 
|  | #ifdef CONFIG_SCHED_THREAD_USAGE_ALL | 
|  | _kernel.cpus[id].usage = &_kernel.usage[id]; | 
|  | _kernel.cpus[id].usage->track_usage = | 
|  | CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | /* | 
|  | * Increment number of CPUs active. The pm subsystem | 
|  | * will keep track of this from here. | 
|  | */ | 
|  | atomic_inc(&_cpus_active); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_SYSTEM | 
|  | k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu); | 
|  | #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM | 
|  | k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]), | 
|  | _kernel.cpus[id].usage, | 
|  | sizeof(struct k_cycle_stats)); | 
|  | #endif | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * | 
|  | * @brief Initializes kernel data structures | 
|  | * | 
|  | * This routine initializes various kernel data structures, including | 
|  | * the init and idle threads and any architecture-specific initialization. | 
|  | * | 
|  | * Note that all fields of "_kernel" are set to zero on entry, which may | 
|  | * be all the initialization many of them require. | 
|  | * | 
|  | * @return initial stack pointer for the main thread | 
|  | */ | 
|  | __boot_func | 
|  | static char *prepare_multithreading(void) | 
|  | { | 
|  | char *stack_ptr; | 
|  |  | 
|  | /* _kernel.ready_q is all zeroes */ | 
|  | z_sched_init(); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * prime the cache with the main thread since: | 
|  | * | 
|  | * - the cache can never be NULL | 
|  | * - the main thread will be the one to run first | 
|  | * - no other thread is initialized yet and thus their priority fields | 
|  | *   contain garbage, which would prevent the cache loading algorithm | 
|  | *   to work as intended | 
|  | */ | 
|  | _kernel.ready_q.cache = &z_main_thread; | 
|  | #endif /* CONFIG_SMP */ | 
|  | stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack, | 
|  | K_THREAD_STACK_SIZEOF(z_main_stack), | 
|  | bg_thread_main, | 
|  | NULL, NULL, NULL, | 
|  | CONFIG_MAIN_THREAD_PRIORITY, | 
|  | K_ESSENTIAL, "main"); | 
|  | z_mark_thread_as_not_sleeping(&z_main_thread); | 
|  | z_ready_thread(&z_main_thread); | 
|  |  | 
|  | z_init_cpu(0); | 
|  |  | 
|  | return stack_ptr; | 
|  | } | 
|  |  | 
|  | __boot_func | 
|  | static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr) | 
|  | { | 
|  | #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN | 
|  | arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main); | 
|  | #else | 
|  | ARG_UNUSED(stack_ptr); | 
|  | /* | 
|  | * Context switch to main task (entry function is _main()): the | 
|  | * current fake thread is not on a wait queue or ready queue, so it | 
|  | * will never be rescheduled in. | 
|  | */ | 
|  | z_swap_unlocked(); | 
|  | #endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */ | 
|  | CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ | 
|  | } | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  |  | 
|  | __boot_func | 
|  | void __weak z_early_rand_get(uint8_t *buf, size_t length) | 
|  | { | 
|  | static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE; | 
|  | int rc; | 
|  |  | 
|  | #ifdef CONFIG_ENTROPY_HAS_DRIVER | 
|  | const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy)); | 
|  |  | 
|  | if ((entropy != NULL) && device_is_ready(entropy)) { | 
|  | /* Try to see if driver provides an ISR-specific API */ | 
|  | rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); | 
|  | if (rc > 0) { | 
|  | length -= rc; | 
|  | buf += rc; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_ENTROPY_HAS_DRIVER */ | 
|  |  | 
|  | while (length > 0) { | 
|  | uint32_t val; | 
|  |  | 
|  | state = state + k_cycle_get_32(); | 
|  | state = state * 2862933555777941757ULL + 3037000493ULL; | 
|  | val = (uint32_t)(state >> 32); | 
|  | rc = MIN(length, sizeof(val)); | 
|  | z_early_memcpy((void *)buf, &val, rc); | 
|  |  | 
|  | length -= rc; | 
|  | buf += rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * | 
|  | * @brief Initialize kernel | 
|  | * | 
|  | * This routine is invoked when the system is ready to run C code. The | 
|  | * processor must be running in 32-bit mode, and the BSS must have been | 
|  | * cleared/zeroed. | 
|  | * | 
|  | * @return Does not return | 
|  | */ | 
|  | __boot_func | 
|  | FUNC_NO_STACK_PROTECTOR | 
|  | FUNC_NORETURN void z_cstart(void) | 
|  | { | 
|  | /* gcov hook needed to get the coverage report.*/ | 
|  | gcov_static_init(); | 
|  |  | 
|  | /* initialize early init calls */ | 
|  | z_sys_init_run_level(INIT_LEVEL_EARLY); | 
|  |  | 
|  | /* perform any architecture-specific initialization */ | 
|  | arch_kernel_init(); | 
|  |  | 
|  | LOG_CORE_INIT(); | 
|  |  | 
|  | #if defined(CONFIG_MULTITHREADING) | 
|  | z_dummy_thread_init(&_thread_dummy); | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  | /* do any necessary initialization of static devices */ | 
|  | z_device_state_init(); | 
|  |  | 
|  | #if CONFIG_SOC_EARLY_INIT_HOOK | 
|  | soc_early_init_hook(); | 
|  | #endif | 
|  | #if CONFIG_BOARD_EARLY_INIT_HOOK | 
|  | board_early_init_hook(); | 
|  | #endif | 
|  | /* perform basic hardware initialization */ | 
|  | z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1); | 
|  | #if defined(CONFIG_SMP) | 
|  | arch_smp_init(); | 
|  | #endif | 
|  | z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2); | 
|  |  | 
|  | #ifdef CONFIG_REQUIRES_STACK_CANARIES | 
|  | uintptr_t stack_guard; | 
|  |  | 
|  | z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); | 
|  | __stack_chk_guard = stack_guard; | 
|  | __stack_chk_guard <<= 8; | 
|  | #endif	/* CONFIG_REQUIRES_STACK_CANARIES */ | 
|  |  | 
|  | #ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT | 
|  | timing_init(); | 
|  | timing_start(); | 
|  | #endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */ | 
|  |  | 
|  | #ifdef CONFIG_MULTITHREADING | 
|  | switch_to_main_thread(prepare_multithreading()); | 
|  | #else | 
|  | #ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING | 
|  | /* Custom ARCH-specific routine to switch to main() | 
|  | * in the case of no multi-threading. | 
|  | */ | 
|  | ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main, | 
|  | NULL, NULL, NULL); | 
|  | #else | 
|  | bg_thread_main(NULL, NULL, NULL); | 
|  |  | 
|  | /* LCOV_EXCL_START | 
|  | * We've already dumped coverage data at this point. | 
|  | */ | 
|  | irq_lock(); | 
|  | while (true) { | 
|  | } | 
|  | /* LCOV_EXCL_STOP */ | 
|  | #endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */ | 
|  | #endif /* CONFIG_MULTITHREADING */ | 
|  |  | 
|  | /* | 
|  | * Compiler can't tell that the above routines won't return and issues | 
|  | * a warning unless we explicitly tell it that control never gets this | 
|  | * far. | 
|  | */ | 
|  |  | 
|  | CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_SYSTEM | 
|  | static int init_cpu_obj_core_list(void) | 
|  | { | 
|  | /* Initialize CPU object type */ | 
|  |  | 
|  | z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID, | 
|  | offsetof(struct _cpu, obj_core)); | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM | 
|  | k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc); | 
|  | #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int init_kernel_obj_core_list(void) | 
|  | { | 
|  | /* Initialize kernel object type */ | 
|  |  | 
|  | z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID, | 
|  | offsetof(struct z_kernel, obj_core)); | 
|  |  | 
|  | #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM | 
|  | k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc); | 
|  | #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ | 
|  |  | 
|  | k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel); | 
|  | #ifdef CONFIG_OBJ_CORE_STATS_SYSTEM | 
|  | k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage, | 
|  | sizeof(_kernel.usage)); | 
|  | #endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1, | 
|  | CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); | 
|  |  | 
|  | SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1, | 
|  | CONFIG_KERNEL_INIT_PRIORITY_OBJECTS); | 
|  | #endif /* CONFIG_OBJ_CORE_SYSTEM */ |