blob: fb9891fb70389f67f0cc5998c889300c02f698fc [file] [log] [blame]
/*
* Copyright (c) 2019-2020 Peter Bigot Consulting, LLC
* Copyright (c) 2021 Laird Connectivity
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_mcp7940n
#include <zephyr/device.h>
#include <zephyr/drivers/counter.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/drivers/rtc/mcp7940n.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/timeutil.h>
#include <zephyr/sys/util.h>
#include <time.h>
LOG_MODULE_REGISTER(MCP7940N, CONFIG_COUNTER_LOG_LEVEL);
/* Alarm channels */
#define ALARM0_ID 0
#define ALARM1_ID 1
/* Size of block when writing whole struct */
#define RTC_TIME_REGISTERS_SIZE sizeof(struct mcp7940n_time_registers)
#define RTC_ALARM_REGISTERS_SIZE sizeof(struct mcp7940n_alarm_registers)
/* Largest block size */
#define MAX_WRITE_SIZE (RTC_TIME_REGISTERS_SIZE)
/* tm struct uses years since 1900 but unix time uses years since
* 1970. MCP7940N default year is '1' so the offset is 69
*/
#define UNIX_YEAR_OFFSET 69
/* Macro used to decode BCD to UNIX time to avoid potential copy and paste
* errors.
*/
#define RTC_BCD_DECODE(reg_prefix) (reg_prefix##_one + reg_prefix##_ten * 10)
struct mcp7940n_config {
struct counter_config_info generic;
struct i2c_dt_spec i2c;
const struct gpio_dt_spec int_gpios;
};
struct mcp7940n_data {
const struct device *mcp7940n;
struct k_sem lock;
struct mcp7940n_time_registers registers;
struct mcp7940n_alarm_registers alm0_registers;
struct mcp7940n_alarm_registers alm1_registers;
struct k_work alarm_work;
struct gpio_callback int_callback;
counter_alarm_callback_t counter_handler[2];
uint32_t counter_ticks[2];
void *alarm_user_data[2];
bool int_active_high;
};
/** @brief Convert bcd time in device registers to UNIX time
*
* @param dev the MCP7940N device pointer.
*
* @retval returns unix time.
*/
static time_t decode_rtc(const struct device *dev)
{
struct mcp7940n_data *data = dev->data;
time_t time_unix = 0;
struct tm time = { 0 };
time.tm_sec = RTC_BCD_DECODE(data->registers.rtc_sec.sec);
time.tm_min = RTC_BCD_DECODE(data->registers.rtc_min.min);
time.tm_hour = RTC_BCD_DECODE(data->registers.rtc_hours.hr);
time.tm_mday = RTC_BCD_DECODE(data->registers.rtc_date.date);
time.tm_wday = data->registers.rtc_weekday.weekday;
/* tm struct starts months at 0, mcp7940n starts at 1 */
time.tm_mon = RTC_BCD_DECODE(data->registers.rtc_month.month) - 1;
/* tm struct uses years since 1900 but unix time uses years since 1970 */
time.tm_year = RTC_BCD_DECODE(data->registers.rtc_year.year) +
UNIX_YEAR_OFFSET;
time_unix = timeutil_timegm(&time);
LOG_DBG("Unix time is %d\n", (uint32_t)time_unix);
return time_unix;
}
/** @brief Encode time struct tm into mcp7940n rtc registers
*
* @param dev the MCP7940N device pointer.
* @param time_buffer tm struct containing time to be encoded into mcp7940n
* registers.
*
* @retval return 0 on success, or a negative error code from invalid
* parameter.
*/
static int encode_rtc(const struct device *dev, struct tm *time_buffer)
{
struct mcp7940n_data *data = dev->data;
uint8_t month;
uint8_t year_since_epoch;
/* In a tm struct, months start at 0, mcp7940n starts with 1 */
month = time_buffer->tm_mon + 1;
if (time_buffer->tm_year < UNIX_YEAR_OFFSET) {
return -EINVAL;
}
year_since_epoch = time_buffer->tm_year - UNIX_YEAR_OFFSET;
/* Set external oscillator configuration bit */
data->registers.rtc_sec.start_osc = 1;
data->registers.rtc_sec.sec_one = time_buffer->tm_sec % 10;
data->registers.rtc_sec.sec_ten = time_buffer->tm_sec / 10;
data->registers.rtc_min.min_one = time_buffer->tm_min % 10;
data->registers.rtc_min.min_ten = time_buffer->tm_min / 10;
data->registers.rtc_hours.hr_one = time_buffer->tm_hour % 10;
data->registers.rtc_hours.hr_ten = time_buffer->tm_hour / 10;
data->registers.rtc_weekday.weekday = time_buffer->tm_wday;
data->registers.rtc_date.date_one = time_buffer->tm_mday % 10;
data->registers.rtc_date.date_ten = time_buffer->tm_mday / 10;
data->registers.rtc_month.month_one = month % 10;
data->registers.rtc_month.month_ten = month / 10;
data->registers.rtc_year.year_one = year_since_epoch % 10;
data->registers.rtc_year.year_ten = year_since_epoch / 10;
return 0;
}
/** @brief Encode time struct tm into mcp7940n alarm registers
*
* @param dev the MCP7940N device pointer.
* @param time_buffer tm struct containing time to be encoded into mcp7940n
* registers.
* @param alarm_id alarm ID, can be 0 or 1 for MCP7940N.
*
* @retval return 0 on success, or a negative error code from invalid
* parameter.
*/
static int encode_alarm(const struct device *dev, struct tm *time_buffer, uint8_t alarm_id)
{
struct mcp7940n_data *data = dev->data;
uint8_t month;
struct mcp7940n_alarm_registers *alm_regs;
if (alarm_id == ALARM0_ID) {
alm_regs = &data->alm0_registers;
} else if (alarm_id == ALARM1_ID) {
alm_regs = &data->alm1_registers;
} else {
return -EINVAL;
}
/* In a tm struct, months start at 0 */
month = time_buffer->tm_mon + 1;
alm_regs->alm_sec.sec_one = time_buffer->tm_sec % 10;
alm_regs->alm_sec.sec_ten = time_buffer->tm_sec / 10;
alm_regs->alm_min.min_one = time_buffer->tm_min % 10;
alm_regs->alm_min.min_ten = time_buffer->tm_min / 10;
alm_regs->alm_hours.hr_one = time_buffer->tm_hour % 10;
alm_regs->alm_hours.hr_ten = time_buffer->tm_hour / 10;
alm_regs->alm_weekday.weekday = time_buffer->tm_wday;
alm_regs->alm_date.date_one = time_buffer->tm_mday % 10;
alm_regs->alm_date.date_ten = time_buffer->tm_mday / 10;
alm_regs->alm_month.month_one = month % 10;
alm_regs->alm_month.month_ten = month / 10;
return 0;
}
/** @brief Reads single register from MCP7940N
*
* @param dev the MCP7940N device pointer.
* @param addr register address.
* @param val pointer to uint8_t that will contain register value if
* successful.
*
* @retval return 0 on success, or a negative error code from an I2C
* transaction.
*/
static int read_register(const struct device *dev, uint8_t addr, uint8_t *val)
{
const struct mcp7940n_config *cfg = dev->config;
int rc = i2c_write_read_dt(&cfg->i2c, &addr, sizeof(addr), val, 1);
return rc;
}
/** @brief Read registers from device and populate mcp7940n_registers struct
*
* @param dev the MCP7940N device pointer.
* @param unix_time pointer to time_t value that will contain unix time if
* successful.
*
* @retval return 0 on success, or a negative error code from an I2C
* transaction.
*/
static int read_time(const struct device *dev, time_t *unix_time)
{
struct mcp7940n_data *data = dev->data;
const struct mcp7940n_config *cfg = dev->config;
uint8_t addr = REG_RTC_SEC;
int rc = i2c_write_read_dt(&cfg->i2c, &addr, sizeof(addr), &data->registers,
RTC_TIME_REGISTERS_SIZE);
if (rc >= 0) {
*unix_time = decode_rtc(dev);
}
return rc;
}
/** @brief Write a single register to MCP7940N
*
* @param dev the MCP7940N device pointer.
* @param addr register address.
* @param value Value that will be written to the register.
*
* @retval return 0 on success, or a negative error code from an I2C
* transaction or invalid parameter.
*/
static int write_register(const struct device *dev, enum mcp7940n_register addr, uint8_t value)
{
const struct mcp7940n_config *cfg = dev->config;
int rc = 0;
uint8_t time_data[2] = {addr, value};
rc = i2c_write_dt(&cfg->i2c, time_data, sizeof(time_data));
return rc;
}
/** @brief Write a full time struct to MCP7940N registers.
*
* @param dev the MCP7940N device pointer.
* @param addr first register address to write to, should be REG_RTC_SEC,
* REG_ALM0_SEC or REG_ALM0_SEC.
* @param size size of data struct that will be written.
*
* @retval return 0 on success, or a negative error code from an I2C
* transaction or invalid parameter.
*/
static int write_data_block(const struct device *dev, enum mcp7940n_register addr, uint8_t size)
{
struct mcp7940n_data *data = dev->data;
const struct mcp7940n_config *cfg = dev->config;
int rc = 0;
uint8_t time_data[MAX_WRITE_SIZE + 1];
uint8_t *write_block_start;
if (size > MAX_WRITE_SIZE) {
return -EINVAL;
}
if (addr >= REG_INVAL) {
return -EINVAL;
}
if (addr == REG_RTC_SEC) {
write_block_start = (uint8_t *)&data->registers;
} else if (addr == REG_ALM0_SEC) {
write_block_start = (uint8_t *)&data->alm0_registers;
} else if (addr == REG_ALM1_SEC) {
write_block_start = (uint8_t *)&data->alm1_registers;
} else {
return -EINVAL;
}
/* Load register address into first byte then fill in data values */
time_data[0] = addr;
memcpy(&time_data[1], write_block_start, size);
rc = i2c_write_dt(&cfg->i2c, time_data, size + 1);
return rc;
}
/** @brief Sets the correct weekday.
*
* If the time is never set then the device defaults to 1st January 1970
* but with the wrong weekday set. This function ensures the weekday is
* correct in this case.
*
* @param dev the MCP7940N device pointer.
* @param unix_time pointer to unix time that will be used to work out the weekday
*
* @retval return 0 on success, or a negative error code from an I2C
* transaction or invalid parameter.
*/
static int set_day_of_week(const struct device *dev, time_t *unix_time)
{
struct mcp7940n_data *data = dev->data;
struct tm time_buffer = { 0 };
int rc = 0;
if (gmtime_r(unix_time, &time_buffer) != NULL) {
data->registers.rtc_weekday.weekday = time_buffer.tm_wday;
rc = write_register(dev, REG_RTC_WDAY,
*((uint8_t *)(&data->registers.rtc_weekday)));
} else {
rc = -EINVAL;
}
return rc;
}
/** @brief Checks the interrupt pending flag (IF) of a given alarm.
*
* A callback is fired if an IRQ is pending.
*
* @param dev the MCP7940N device pointer.
* @param alarm_id ID of alarm, can be 0 or 1 for MCP7940N.
*/
static void mcp7940n_handle_interrupt(const struct device *dev, uint8_t alarm_id)
{
struct mcp7940n_data *data = dev->data;
uint8_t alarm_reg_address;
struct mcp7940n_alarm_registers *alm_regs;
counter_alarm_callback_t cb;
uint32_t ticks = 0;
bool fire_callback = false;
if (alarm_id == ALARM0_ID) {
alarm_reg_address = REG_ALM0_WDAY;
alm_regs = &data->alm0_registers;
} else if (alarm_id == ALARM1_ID) {
alarm_reg_address = REG_ALM1_WDAY;
alm_regs = &data->alm1_registers;
} else {
return;
}
k_sem_take(&data->lock, K_FOREVER);
/* Check if this alarm has a pending interrupt */
read_register(dev, alarm_reg_address, (uint8_t *)&alm_regs->alm_weekday);
if (alm_regs->alm_weekday.alm_if) {
/* Clear interrupt */
alm_regs->alm_weekday.alm_if = 0;
write_register(dev, alarm_reg_address,
*((uint8_t *)(&alm_regs->alm_weekday)));
/* Fire callback */
if (data->counter_handler[alarm_id]) {
cb = data->counter_handler[alarm_id];
ticks = data->counter_ticks[alarm_id];
fire_callback = true;
}
}
k_sem_give(&data->lock);
if (fire_callback) {
cb(data->mcp7940n, 0, ticks, data->alarm_user_data[alarm_id]);
}
}
static void mcp7940n_work_handler(struct k_work *work)
{
struct mcp7940n_data *data =
CONTAINER_OF(work, struct mcp7940n_data, alarm_work);
/* Check interrupt flags for both alarms */
mcp7940n_handle_interrupt(data->mcp7940n, ALARM0_ID);
mcp7940n_handle_interrupt(data->mcp7940n, ALARM1_ID);
}
static void mcp7940n_init_cb(const struct device *dev,
struct gpio_callback *gpio_cb, uint32_t pins)
{
struct mcp7940n_data *data =
CONTAINER_OF(gpio_cb, struct mcp7940n_data, int_callback);
ARG_UNUSED(pins);
k_work_submit(&data->alarm_work);
}
int mcp7940n_rtc_set_time(const struct device *dev, time_t unix_time)
{
struct mcp7940n_data *data = dev->data;
struct tm time_buffer = { 0 };
int rc = 0;
if (unix_time > UINT32_MAX) {
LOG_ERR("Unix time must be 32-bit");
return -EINVAL;
}
k_sem_take(&data->lock, K_FOREVER);
/* Convert unix_time to civil time */
gmtime_r(&unix_time, &time_buffer);
LOG_DBG("Desired time is %d-%d-%d %d:%d:%d\n", (time_buffer.tm_year + 1900),
(time_buffer.tm_mon + 1), time_buffer.tm_mday, time_buffer.tm_hour,
time_buffer.tm_min, time_buffer.tm_sec);
/* Encode time */
rc = encode_rtc(dev, &time_buffer);
if (rc < 0) {
goto out;
}
/* Write to device */
rc = write_data_block(dev, REG_RTC_SEC, RTC_TIME_REGISTERS_SIZE);
out:
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_start(const struct device *dev)
{
struct mcp7940n_data *data = dev->data;
int rc = 0;
k_sem_take(&data->lock, K_FOREVER);
/* Set start oscillator configuration bit */
data->registers.rtc_sec.start_osc = 1;
rc = write_register(dev, REG_RTC_SEC,
*((uint8_t *)(&data->registers.rtc_sec)));
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_stop(const struct device *dev)
{
struct mcp7940n_data *data = dev->data;
int rc = 0;
k_sem_take(&data->lock, K_FOREVER);
/* Clear start oscillator configuration bit */
data->registers.rtc_sec.start_osc = 0;
rc = write_register(dev, REG_RTC_SEC,
*((uint8_t *)(&data->registers.rtc_sec)));
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_get_value(const struct device *dev,
uint32_t *ticks)
{
struct mcp7940n_data *data = dev->data;
time_t unix_time;
int rc;
k_sem_take(&data->lock, K_FOREVER);
/* Get time */
rc = read_time(dev, &unix_time);
/* Convert time to ticks */
if (rc >= 0) {
*ticks = unix_time;
}
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_set_alarm(const struct device *dev, uint8_t alarm_id,
const struct counter_alarm_cfg *alarm_cfg)
{
struct mcp7940n_data *data = dev->data;
uint32_t seconds_until_alarm;
time_t current_time;
time_t alarm_time;
struct tm time_buffer = { 0 };
uint8_t alarm_base_address;
struct mcp7940n_alarm_registers *alm_regs;
int rc = 0;
k_sem_take(&data->lock, K_FOREVER);
if (alarm_id == ALARM0_ID) {
alarm_base_address = REG_ALM0_SEC;
alm_regs = &data->alm0_registers;
} else if (alarm_id == ALARM1_ID) {
alarm_base_address = REG_ALM1_SEC;
alm_regs = &data->alm1_registers;
} else {
rc = -EINVAL;
goto out;
}
/* Convert ticks to time */
seconds_until_alarm = alarm_cfg->ticks;
/* Get current time and add alarm offset */
rc = read_time(dev, &current_time);
if (rc < 0) {
goto out;
}
alarm_time = current_time + seconds_until_alarm;
gmtime_r(&alarm_time, &time_buffer);
/* Set alarm trigger mask and alarm enable flag */
if (alarm_id == ALARM0_ID) {
data->registers.rtc_control.alm0_en = 1;
} else if (alarm_id == ALARM1_ID) {
data->registers.rtc_control.alm1_en = 1;
}
/* Set alarm to match with second, minute, hour, day of week, day of
* month and month
*/
alm_regs->alm_weekday.alm_msk = MCP7940N_ALARM_TRIGGER_ALL;
/* Write time to alarm registers */
encode_alarm(dev, &time_buffer, alarm_id);
rc = write_data_block(dev, alarm_base_address, RTC_ALARM_REGISTERS_SIZE);
if (rc < 0) {
goto out;
}
/* Enable alarm */
rc = write_register(dev, REG_RTC_CONTROL,
*((uint8_t *)(&data->registers.rtc_control)));
if (rc < 0) {
goto out;
}
/* Config user data and callback */
data->counter_handler[alarm_id] = alarm_cfg->callback;
data->counter_ticks[alarm_id] = current_time;
data->alarm_user_data[alarm_id] = alarm_cfg->user_data;
out:
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_cancel_alarm(const struct device *dev, uint8_t alarm_id)
{
struct mcp7940n_data *data = dev->data;
int rc = 0;
k_sem_take(&data->lock, K_FOREVER);
/* Clear alarm enable bit */
if (alarm_id == ALARM0_ID) {
data->registers.rtc_control.alm0_en = 0;
} else if (alarm_id == ALARM1_ID) {
data->registers.rtc_control.alm1_en = 0;
} else {
rc = -EINVAL;
goto out;
}
rc = write_register(dev, REG_RTC_CONTROL,
*((uint8_t *)(&data->registers.rtc_control)));
out:
k_sem_give(&data->lock);
return rc;
}
static int mcp7940n_counter_set_top_value(const struct device *dev,
const struct counter_top_cfg *cfg)
{
return -ENOTSUP;
}
/* This function can be used to poll the alarm interrupt flags if the MCU is
* not connected to the MC7940N MFP pin. It can also be used to check if an
* alarm was triggered while the MCU was in reset. This function will clear
* the interrupt flag
*
* Return bitmask of alarm interrupt flag (IF) where each IF is shifted by
* the alarm ID.
*/
static uint32_t mcp7940n_counter_get_pending_int(const struct device *dev)
{
struct mcp7940n_data *data = dev->data;
uint32_t interrupt_pending = 0;
int rc;
k_sem_take(&data->lock, K_FOREVER);
/* Check interrupt flag for alarm 0 */
rc = read_register(dev, REG_ALM0_WDAY,
(uint8_t *)&data->alm0_registers.alm_weekday);
if (rc < 0) {
goto out;
}
if (data->alm0_registers.alm_weekday.alm_if) {
/* Clear interrupt */
data->alm0_registers.alm_weekday.alm_if = 0;
rc = write_register(dev, REG_ALM0_WDAY,
*((uint8_t *)(&data->alm0_registers.alm_weekday)));
if (rc < 0) {
goto out;
}
interrupt_pending |= (1 << ALARM0_ID);
}
/* Check interrupt flag for alarm 1 */
rc = read_register(dev, REG_ALM1_WDAY,
(uint8_t *)&data->alm1_registers.alm_weekday);
if (rc < 0) {
goto out;
}
if (data->alm1_registers.alm_weekday.alm_if) {
/* Clear interrupt */
data->alm1_registers.alm_weekday.alm_if = 0;
rc = write_register(dev, REG_ALM1_WDAY,
*((uint8_t *)(&data->alm1_registers.alm_weekday)));
if (rc < 0) {
goto out;
}
interrupt_pending |= (1 << ALARM1_ID);
}
out:
k_sem_give(&data->lock);
if (rc) {
interrupt_pending = 0;
}
return (interrupt_pending);
}
static uint32_t mcp7940n_counter_get_top_value(const struct device *dev)
{
return UINT32_MAX;
}
static int mcp7940n_init(const struct device *dev)
{
struct mcp7940n_data *data = dev->data;
const struct mcp7940n_config *cfg = dev->config;
int rc = 0;
time_t unix_time = 0;
/* Initialize and take the lock */
k_sem_init(&data->lock, 0, 1);
if (!device_is_ready(cfg->i2c.bus)) {
LOG_ERR("I2C device %s is not ready", cfg->i2c.bus->name);
rc = -ENODEV;
goto out;
}
rc = read_time(dev, &unix_time);
if (rc < 0) {
goto out;
}
rc = set_day_of_week(dev, &unix_time);
if (rc < 0) {
goto out;
}
/* Set 24-hour time */
data->registers.rtc_hours.twelve_hr = false;
rc = write_register(dev, REG_RTC_HOUR,
*((uint8_t *)(&data->registers.rtc_hours)));
if (rc < 0) {
goto out;
}
/* Configure alarm interrupt gpio */
if (cfg->int_gpios.port != NULL) {
if (!gpio_is_ready_dt(&cfg->int_gpios)) {
LOG_ERR("Port device %s is not ready",
cfg->int_gpios.port->name);
rc = -ENODEV;
goto out;
}
data->mcp7940n = dev;
k_work_init(&data->alarm_work, mcp7940n_work_handler);
gpio_pin_configure_dt(&cfg->int_gpios, GPIO_INPUT);
gpio_pin_interrupt_configure_dt(&cfg->int_gpios,
GPIO_INT_EDGE_TO_ACTIVE);
gpio_init_callback(&data->int_callback, mcp7940n_init_cb,
BIT(cfg->int_gpios.pin));
gpio_add_callback(cfg->int_gpios.port, &data->int_callback);
/* Configure interrupt polarity */
if ((cfg->int_gpios.dt_flags & GPIO_ACTIVE_LOW) == GPIO_ACTIVE_LOW) {
data->int_active_high = false;
} else {
data->int_active_high = true;
}
data->alm0_registers.alm_weekday.alm_pol = data->int_active_high;
data->alm1_registers.alm_weekday.alm_pol = data->int_active_high;
rc = write_register(dev, REG_ALM0_WDAY,
*((uint8_t *)(&data->alm0_registers.alm_weekday)));
rc = write_register(dev, REG_ALM1_WDAY,
*((uint8_t *)(&data->alm1_registers.alm_weekday)));
}
out:
k_sem_give(&data->lock);
return rc;
}
static const struct counter_driver_api mcp7940n_api = {
.start = mcp7940n_counter_start,
.stop = mcp7940n_counter_stop,
.get_value = mcp7940n_counter_get_value,
.set_alarm = mcp7940n_counter_set_alarm,
.cancel_alarm = mcp7940n_counter_cancel_alarm,
.set_top_value = mcp7940n_counter_set_top_value,
.get_pending_int = mcp7940n_counter_get_pending_int,
.get_top_value = mcp7940n_counter_get_top_value,
};
#define INST_DT_MCP7904N(index) \
\
static struct mcp7940n_data mcp7940n_data_##index; \
\
static const struct mcp7940n_config mcp7940n_config_##index = { \
.generic = { \
.max_top_value = UINT32_MAX, \
.freq = 1, \
.flags = COUNTER_CONFIG_INFO_COUNT_UP, \
.channels = 2, \
}, \
.i2c = I2C_DT_SPEC_INST_GET(index), \
.int_gpios = GPIO_DT_SPEC_INST_GET_OR(index, int_gpios, {0}), \
}; \
\
DEVICE_DT_INST_DEFINE(index, mcp7940n_init, NULL, \
&mcp7940n_data_##index, \
&mcp7940n_config_##index, \
POST_KERNEL, \
CONFIG_COUNTER_INIT_PRIORITY, \
&mcp7940n_api);
DT_INST_FOREACH_STATUS_OKAY(INST_DT_MCP7904N);