blob: 14852df6cc3d3047c9ec376380c53fea7d8d8c70 [file] [log] [blame]
/*
* Copyright (c) 2025 Analog Devices, Inc.
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <zephyr/device.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/sys/util.h>
#include <zephyr/sys/byteorder.h>
LOG_MODULE_REGISTER(adc_ad405x, CONFIG_ADC_LOG_LEVEL);
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define AD4050_CHIP_ID 4050
#define AD4052_CHIP_ID 4052
#define AD4050_ADC_RESOLUTION 12U
#define AD4052_ADC_RESOLUTION 16U
#define AD405X_REG_INTERFACE_CONFIG_A 0x00U
#define AD405X_REG_DEVICE_CONFIG 0x02U
#define AD405X_REG_DEVICE_TYPE 0x03U
#define AD405X_REG_PRODUCT_ID_L 0x04U
#define AD405X_REG_PRODUCT_ID_H 0x05U
#define AD405X_REG_VENDOR_L 0x0CU
#define AD405X_REG_VENDOR_H 0x0DU
#define AD405X_REG_MODE_SET 0x20U
#define AD405X_REG_ADC_MODES 0x21U
#define AD405X_REG_AVG_CONFIG 0x23U
#define AD405X_REG_GP_PIN_CONF 0x24U
#define AD405X_REG_TIMER_CONFIG 0x27U
#define AD405X_REG_INTERFACE_CONFIG_A_VAL 0x10U
#define AD405X_REG_DEVICE_TYPE_VAL 0x07U
#define AD4052_REG_PRODUCT_ID_VAL 0x0072U
#define AD4050_REG_PRODUCT_ID_VAL 0x0070U
#define AD405X_REG_VENDOR_VAL 0x0456U
#define AD405X_REG_INTERFACE_CONFIG_A_RESET_VAL 0x81U
/** AD405X_REG_ADC_MODES Bit definition */
#define AD405X_ADC_MODES_MSK GENMASK(2, 0)
#define AD405X_BURST_AVERAGING_MODE BIT(0)
#define AD405X_AVERAGING_MODE BIT(1)
/** AD405X_REG_MODE_SET Bit definition */
#define AD405X_ENTER_ADC_MODE_MSK BIT(0)
#define AD405X_ENTER_ADC_MODE BIT(0)
#define AD405X_ENTER_SLEEP_MODE BIT(1) | BIT(0)
#define AD405X_ENTER_ACTIVE_MODE 0x0U
/** AD405X_REG_AVG_CONFIG Bit Definitions */
#define AD405X_AVG_WIN_LEN_MSK GENMASK(3, 0)
#define AD405X_SINGLE_DIFFERENTIAL_MSK BIT(7)
#define AD405X_WRITE_CMD 0x0U
#define AD405X_READ_CMD 0x80U
#define AD405X_SW_RESET_MSK BIT(7) | BIT(0)
#define AD405X_GP1_MODE_MSK GENMASK(6, 4)
#define AD405X_GP0_MODE_MSK GENMASK(2, 0)
#define AD405X_GP1 0x1U
#define AD405X_GP0 0x0U
#define AD405X_SINGLE_ENDED 0x0U
#define AD405X_DIFFERENTIAL BIT(7)
#define AD405X_NO_GPIO 0xFFU
/** AD405X_REG_TIMER_CONFIG Bit Definitions */
#define AD405X_FS_BURST_AUTO_MSK GENMASK(7, 4)
union ad405x_bus {
struct spi_dt_spec spi;
};
enum ad405x_gpx_mode {
AD405X_DISABLED = 0,
AD405X_GP0_1_INTR = 1,
AD405X_DATA_READY = 2,
AD405X_DEV_ENABLE = 3,
AD405X_CHOP = 4,
AD405X_LOGIC_LOW = 5,
AD405X_LOGIC_HIGH = 6,
AD405X_DEV_READY = 7
};
/** AD405X modes of operations */
enum ad405x_operation_mode {
AD405X_SAMPLE_MODE_OP = 0,
AD405X_BURST_AVERAGING_MODE_OP = 1,
AD405X_AVERAGING_MODE_OP = 2,
AD405X_MONITOR_AUTO_MODE_OP = 3,
AD405X_CONFIG_MODE_OP = 4,
AD405X_SLEEP_MODE_OP = 5,
AD405X_TRIGGER_AUTO_MODE_OP = 7
};
/** AD405X sample rate for burst and autonomous modes */
enum ad405x_sample_rate {
AD405X_2_MSPS,
AD405X_1_MSPS,
AD405X_333_KSPS,
AD405X_100_KSPS,
AD405X_33_KSPS,
AD405X_10_KSPS,
AD405X_3_KSPS,
AD405X_1_KSPS,
AD405X_500_SPS,
AD405X_333_SPS,
AD405X_250_SPS,
AD405X_200_SPS,
AD405X_166_SPS,
AD405X_140_SPS,
AD405X_125_SPS,
AD405X_111_SPS
};
/** AD405X averaging filter window length */
enum ad405x_avg_filter_l {
AD405X_LENGTH_2,
AD405X_LENGTH_4,
AD405X_LENGTH_8,
AD405X_LENGTH_16,
AD405X_LENGTH_32,
AD405X_LENGTH_64,
AD405X_LENGTH_128,
AD405X_LENGTH_256,
AD405X_LENGTH_512,
AD405X_LENGTH_1024,
AD405X_LENGTH_2048,
AD405X_LENGTH_4096
};
static const int avg_filter_values[] = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096};
struct adc_ad405x_config {
const union ad405x_bus bus;
enum ad405x_operation_mode active_mode;
#ifdef CONFIG_AD405X_TRIGGER
struct gpio_dt_spec gp1_interrupt;
struct gpio_dt_spec gp0_interrupt;
uint8_t has_gp1;
uint8_t has_gp0;
#endif
struct gpio_dt_spec conversion;
uint16_t chip_id;
const struct adc_dt_spec spec;
#ifdef CONFIG_AD405X_STREAM
uint32_t sampling_period;
#endif /* CONFIG_AD405X_STREAM */
};
struct adc_ad405x_data {
struct adc_context ctx;
const struct device *dev;
uint8_t adc_conf;
uint8_t diff;
uint8_t channels;
uint16_t *buffer;
uint16_t *repeat_buffer;
enum ad405x_operation_mode operation_mode;
struct k_sem sem_devrdy;
const struct device *gpio_dev;
enum ad405x_gpx_mode gp1_mode;
enum ad405x_gpx_mode gp0_mode;
uint8_t dev_en_pol;
enum ad405x_sample_rate rate;
enum ad405x_avg_filter_l filter_length;
#if CONFIG_AD405X_TRIGGER
struct gpio_callback gpio1_cb;
struct gpio_callback gpio0_cb;
struct k_sem sem_drdy;
uint8_t has_drdy;
#endif /* CONFIG_AD405X_TRIGGER */
#ifdef CONFIG_AD405X_STREAM
struct rtio_iodev_sqe *sqe;
struct rtio *rtio_ctx;
struct rtio_iodev *iodev;
uint64_t timestamp;
struct rtio *r_cb;
uint32_t adc_sample;
uint8_t data_ready_gpio;
#if DT_HAS_CHOSEN(zephyr_adc_clock)
const struct device *timer_dev;
#else
struct k_timer sample_timer;
#endif
#endif /* CONFIG_AD405X_STREAM */
};
#ifdef CONFIG_AD405X_STREAM
#include <zephyr/drivers/counter.h>
#define AD405X_DEF_SAMPLING_PERIOD 10000U /* 10ms */
/** AD405X qscale modes */
enum ad405x_qscale_modes {
AD4050_6_12B_MODE = 0,
AD4050_6_14B_MODE = 1,
AD4052_8_16B_MODE = 2,
AD4052_8_20B_MODE = 3,
};
struct adc_ad405x_fifo_data {
uint8_t is_fifo: 1;
uint8_t ad405x_qscale_mode: 2;
uint8_t diff_mode: 1;
uint8_t empty: 1;
uint8_t res: 3;
uint16_t vref_mv;
uint64_t timestamp;
} __attribute__((__packed__));
static void ad405x_stream_irq_handler(const struct device *dev);
static int ad405x_conv_start(const struct device *dev);
#if DT_HAS_CHOSEN(zephyr_adc_clock)
static void timer_alarm_handler(const struct device *counter_dev, uint8_t chan_id,
uint32_t ticks, void *user_data)
{
struct adc_ad405x_data *data = (struct adc_ad405x_data *)user_data;
ad405x_conv_start(data->dev);
}
#else
static void sample_timer_handler(struct k_timer *timer)
{
struct adc_ad405x_data *data = CONTAINER_OF(timer, struct adc_ad405x_data,
sample_timer);
ad405x_conv_start(data->dev);
}
#endif
static void ad405x_timer_init(const struct device *dev)
{
struct adc_ad405x_data *data = dev->data;
#if DT_HAS_CHOSEN(zephyr_adc_clock)
counter_start(data->timer_dev);
#else
k_timer_init(&data->sample_timer, sample_timer_handler, NULL);
#endif
}
static void ad405x_timer_start(const struct device *dev)
{
struct adc_ad405x_data *data = dev->data;
const struct adc_ad405x_config *cfg_405 = (const struct adc_ad405x_config *)dev->config;
#if DT_HAS_CHOSEN(zephyr_adc_clock)
struct counter_alarm_cfg alarm_cfg = {.flags = 0,
.ticks = counter_us_to_ticks(data->timer_dev, (uint64_t)cfg_405->sampling_period),
.callback = timer_alarm_handler,
.user_data = data};
counter_set_channel_alarm(data->timer_dev, 0, &alarm_cfg);
#else
k_timer_start(&data->sample_timer, K_USEC(cfg_405->sampling_period), K_NO_WAIT);
#endif
}
#endif /* CONFIG_AD405X_STREAM */
static bool ad405x_bus_is_ready_spi(const union ad405x_bus *bus)
{
bool ret = spi_is_ready_dt(&bus->spi);
return ret;
}
int ad405x_reg_access_spi(const struct device *dev, uint8_t cmd, uint8_t reg_addr, uint8_t *data,
size_t length)
{
const struct adc_ad405x_config *cfg = dev->config;
uint8_t access = reg_addr | cmd;
const struct spi_buf buf[2] = {{.buf = &access, .len = 1}, {.buf = data, .len = length}};
const struct spi_buf_set rx = {.buffers = buf, .count = ARRAY_SIZE(buf)};
struct spi_buf_set tx = {
.buffers = buf,
.count = 2,
};
int ret;
if (cmd == AD405X_READ_CMD) {
tx.count = 1;
ret = spi_transceive_dt(&cfg->bus.spi, &tx, &rx);
} else {
ret = spi_write_dt(&cfg->bus.spi, &tx);
}
return ret;
}
int ad405x_reset_pattern_cmd(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
#if CONFIG_AD405X_TRIGGER
struct adc_ad405x_data *data = dev->data;
#endif
uint8_t access[18] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE};
const struct spi_buf buf[1] = {{.buf = &access, .len = ARRAY_SIZE(access)}};
struct spi_buf_set tx = {
.buffers = buf,
.count = 1,
};
int ret = spi_write_dt(&cfg->bus.spi, &tx);
if (ret < 0) {
return ret;
}
#if CONFIG_AD405X_TRIGGER
if (cfg->has_gp1 != 0) {
k_sem_take(&data->sem_devrdy, K_FOREVER);
} else {
k_msleep(5);
}
#else
k_msleep(5);
#endif
return ret;
}
int ad405x_read_raw(const struct device *dev, uint8_t *data, size_t len)
{
const struct adc_ad405x_config *cfg = dev->config;
int ret = 0;
const struct spi_buf buf[1] = {{.buf = data, .len = len}};
const struct spi_buf_set rx = {.buffers = buf, .count = ARRAY_SIZE(buf)};
ret = spi_transceive_dt(&cfg->bus.spi, NULL, &rx);
return ret;
}
int ad405x_reg_access(const struct device *dev, uint8_t cmd, uint8_t addr, uint8_t *data,
size_t len)
{
return ad405x_reg_access_spi(dev, cmd, addr, data, len);
}
int ad405x_reg_write(const struct device *dev, uint8_t addr, uint8_t *data, uint8_t len)
{
return ad405x_reg_access(dev, AD405X_WRITE_CMD, addr, data, len);
}
int ad405x_reg_read(const struct device *dev, uint8_t addr, uint8_t *data, uint8_t len)
{
return ad405x_reg_access(dev, AD405X_READ_CMD, addr, data, len);
}
int ad405x_reg_write_byte(const struct device *dev, uint8_t addr, uint8_t val)
{
return ad405x_reg_write(dev, addr, &val, 1);
}
int ad405x_reg_read_byte(const struct device *dev, uint8_t addr, uint8_t *buf)
{
return ad405x_reg_read(dev, addr, buf, 1);
}
int ad405x_reg_update_bits(const struct device *dev, uint8_t addr, uint8_t mask, uint8_t val)
{
int ret;
uint8_t byte = 0;
ret = ad405x_reg_read_byte(dev, addr, &byte);
if (ret < 0) {
return ret;
}
byte &= ~mask;
byte |= val;
return ad405x_reg_write_byte(dev, addr, byte);
}
#if CONFIG_AD405X_TRIGGER
static void ad405x_gpio1_callback(const struct device *dev, struct gpio_callback *cb,
uint32_t pins)
{
struct adc_ad405x_data *drv_data = CONTAINER_OF(cb, struct adc_ad405x_data, gpio1_cb);
const struct adc_ad405x_config *cfg = drv_data->dev->config;
gpio_flags_t gpio_flag = GPIO_INT_EDGE_TO_ACTIVE;
gpio_pin_interrupt_configure_dt(&cfg->gp1_interrupt, GPIO_INT_DISABLE);
switch (drv_data->gp1_mode) {
case AD405X_DEV_READY:
k_sem_give(&drv_data->sem_devrdy);
break;
case AD405X_DATA_READY:
#ifdef CONFIG_AD405X_STREAM
const struct adc_read_config *cfg_adc = drv_data->sqe->sqe.iodev->data;
if (cfg_adc->is_streaming) {
ad405x_stream_irq_handler(drv_data->dev);
} else {
k_sem_give(&drv_data->sem_drdy);
}
#else
k_sem_give(&drv_data->sem_drdy);
#endif /* CONFIG_AD405X_STREAM */
gpio_flag = GPIO_INT_EDGE_TO_INACTIVE;
break;
default: /* TODO */
break;
}
gpio_pin_interrupt_configure_dt(&cfg->gp1_interrupt, gpio_flag);
}
static void ad405x_gpio0_callback(const struct device *dev, struct gpio_callback *cb,
uint32_t pins)
{
struct adc_ad405x_data *drv_data = CONTAINER_OF(cb, struct adc_ad405x_data, gpio0_cb);
const struct adc_ad405x_config *cfg = drv_data->dev->config;
gpio_flags_t gpio_flag = GPIO_INT_EDGE_TO_ACTIVE;
gpio_pin_interrupt_configure_dt(&cfg->gp0_interrupt, GPIO_INT_DISABLE);
switch (drv_data->gp0_mode) {
case AD405X_DATA_READY:
#ifdef CONFIG_AD405X_STREAM
const struct adc_read_config *cfg_adc = drv_data->sqe->sqe.iodev->data;
if (cfg_adc->is_streaming) {
ad405x_stream_irq_handler(drv_data->dev);
} else {
k_sem_give(&drv_data->sem_drdy);
}
#else
k_sem_give(&drv_data->sem_drdy);
#endif /* CONFIG_AD405X_STREAM */
gpio_flag = GPIO_INT_EDGE_TO_INACTIVE;
break;
default:
break;
}
gpio_pin_interrupt_configure_dt(&cfg->gp0_interrupt, gpio_flag);
}
#endif
int ad405x_init_conv(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *drv_data = dev->data;
int ret;
if (!gpio_is_ready_dt(&cfg->conversion)) {
LOG_ERR("GPIO port %s not ready", cfg->conversion.port->name);
return -EINVAL;
}
ret = gpio_pin_configure_dt(&cfg->conversion, GPIO_OUTPUT_INACTIVE);
if (ret != 0) {
return ret;
}
ret = gpio_pin_set_dt(&cfg->conversion, 0);
drv_data->dev = dev;
return ret;
}
#if CONFIG_AD405X_TRIGGER
int ad405x_init_interrupt(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *drv_data = dev->data;
int ret;
if (cfg->has_gp1 != 0) {
if (!gpio_is_ready_dt(&cfg->gp1_interrupt)) {
LOG_ERR("GPIO port %s not ready", cfg->gp1_interrupt.port->name);
return -EINVAL;
}
ret = gpio_pin_configure_dt(&cfg->gp1_interrupt, GPIO_INPUT);
if (ret != 0) {
return ret;
}
gpio_init_callback(&drv_data->gpio1_cb, ad405x_gpio1_callback,
BIT(cfg->gp1_interrupt.pin));
ret = gpio_add_callback(cfg->gp1_interrupt.port, &drv_data->gpio1_cb);
if (ret != 0) {
LOG_ERR("Failed to set gpio callback!");
return ret;
}
gpio_pin_interrupt_configure_dt(&cfg->gp1_interrupt, GPIO_INT_EDGE_TO_ACTIVE);
}
if (cfg->has_gp0 != 0) {
if (!gpio_is_ready_dt(&cfg->gp0_interrupt)) {
LOG_ERR("GPIO port %s not ready", cfg->gp0_interrupt.port->name);
return -EINVAL;
}
ret = gpio_pin_configure_dt(&cfg->gp0_interrupt, GPIO_INPUT);
if (ret != 0) {
return ret;
}
gpio_init_callback(&drv_data->gpio0_cb, ad405x_gpio0_callback,
BIT(cfg->gp0_interrupt.pin));
ret = gpio_add_callback(cfg->gp0_interrupt.port, &drv_data->gpio0_cb);
if (ret != 0) {
LOG_ERR("Failed to set gpio callback!");
return ret;
}
}
return 0;
}
#endif
static int ad405x_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_ad405x_config *cfg = dev->config;
if (channel_cfg->channel_id != 0) {
LOG_ERR("invalid channel id %d", channel_cfg->channel_id);
return -EINVAL;
}
if (channel_cfg->differential != cfg->spec.channel_cfg.differential) {
LOG_ERR("invalid mode %d", channel_cfg->differential);
return -EINVAL;
}
uint8_t diff_mode = AD405X_SINGLE_ENDED;
if (channel_cfg->differential) {
diff_mode = AD405X_DIFFERENTIAL;
}
return ad405x_reg_update_bits(dev, AD405X_REG_ADC_MODES,
AD405X_SINGLE_DIFFERENTIAL_MSK, diff_mode);
}
static int adc_ad405x_validate_buffer_size(const struct device *dev,
const struct adc_sequence *sequence)
{
uint8_t channels;
size_t needed;
channels = POPCOUNT(sequence->channels);
needed = channels * sizeof(uint16_t);
if (sequence->buffer_size < needed) {
return -ENOMEM;
}
return 0;
}
static int ad405x_conv_start(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
int ret;
ret = gpio_pin_set_dt(&cfg->conversion, 1);
if (ret != 0) {
return ret;
}
/** CNV High Time min 10 ns */
k_busy_wait(1);
ret = gpio_pin_set_dt(&cfg->conversion, 0);
if (ret != 0) {
return ret;
}
return 0;
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_ad405x_data *data = CONTAINER_OF(ctx, struct adc_ad405x_data, ctx);
const struct adc_ad405x_config *cfg = (struct adc_ad405x_config *)data->dev->config;
uint8_t reg_val_x[3] = {0};
uint32_t data_be;
size_t len = 0;
switch (data->operation_mode) {
case AD405X_SAMPLE_MODE_OP:
len = 2;
ad405x_conv_start(data->dev);
break;
case AD405X_BURST_AVERAGING_MODE_OP:
if (cfg->chip_id == AD4052_CHIP_ID) {
len = 3;
}
ad405x_conv_start(data->dev);
break;
case AD405X_AVERAGING_MODE_OP:
if (cfg->chip_id == AD4052_CHIP_ID) {
len = 3;
}
uint16_t conv_avg = avg_filter_values[data->filter_length];
for (int i = 0; i < conv_avg; i++) {
ad405x_conv_start(data->dev);
}
break;
default:
len = 2;
break;
}
#if CONFIG_AD405X_TRIGGER
if (data->has_drdy != 0) {
k_sem_take(&data->sem_drdy, K_FOREVER);
}
#endif
ad405x_read_raw(data->dev, reg_val_x, len);
switch (len) {
case 2:
/* translate valid bytes to BE format */
data_be = sys_get_be16(reg_val_x);
break;
case 3:
data_be = sys_get_be24(reg_val_x);
break;
default:
data_be = sys_get_be16(reg_val_x);
break;
}
memcpy(ctx->sequence.buffer, &data_be, len);
adc_context_on_sampling_done(&data->ctx, data->dev);
}
int ad405x_set_sample_rate(const struct device *dev, enum ad405x_sample_rate rate)
{
struct adc_ad405x_data *data = dev->data;
int ret;
ret = ad405x_reg_update_bits(dev, AD405X_REG_TIMER_CONFIG, AD405X_FS_BURST_AUTO_MSK, rate);
if (ret != 0) {
return ret;
}
data->rate = rate;
return 0;
}
int ad405x_set_averaging_filter_length(const struct device *dev, enum ad405x_avg_filter_l length)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *data = dev->data;
int ret;
/* Restrict filter length depending on active device selected */
if (cfg->chip_id == AD4050_CHIP_ID) {
if (length > AD405X_LENGTH_256) {
return -EINVAL;
}
}
ret = ad405x_reg_update_bits(dev, AD405X_REG_AVG_CONFIG, AD405X_AVG_WIN_LEN_MSK, length);
if (ret) {
return ret;
}
data->filter_length = length;
return 0;
}
int ad405x_exit_command(const struct device *dev)
{
int ret;
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *data = dev->data;
uint8_t access[1] = {0xA8};
const struct spi_buf buf[1] = {{.buf = &access, .len = ARRAY_SIZE(access)}};
struct spi_buf_set tx = {
.buffers = buf,
.count = 1,
};
ret = spi_write_dt(&cfg->bus.spi, &tx);
if (!ret) {
data->operation_mode = AD405X_CONFIG_MODE_OP;
}
return ret;
}
int ad405x_set_operation_mode(const struct device *dev, enum ad405x_operation_mode operation_mode)
{
struct adc_ad405x_data *data = dev->data;
int ret;
if (data->operation_mode == AD405X_SLEEP_MODE_OP) {
if (operation_mode != AD405X_SLEEP_MODE_OP) {
ret = ad405x_reg_write_byte(dev, AD405X_REG_DEVICE_CONFIG,
AD405X_ENTER_ACTIVE_MODE);
if (ret != 0) {
return ret;
}
if (operation_mode != AD405X_CONFIG_MODE_OP) {
/* Set Operation mode. */
ret = ad405x_reg_update_bits(dev, AD405X_REG_ADC_MODES,
AD405X_ADC_MODES_MSK, operation_mode);
if (ret != 0) {
return ret;
}
/* Enter ADC_MODE. */
ret = ad405x_reg_update_bits(dev, AD405X_REG_MODE_SET,
AD405X_ENTER_ADC_MODE_MSK,
AD405X_ENTER_ADC_MODE);
if (ret != 0) {
return ret;
}
}
}
} else if (data->operation_mode == AD405X_CONFIG_MODE_OP) {
if (operation_mode == AD405X_SLEEP_MODE_OP) {
ret = ad405x_reg_write_byte(dev, AD405X_REG_DEVICE_CONFIG,
AD405X_ENTER_SLEEP_MODE);
if (ret != 0) {
return ret;
}
} else {
/* Set Operation mode. */
ret = ad405x_reg_update_bits(dev, AD405X_REG_ADC_MODES,
AD405X_ADC_MODES_MSK, operation_mode);
if (ret != 0) {
return ret;
}
/* Enter ADC_MODE. */
ret = ad405x_reg_update_bits(dev, AD405X_REG_MODE_SET,
AD405X_ENTER_ADC_MODE_MSK,
AD405X_ENTER_ADC_MODE);
if (ret != 0) {
return ret;
}
}
} else {
ret = ad405x_exit_command(dev);
if (ret != 0) {
return ret;
};
if (operation_mode == AD405X_SLEEP_MODE_OP) {
ret = ad405x_reg_write_byte(dev, AD405X_REG_DEVICE_CONFIG,
AD405X_ENTER_SLEEP_MODE);
if (ret != 0) {
return ret;
}
} else if (operation_mode != AD405X_CONFIG_MODE_OP) {
ret = ad405x_reg_update_bits(dev, AD405X_REG_ADC_MODES,
AD405X_ADC_MODES_MSK, operation_mode);
if (ret != 0) {
return ret;
}
/* Enter ADC_MODE. */
ret = ad405x_reg_update_bits(dev, AD405X_REG_MODE_SET,
AD405X_ENTER_ADC_MODE_MSK,
AD405X_ENTER_ADC_MODE);
if (ret != 0) {
return ret;
}
}
}
data->operation_mode = operation_mode;
return 0;
}
#if CONFIG_AD405X_TRIGGER
int ad405x_set_gpx_mode(const struct device *dev, uint8_t gp0_1, enum ad405x_gpx_mode gpx_mode)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *data = dev->data;
uint8_t mask = AD405X_GP1_MODE_MSK;
int ret;
enum ad405x_gpx_mode gpx_mode_tmp = gpx_mode;
if (gp0_1 == AD405X_GP0) {
mask = AD405X_GP0_MODE_MSK;
if (gpx_mode == AD405X_DEV_READY) {
return -EINVAL;
}
} else {
gpx_mode_tmp = gpx_mode_tmp << 4;
}
ret = ad405x_reg_update_bits(dev, AD405X_REG_GP_PIN_CONF, mask, gpx_mode_tmp);
if (ret == 0) {
if (gp0_1 == AD405X_GP0) {
if (gpx_mode == AD405X_DATA_READY) {
gpio_pin_interrupt_configure_dt(&cfg->gp0_interrupt,
GPIO_INT_EDGE_TO_INACTIVE);
#ifdef CONFIG_AD405X_STREAM
data->data_ready_gpio = AD405X_GP0;
#endif /* CONFIG_AD405X_STREAM */
}
data->gp0_mode = gpx_mode;
} else {
if (gpx_mode == AD405X_DATA_READY) {
gpio_pin_interrupt_configure_dt(&cfg->gp1_interrupt,
GPIO_INT_EDGE_TO_INACTIVE);
#ifdef CONFIG_AD405X_STREAM
data->data_ready_gpio = AD405X_GP1;
#endif /* CONFIG_AD405X_STREAM */
}
data->gp1_mode = gpx_mode;
}
}
return ret;
}
#endif
static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling)
{
struct adc_ad405x_data *data = CONTAINER_OF(ctx, struct adc_ad405x_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static int adc_ad405x_start_read(const struct device *dev, const struct adc_sequence *sequence)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *data = dev->data;
int ret;
if (cfg->chip_id == AD4050_CHIP_ID) {
if (sequence->resolution != cfg->spec.resolution) {
LOG_ERR("invalid resolution %d", sequence->resolution);
return -EINVAL;
}
}
if (cfg->chip_id == AD4052_CHIP_ID) {
if (sequence->resolution != cfg->spec.resolution) {
LOG_ERR("invalid resolution %d", sequence->resolution);
return -EINVAL;
}
}
ret = adc_ad405x_validate_buffer_size(dev, sequence);
if (ret < 0) {
LOG_ERR("insufficient buffer size");
return ret;
}
ad405x_set_operation_mode(dev, cfg->active_mode);
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_ad405x_read_async(const struct device *dev, const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct adc_ad405x_data *data = dev->data;
int ret;
adc_context_lock(&data->ctx, async ? true : false, async);
ret = adc_ad405x_start_read(dev, sequence);
adc_context_release(&data->ctx, ret);
return ret;
}
static int ad405x_read(const struct device *dev, const struct adc_sequence *sequence)
{
return adc_ad405x_read_async(dev, sequence, NULL);
}
static inline bool adc_ad405x_bus_is_ready(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
return ad405x_bus_is_ready_spi(&cfg->bus);
}
int ad405x_soft_reset(const struct device *dev)
{
int ret;
ret = ad405x_reg_update_bits(dev, AD405X_REG_INTERFACE_CONFIG_A, AD405X_SW_RESET_MSK,
AD405X_REG_INTERFACE_CONFIG_A_RESET_VAL);
if (ret < 0) {
return ret;
}
return ad405x_reg_update_bits(dev, AD405X_REG_INTERFACE_CONFIG_A, AD405X_SW_RESET_MSK, 0);
}
static int adc_ad405x_init(const struct device *dev)
{
const struct adc_ad405x_config *cfg = dev->config;
struct adc_ad405x_data *data = dev->data;
int ret;
uint8_t reg_val;
uint8_t reg_val_hi;
uint16_t reg_val_res;
if (!adc_ad405x_bus_is_ready(dev)) {
LOG_ERR("bus not ready");
return -ENODEV;
}
#if CONFIG_AD405X_TRIGGER
ret = ad405x_init_interrupt(dev);
if (ret != 0) {
LOG_ERR("Failed to initialize interrupt!");
return -EIO;
}
#else
data->gp0_mode = AD405X_DISABLED;
#endif
ad405x_init_conv(dev);
data->gp1_mode = AD405X_DEV_READY;
data->operation_mode = AD405X_CONFIG_MODE_OP;
data->filter_length = AD405X_LENGTH_2;
k_sem_init(&data->sem_devrdy, 0, 1);
adc_context_init(&data->ctx);
/* Reset */
ret = ad405x_reset_pattern_cmd(dev);
if (ret < 0) {
return ret;
}
ret = ad405x_reg_read_byte(dev, AD405X_REG_PRODUCT_ID_L, &reg_val);
if (ret < 0) {
return ret;
}
ret = ad405x_reg_read_byte(dev, AD405X_REG_PRODUCT_ID_H, &reg_val_hi);
if (ret < 0) {
return ret;
}
reg_val_res = (reg_val_hi << 8) | reg_val;
if ((reg_val_res != AD4052_REG_PRODUCT_ID_VAL) &
(reg_val_res != AD4050_REG_PRODUCT_ID_VAL)) {
LOG_ERR("Invalid product id");
return -ENODEV;
}
ret = ad405x_reg_read_byte(dev, AD405X_REG_DEVICE_TYPE, &reg_val);
if (ret < 0) {
return ret;
}
if (reg_val != AD405X_REG_DEVICE_TYPE_VAL) {
LOG_ERR("Invalid device type");
return -ENODEV;
}
ret = ad405x_reg_read_byte(dev, AD405X_REG_VENDOR_L, &reg_val);
if (ret < 0) {
return ret;
}
ret = ad405x_reg_read_byte(dev, AD405X_REG_VENDOR_H, &reg_val_hi);
if (ret < 0) {
return ret;
}
reg_val_res = (reg_val_hi << 8) | reg_val;
if (reg_val_res != AD405X_REG_VENDOR_VAL) {
LOG_ERR("Invalid vendor value");
return -ENODEV;
}
if (cfg->chip_id == AD4050_CHIP_ID) {
if (cfg->spec.resolution != AD4050_ADC_RESOLUTION) {
LOG_ERR("Invalid resolution %d", cfg->spec.resolution);
return -EINVAL;
}
} else {
if (cfg->spec.resolution != AD4052_ADC_RESOLUTION) {
LOG_ERR("Invalid resolution %d", cfg->spec.resolution);
return -EINVAL;
}
}
#if CONFIG_AD405X_TRIGGER
if (cfg->has_gp1 != 0) {
ad405x_set_gpx_mode(dev, AD405X_GP1, AD405X_DATA_READY);
k_sem_init(&data->sem_drdy, 0, 1);
data->has_drdy = 1;
}
#endif
adc_context_unlock_unconditionally(&data->ctx);
data->dev = dev;
return ret;
}
#ifdef CONFIG_AD405X_STREAM
void ad405x_submit_stream(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe)
{
struct adc_ad405x_data *data = (struct adc_ad405x_data *)dev->data;
const struct adc_ad405x_config *cfg_405 = (const struct adc_ad405x_config *)dev->config;
if (data->data_ready_gpio > AD405X_GP1) {
LOG_ERR("DATA_READY irq is not enabled!");
rtio_iodev_sqe_err(iodev_sqe, -ENOTSUP);
return;
}
int rc;
if (data->data_ready_gpio == AD405X_GP0) {
rc = gpio_pin_interrupt_configure_dt(&cfg_405->gp0_interrupt,
GPIO_INT_DISABLE);
} else {
rc = gpio_pin_interrupt_configure_dt(&cfg_405->gp1_interrupt,
GPIO_INT_DISABLE);
}
if (rc < 0) {
rtio_iodev_sqe_err(iodev_sqe, rc);
return;
}
if (data->operation_mode == AD405X_CONFIG_MODE_OP) {
rc = ad405x_set_operation_mode(dev, cfg_405->active_mode);
if (rc < 0) {
LOG_ERR("Set operation mode failed!");
return;
}
ad405x_timer_init(dev);
}
if (data->data_ready_gpio == AD405X_GP0) {
rc = gpio_pin_interrupt_configure_dt(&cfg_405->gp0_interrupt,
GPIO_INT_EDGE_TO_INACTIVE);
} else {
rc = gpio_pin_interrupt_configure_dt(&cfg_405->gp1_interrupt,
GPIO_INT_EDGE_TO_INACTIVE);
}
if (rc < 0) {
rtio_iodev_sqe_err(iodev_sqe, rc);
return;
}
data->sqe = iodev_sqe;
ad405x_timer_start(dev);
}
static const uint32_t adc_ad405x_resolution[] = {
[AD4050_6_12B_MODE] = 12,
[AD4050_6_14B_MODE] = 14,
[AD4052_8_16B_MODE] = 16,
[AD4052_8_20B_MODE] = 20,
};
static inline void adc_ad405x_convert_q31(q31_t *out, const uint8_t *buff,
enum ad405x_qscale_modes mode, uint8_t diff_mode,
uint16_t vref_mv, uint8_t adc_shift)
{
int32_t data_in = 0;
uint32_t scale = BIT(adc_ad405x_resolution[mode]);
/* In Differential mode, 1 bit is used for sign */
if (diff_mode) {
scale = BIT(adc_ad405x_resolution[mode] - 1);
}
uint32_t sensitivity = (vref_mv * (scale - 1)) / scale
* 1000 / scale; /* uV / LSB */
switch (mode) {
case AD4050_6_12B_MODE:
case AD4050_6_14B_MODE:
case AD4052_8_16B_MODE:
data_in = sys_get_be16(buff);
if (diff_mode && (data_in & (BIT(adc_ad405x_resolution[mode] - 1)))) {
data_in |= ~BIT_MASK(adc_ad405x_resolution[mode]);
}
break;
case AD4052_8_20B_MODE:
data_in = sys_get_be24(buff);
if (diff_mode && (data_in & (BIT(adc_ad405x_resolution[mode] - 1)))) {
data_in |= ~BIT_MASK(adc_ad405x_resolution[mode]);
}
break;
default:
data_in = sys_get_be16(buff);
break;
}
*out = BIT(31 - adc_shift)/* scaling to q_31*/ * sensitivity / 1000000/*uV to V*/ * data_in;
}
static int ad405x_decoder_get_frame_count(const uint8_t *buffer, uint32_t channel,
uint16_t *frame_count)
{
const struct adc_ad405x_fifo_data *enc_data = (const struct adc_ad405x_fifo_data *)buffer;
if (enc_data->empty) {
return -ENODATA;
}
/* This adc does not have FIFO so it will stream one sample at a time */
*frame_count = 1;
return 0;
}
static int ad405x_decoder_decode(const uint8_t *buffer, uint32_t channel, uint32_t *fit,
uint16_t max_count, void *data_out)
{
const struct adc_ad405x_fifo_data *enc_data = (const struct adc_ad405x_fifo_data *)buffer;
if (*fit > 0) {
return -ENOTSUP;
}
struct adc_data *data = (struct adc_data *)data_out;
memset(data, 0, sizeof(struct adc_data));
if (enc_data->empty) {
data->header.base_timestamp_ns = 0;
data->header.reading_count = 0;
return -ENODATA;
}
data->header.base_timestamp_ns = enc_data->timestamp;
data->header.reading_count = 1;
/* 32 is used because input parameter for __builtin_clz func is
* unsigneg int (32 bits) and func will consider any input value
* as 32 bit.
*/
data->shift = 32 - __builtin_clz(enc_data->vref_mv);
buffer += sizeof(struct adc_ad405x_fifo_data);
data->readings[0].timestamp_delta = 0;
adc_ad405x_convert_q31(&data->readings[0].value, buffer, enc_data->ad405x_qscale_mode,
enc_data->diff_mode, enc_data->vref_mv, data->shift);
*fit = 1;
return 0;
}
static void ad405x_process_sample_cb(struct rtio *r, const struct rtio_sqe *sqe, int res, void *arg)
{
struct rtio_iodev_sqe *iodev_sqe = sqe->userdata;
rtio_iodev_sqe_ok(iodev_sqe, 0);
}
static void ad405x_stream_irq_handler(const struct device *dev)
{
struct adc_ad405x_data *data = (struct adc_ad405x_data *)dev->data;
const struct adc_ad405x_config *cfg = (const struct adc_ad405x_config *)dev->config;
struct rtio_iodev_sqe *current_sqe = data->sqe;
uint32_t sample_size = 2;
enum ad405x_qscale_modes qscale_mode = AD4050_6_12B_MODE;
struct adc_read_config *read_config = (struct adc_read_config *)data->sqe->sqe.iodev->data;
if (read_config == NULL) {
return;
}
if (current_sqe == NULL) {
return;
}
if (cfg->chip_id == AD4050_CHIP_ID) {
if ((cfg->active_mode == AD405X_BURST_AVERAGING_MODE_OP)
|| (cfg->active_mode == AD405X_AVERAGING_MODE_OP)) {
qscale_mode = AD4050_6_14B_MODE;
}
} else { /* AD4052_CHIP_ID */
if ((cfg->active_mode == AD405X_BURST_AVERAGING_MODE_OP)
|| (cfg->active_mode == AD405X_AVERAGING_MODE_OP)) {
sample_size = 3;
qscale_mode = AD4052_8_20B_MODE;
} else {
qscale_mode = AD4052_8_16B_MODE;
}
}
#if DT_HAS_CHOSEN(zephyr_adc_clock)
uint32_t ticks;
int ret = counter_get_value(data->timer_dev, &ticks);
if (ret != 0) {
LOG_ERR("Failed to get timer value");
data->timestamp = 0;
return;
}
data->timestamp = (uint64_t)(counter_ticks_to_us(data->timer_dev, ticks))
* 1000 /* uS to nS */;
#else
data->timestamp = k_ticks_to_ns_floor64(k_uptime_ticks());
#endif
data->sqe = NULL;
/* Not inherently an underrun/overrun as we may have a buffer to fill next time */
if (current_sqe == NULL) {
LOG_ERR("No pending SQE");
return;
}
const size_t min_read_size = sizeof(struct adc_ad405x_fifo_data) + sample_size;
uint8_t *buf;
uint32_t buf_len;
if (rtio_sqe_rx_buf(current_sqe, min_read_size, min_read_size, &buf, &buf_len) != 0) {
rtio_iodev_sqe_err(current_sqe, -ENOMEM);
return;
}
/* Read FIFO and call back to rtio with rtio_sqe completion */
struct adc_ad405x_fifo_data *hdr = (struct adc_ad405x_fifo_data *)buf;
hdr->is_fifo = 1;
hdr->timestamp = data->timestamp;
hdr->diff_mode = cfg->spec.channel_cfg.differential;
hdr->vref_mv = cfg->spec.vref_mv;
hdr->ad405x_qscale_mode = qscale_mode;
uint8_t *read_buf = buf + sizeof(*hdr);
if (read_config->trigger_cnt != 0) {
enum adc_stream_data_opt data_opt = read_config->triggers[0].opt;
for (int i = 1; i < read_config->trigger_cnt; i++) {
data_opt = MIN(data_opt, read_config->triggers[i].opt);
}
if (data_opt == ADC_STREAM_DATA_NOP || data_opt == ADC_STREAM_DATA_DROP) {
hdr->empty = 1;
}
}
/* Setup new rtio chain to read the data and report then check the result */
struct rtio_sqe *read_fifo_data = rtio_sqe_acquire(data->rtio_ctx);
struct rtio_sqe *complete_op = rtio_sqe_acquire(data->rtio_ctx);
rtio_sqe_prep_read(read_fifo_data, data->iodev, RTIO_PRIO_NORM, read_buf, sample_size,
current_sqe);
read_fifo_data->flags = RTIO_SQE_CHAINED;
rtio_sqe_prep_callback(complete_op, ad405x_process_sample_cb, (void *)dev, current_sqe);
rtio_submit(data->rtio_ctx, 0);
}
static bool ad405x_decoder_has_trigger(const uint8_t *buffer, enum adc_trigger_type trigger)
{
const struct adc_ad405x_fifo_data *data = (const struct adc_ad405x_fifo_data *)buffer;
if (!data->is_fifo) {
return false;
}
switch (trigger) {
/* This family of chips doesn't have FIFO so if there is a buffer trigger has happen. */
case ADC_TRIG_DATA_READY:
case ADC_TRIG_FIFO_WATERMARK:
case ADC_TRIG_FIFO_FULL:
return true;
default:
return false;
}
}
ADC_DECODER_API_DT_DEFINE() = {
.get_frame_count = ad405x_decoder_get_frame_count,
.decode = ad405x_decoder_decode,
.has_trigger = ad405x_decoder_has_trigger,
};
int ad405x_get_decoder(const struct device *dev, const struct adc_decoder_api **api)
{
ARG_UNUSED(dev);
*api = &ADC_DECODER_NAME();
return 0;
}
#endif /* CONFIG_AD405X_STREAM */
static DEVICE_API(adc, ad405x_api_funcs) = {
.channel_setup = ad405x_channel_setup,
.read = ad405x_read,
.ref_internal = 2500,
#ifdef CONFIG_ADC_ASYNC
.read_async = ad405x_adc_read_async,
#endif /* CONFIG_ADC_ASYNC */
#ifdef CONFIG_AD405X_STREAM
.submit = ad405x_submit_stream,
.get_decoder = ad405x_get_decoder,
#endif /* CONFIG_AD405X_STREAM */
};
#define AD405X_SPI_CFG SPI_WORD_SET(8) | SPI_TRANSFER_MSB
#define AD405X_RTIO_DEFINE(inst) \
SPI_DT_IODEV_DEFINE(ad405x_iodev_##inst, DT_DRV_INST(inst), AD405X_SPI_CFG); \
RTIO_DEFINE(ad405x_rtio_ctx_##inst, 16, 16);
#define DT_INST_AD405X(inst, t) DT_INST(inst, adi_ad##t##_adc)
#define AD405X_GPIO_PROPS1(n) \
.gp1_interrupt = GPIO_DT_SPEC_INST_GET_OR(n, gp1_gpios, {0}), \
.has_gp1 = 1, \
#define AD405X_GPIO_PROPS0(n) \
.gp0_interrupt = GPIO_DT_SPEC_INST_GET_OR(n, gp0_gpios, {0}), \
.has_gp0 = 1, \
#define AD405X_GPIO(t, n) \
IF_ENABLED(DT_NODE_HAS_PROP(DT_INST_AD405X(n, t), gp1_gpios), \
(AD405X_GPIO_PROPS1(n))) \
IF_ENABLED(DT_NODE_HAS_PROP(DT_INST_AD405X(n, t), gp0_gpios), \
(AD405X_GPIO_PROPS0(n)))
#define AD405X_INIT(t, n) \
IF_ENABLED(CONFIG_AD405X_STREAM, (AD405X_RTIO_DEFINE(n))); \
static struct adc_ad405x_data ad##t##_data_##n = { \
IF_ENABLED(CONFIG_AD405X_STREAM, (.rtio_ctx = &ad405x_rtio_ctx_##n, \
.iodev = &ad405x_iodev_##n, .data_ready_gpio = AD405X_NO_GPIO, \
COND_CODE_1(DT_HAS_CHOSEN(zephyr_adc_clock), \
(.timer_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_adc_clock)),), \
()))) \
}; \
static const struct adc_ad405x_config ad##t##_config_##n = { \
.bus = {.spi = SPI_DT_SPEC_GET(DT_INST_AD405X(n, t), AD405X_SPI_CFG)}, \
.conversion = GPIO_DT_SPEC_GET_BY_IDX(DT_INST_AD405X(n, t), \
conversion_gpios, 0), \
IF_ENABLED(CONFIG_AD405X_TRIGGER, (AD405X_GPIO(t, n))) \
.chip_id = t, \
.active_mode = AD405X_SAMPLE_MODE_OP, \
.spec = ADC_DT_SPEC_STRUCT(DT_INST(n, DT_DRV_COMPAT), 0), \
IF_ENABLED(CONFIG_AD405X_STREAM, (.sampling_period = \
DT_INST_PROP_OR(n, sampling_period, AD405X_DEF_SAMPLING_PERIOD),)) \
}; \
DEVICE_DT_DEFINE(DT_INST_AD405X(n, t), adc_ad405x_init, NULL, &ad##t##_data_##n, \
&ad##t##_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, &ad405x_api_funcs);
/*
* AD4052: 16 bit
*/
#define AD4052_INIT(n) AD405X_INIT(AD4052_CHIP_ID, n)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT adi_ad4052_adc
DT_INST_FOREACH_STATUS_OKAY(AD4052_INIT)
/*
* AD4050: 12 bit
*/
#define AD4050_INIT(n) AD405X_INIT(AD4050_CHIP_ID, n)
#undef DT_DRV_COMPAT
#define DT_DRV_COMPAT adi_ad4050_adc
DT_INST_FOREACH_STATUS_OKAY(AD4050_INIT)