blob: 5568bbe5dfd87a69cb32c853df5d6c0cacfcd3be [file] [log] [blame]
/*
* Copyright (c) 2025 MASSDRIVER EI (massdriver.space)
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT bflb_bl70x_clock_controller
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/syscon.h>
#include <zephyr/sys/util.h>
#include <zephyr/dt-bindings/clock/bflb_bl70x_clock.h>
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(clock_control_bl70x, CONFIG_CLOCK_CONTROL_LOG_LEVEL);
#include <bouffalolab/bl70x/bflb_soc.h>
#include <bouffalolab/bl70x/aon_reg.h>
#include <bouffalolab/bl70x/glb_reg.h>
#include <bouffalolab/bl70x/hbn_reg.h>
#include <bouffalolab/bl70x/pds_reg.h>
#include <bouffalolab/bl70x/l1c_reg.h>
#include <bouffalolab/bl70x/extra_defines.h>
#include <zephyr/drivers/clock_control/clock_control_bflb_common.h>
#define CLK_SRC_IS(clk, src) \
DT_SAME_NODE(DT_CLOCKS_CTLR_BY_IDX(DT_INST_CLOCKS_CTLR_BY_NAME(0, clk), 0), \
DT_INST_CLOCKS_CTLR_BY_NAME(0, src))
#define CLOCK_TIMEOUT 1024
#define EFUSE_RC32M_TRIM_OFFSET 0x0C
#define EFUSE_RC32M_TRIM_EN_POS 19
#define EFUSE_RC32M_TRIM_PARITY_POS 18
#define EFUSE_RC32M_TRIM_POS 10
#define EFUSE_RC32M_TRIM_MSK 0x3FC00
enum bl70x_clkid {
bl70x_clkid_clk_root = BL70X_CLKID_CLK_ROOT,
bl70x_clkid_clk_rc32m = BL70X_CLKID_CLK_RC32M,
bl70x_clkid_clk_crystal = BL70X_CLKID_CLK_CRYSTAL,
bl70x_clkid_clk_dll = BL70X_CLKID_CLK_DLL,
bl70x_clkid_clk_bclk = BL70X_CLKID_CLK_BCLK,
};
struct clock_control_bl70x_dll_config {
enum bl70x_clkid source;
bool overclock;
};
struct clock_control_bl70x_root_config {
enum bl70x_clkid source;
uint8_t dll_select;
uint8_t divider;
};
struct clock_control_bl70x_bclk_config {
uint8_t divider;
};
struct clock_control_bl70x_data {
bool crystal_enabled;
bool dll_enabled;
struct clock_control_bl70x_dll_config dll;
struct clock_control_bl70x_root_config root;
struct clock_control_bl70x_bclk_config bclk;
};
static int clock_control_bl70x_deinit_crystal(void)
{
uint32_t tmp;
/* unpower crystal */
tmp = sys_read32(AON_BASE + AON_RF_TOP_AON_OFFSET);
tmp = tmp & AON_PU_XTAL_AON_UMSK;
tmp = tmp & AON_PU_XTAL_BUF_AON_UMSK;
sys_write32(tmp, AON_BASE + AON_RF_TOP_AON_OFFSET);
clock_bflb_settle();
return 0;
}
static int clock_control_bl70x_init_crystal(void)
{
uint32_t tmp;
int count = CLOCK_TIMEOUT;
/* power crystal */
tmp = sys_read32(AON_BASE + AON_RF_TOP_AON_OFFSET);
tmp = (tmp & AON_PU_XTAL_AON_UMSK) | (1U << AON_PU_XTAL_AON_POS);
tmp = (tmp & AON_PU_XTAL_BUF_AON_UMSK) | (1U << AON_PU_XTAL_BUF_AON_POS);
sys_write32(tmp, AON_BASE + AON_RF_TOP_AON_OFFSET);
/* wait for crystal to be powered on */
do {
clock_bflb_settle();
tmp = sys_read32(AON_BASE + AON_TSEN_OFFSET);
count--;
} while (!(tmp & AON_XTAL_RDY_MSK) && count > 0);
clock_bflb_settle();
if (count < 1) {
return -1;
}
return 0;
}
/* HCLK is the core clock */
static int clock_control_bl70x_set_root_clock_dividers(uint32_t hclk_div, uint32_t bclk_div)
{
uint32_t tmp;
uint32_t old_rootclk;
old_rootclk = clock_bflb_get_root_clock();
/* security RC32M */
if (old_rootclk > 1) {
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_RC32M);
}
/* set dividers */
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_HCLK_DIV_UMSK) | (hclk_div << GLB_REG_HCLK_DIV_POS);
tmp = (tmp & GLB_REG_BCLK_DIV_UMSK) | (bclk_div << GLB_REG_BCLK_DIV_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG0_OFFSET);
/* do something undocumented, probably acknowledging clock change by disabling then
* reenabling bclk
*/
sys_write32(0x00000001, 0x40000FFC);
sys_write32(0x00000000, 0x40000FFC);
clock_bflb_settle();
/* enable clocks */
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_BCLK_EN_UMSK) | (1U << GLB_REG_BCLK_EN_POS);
tmp = (tmp & GLB_REG_HCLK_EN_UMSK) | (1U << GLB_REG_HCLK_EN_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG0_OFFSET);
clock_bflb_set_root_clock(old_rootclk);
clock_bflb_settle();
return 0;
}
static void clock_control_bl70x_set_machine_timer_clock_enable(bool enable)
{
uint32_t tmp;
tmp = sys_read32(GLB_BASE + GLB_CPU_CLK_CFG_OFFSET);
if (enable) {
tmp = (tmp & GLB_CPU_RTC_EN_UMSK) | (1U << GLB_CPU_RTC_EN_POS);
} else {
tmp = (tmp & GLB_CPU_RTC_EN_UMSK) | (0U << GLB_CPU_RTC_EN_POS);
}
sys_write32(tmp, GLB_BASE + GLB_CPU_CLK_CFG_OFFSET);
}
/* clock:
* 0: BCLK
* 1: 32Khz Oscillator (RC32*K*)
*/
static void clock_control_bl70x_set_machine_timer_clock(bool enable, uint32_t clock,
uint32_t divider)
{
uint32_t tmp;
if (divider > 0x1FFFF) {
divider = 0x1FFFF;
}
if (clock > 1) {
clock = 1;
}
/* disable first, then set div */
clock_control_bl70x_set_machine_timer_clock_enable(false);
tmp = sys_read32(GLB_BASE + GLB_CPU_CLK_CFG_OFFSET);
tmp = (tmp & GLB_CPU_RTC_SEL_UMSK) | (clock << GLB_CPU_RTC_SEL_POS);
tmp = (tmp & GLB_CPU_RTC_DIV_UMSK) | (divider << GLB_CPU_RTC_DIV_POS);
sys_write32(tmp, GLB_BASE + GLB_CPU_CLK_CFG_OFFSET);
clock_control_bl70x_set_machine_timer_clock_enable(enable);
}
static void clock_control_bl70x_deinit_dll(void)
{
uint32_t tmp;
/* DLL Off */
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_PPU_DLL_UMSK) | (0U << GLB_PPU_DLL_POS);
tmp = (tmp & GLB_PU_DLL_UMSK) | (0U << GLB_PU_DLL_POS);
tmp = (tmp & GLB_DLL_RESET_UMSK) | (1U << GLB_DLL_RESET_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
}
/* RC32M : 0
* XTAL : 1
*/
static void clock_control_bl70x_set_dll_source(uint32_t source)
{
uint32_t tmp;
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
if (source > 0) {
tmp = (tmp & GLB_DLL_REFCLK_SEL_UMSK) | (1U << GLB_DLL_REFCLK_SEL_POS);
} else {
tmp = (tmp & GLB_DLL_REFCLK_SEL_UMSK) | (0U << GLB_DLL_REFCLK_SEL_POS);
}
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
}
static void clock_control_bl70x_init_dll(enum bl70x_clkid source)
{
uint32_t tmp;
uint32_t old_rootclk;
old_rootclk = clock_bflb_get_root_clock();
/* security RC32M */
if (old_rootclk > 1) {
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_RC32M);
}
clock_control_bl70x_deinit_dll();
if (source == BL70X_CLKID_CLK_CRYSTAL) {
clock_control_bl70x_set_dll_source(1);
} else {
clock_control_bl70x_set_dll_source(0);
}
/* init sequence */
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_DLL_PRECHG_SEL_UMSK) | (1U << GLB_DLL_PRECHG_SEL_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_PPU_DLL_UMSK) | (1U << GLB_PPU_DLL_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_PU_DLL_UMSK) | (1U << GLB_PU_DLL_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_DLL_RESET_UMSK) | (0U << GLB_DLL_RESET_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
clock_bflb_settle();
clock_bflb_set_root_clock(old_rootclk);
clock_bflb_settle();
}
/*
* 0: 57.6M
* 1: 96M
* 2: 144M
* 3: 120M (do not use)
*/
static void clock_control_bl70x_select_DLL(uint8_t dll)
{
uint32_t tmp;
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_PLL_SEL_UMSK) | (dll << GLB_REG_PLL_SEL_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG0_OFFSET);
}
static int clock_control_bl70x_clock_trim_32M(void)
{
uint32_t tmp;
int err;
uint32_t trim, trim_parity;
const struct device *efuse = DEVICE_DT_GET_ONE(bflb_efuse);
err = syscon_read_reg(efuse, EFUSE_RC32M_TRIM_OFFSET, &trim);
if (err < 0) {
LOG_ERR("Error: Couldn't read efuses: err: %d.\n", err);
return err;
}
if (!((trim >> EFUSE_RC32M_TRIM_EN_POS) & 1)) {
LOG_ERR("RC32M trim disabled!");
return -EINVAL;
}
trim_parity = (trim >> EFUSE_RC32M_TRIM_PARITY_POS) & 1;
trim = (trim & EFUSE_RC32M_TRIM_MSK) >> EFUSE_RC32M_TRIM_POS;
if (trim_parity != (POPCOUNT(trim) & 1)) {
LOG_ERR("Bad trim parity");
return -EINVAL;
}
tmp = sys_read32(PDS_BASE + PDS_RC32M_CTRL0_OFFSET);
tmp = (tmp & PDS_RC32M_EXT_CODE_EN_UMSK) | 1 << PDS_RC32M_EXT_CODE_EN_POS;
tmp = (tmp & PDS_RC32M_CODE_FR_EXT_UMSK) | trim << PDS_RC32M_CODE_FR_EXT_POS;
sys_write32(tmp, PDS_BASE + PDS_RC32M_CTRL0_OFFSET);
clock_bflb_settle();
return 0;
}
/* source for most clocks, either XTAL or RC32M */
static uint32_t clock_control_bl70x_get_xclk(const struct device *dev)
{
uint32_t tmp;
tmp = sys_read32(HBN_BASE + HBN_GLB_OFFSET);
tmp &= HBN_ROOT_CLK_SEL_MSK;
tmp = tmp >> HBN_ROOT_CLK_SEL_POS;
tmp &= 1;
/* on BL70x crystal can only be 32MHz */
if (tmp == 0 || tmp == 1) {
return BFLB_RC32M_FREQUENCY;
} else {
return 0;
}
}
static uint32_t clock_control_bl70x_get_clk(const struct device *dev)
{
uint32_t tmp;
uint32_t hclk_div;
hclk_div = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
hclk_div = (hclk_div & GLB_REG_HCLK_DIV_MSK) >> GLB_REG_HCLK_DIV_POS;
tmp = sys_read32(HBN_BASE + HBN_GLB_OFFSET);
tmp &= HBN_ROOT_CLK_SEL_MSK;
tmp = (tmp >> HBN_ROOT_CLK_SEL_POS) >> 1;
tmp &= 1;
if (tmp == 0) {
return clock_control_bl70x_get_xclk(dev) / (hclk_div + 1);
}
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_PLL_SEL_MSK) >> GLB_REG_PLL_SEL_POS;
if (tmp == 3) {
return MHZ(120) / (hclk_div + 1);
} else if (tmp == 2) {
return MHZ(144) / (hclk_div + 1);
} else if (tmp == 1) {
return MHZ(96) / (hclk_div + 1);
} else if (tmp == 0) {
return MHZ(57.6) / (hclk_div + 1);
}
return 0;
}
/* most peripherals clock */
static uint32_t clock_control_bl70x_get_bclk(const struct device *dev)
{
uint32_t tmp;
uint32_t clock_id;
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_BCLK_DIV_MSK) >> GLB_REG_BCLK_DIV_POS;
clock_id = clock_control_bl70x_get_clk(dev);
return clock_id / (tmp + 1);
}
static uint32_t clock_control_bl70x_mtimer_get_clk_src_div(const struct device *dev)
{
return clock_control_bl70x_get_bclk(dev) / 1000 / 1000 - 1;
}
static void clock_control_bl70x_cache_2T(bool yes)
{
uint32_t tmp;
tmp = sys_read32(L1C_BASE + L1C_CONFIG_OFFSET);
if (yes) {
tmp |= L1C_IROM_2T_ACCESS_MSK;
} else {
tmp &= ~L1C_IROM_2T_ACCESS_MSK;
}
sys_write32(tmp, L1C_BASE + L1C_CONFIG_OFFSET);
}
static void clock_control_bl70x_init_root_as_dll(const struct device *dev)
{
struct clock_control_bl70x_data *data = dev->data;
uint32_t tmp;
clock_control_bl70x_init_dll(data->dll.source);
/* enable all 'PDS' clocks / Divider out */
tmp = sys_read32(GLB_BASE + GLB_DLL_OFFSET);
tmp = (tmp & GLB_DLL_CLK_57P6M_EN_UMSK) | (1U << GLB_DLL_CLK_57P6M_EN_POS);
tmp = (tmp & GLB_DLL_CLK_96M_EN_UMSK) | (1U << GLB_DLL_CLK_96M_EN_POS);
tmp = (tmp & GLB_DLL_CLK_144M_EN_UMSK) | (1U << GLB_DLL_CLK_144M_EN_POS);
tmp = (tmp & GLB_DLL_CLK_288M_EN_UMSK) | (1U << GLB_DLL_CLK_288M_EN_POS);
tmp = (tmp & GLB_DLL_CLK_MMDIV_EN_UMSK) | (1U << GLB_DLL_CLK_MMDIV_EN_POS);
sys_write32(tmp, GLB_BASE + GLB_DLL_OFFSET);
/* glb enable dll actual? */
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_PLL_EN_UMSK) | (1U << GLB_REG_PLL_EN_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG0_OFFSET);
clock_control_bl70x_select_DLL(data->root.dll_select);
if (data->dll.source == bl70x_clkid_clk_crystal) {
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_PLL_XTAL);
} else {
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_PLL_RC32M);
}
if (clock_control_bl70x_get_clk(dev) > MHZ(120)) {
clock_control_bl70x_cache_2T(true);
}
sys_write32(clock_control_bl70x_get_clk(dev), CORECLOCKREGISTER);
}
static void clock_control_bl70x_init_root_as_crystal(const struct device *dev)
{
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_XTAL);
sys_write32(clock_control_bl70x_get_clk(dev), CORECLOCKREGISTER);
}
static int clock_control_bl70x_update_root(const struct device *dev)
{
struct clock_control_bl70x_data *data = dev->data;
uint32_t tmp;
int ret;
/* make sure all clocks are enabled */
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG0_OFFSET);
tmp = (tmp & GLB_REG_BCLK_EN_UMSK) | (1U << GLB_REG_BCLK_EN_POS);
tmp = (tmp & GLB_REG_HCLK_EN_UMSK) | (1U << GLB_REG_HCLK_EN_POS);
tmp = (tmp & GLB_REG_FCLK_EN_UMSK) | (1U << GLB_REG_FCLK_EN_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG0_OFFSET);
/* set root clock to internal 32MHz Oscillator as failsafe */
clock_bflb_set_root_clock(BFLB_MAIN_CLOCK_RC32M);
if (clock_control_bl70x_set_root_clock_dividers(0, 0) != 0) {
return -EIO;
}
sys_write32(BFLB_RC32M_FREQUENCY, CORECLOCKREGISTER);
if (data->crystal_enabled) {
if (clock_control_bl70x_init_crystal() < 0) {
return -EIO;
}
} else {
clock_control_bl70x_deinit_crystal();
}
ret = clock_control_bl70x_set_root_clock_dividers(data->root.divider - 1,
data->bclk.divider - 1);
if (ret < 0) {
return ret;
}
if (data->root.source == bl70x_clkid_clk_dll) {
clock_control_bl70x_init_root_as_dll(dev);
} else if (data->root.source == bl70x_clkid_clk_crystal) {
clock_control_bl70x_init_root_as_crystal(dev);
} else {
/* Root clock already setup as RC32M */
}
ret = clock_control_bl70x_clock_trim_32M();
if (ret < 0) {
return ret;
}
clock_control_bl70x_set_machine_timer_clock(
1, 0, clock_control_bl70x_mtimer_get_clk_src_div(dev));
clock_bflb_settle();
return ret;
}
static void clock_control_bl70x_uart_set_clock_enable(bool enable)
{
uint32_t tmp;
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG2_OFFSET);
if (enable) {
tmp = (tmp & GLB_UART_CLK_EN_UMSK) | (1U << GLB_UART_CLK_EN_POS);
} else {
tmp = (tmp & GLB_UART_CLK_EN_UMSK) | (0U << GLB_UART_CLK_EN_POS);
}
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG2_OFFSET);
}
/* Clock:
* FCLK: 0
* 96 MHz DLL: 1
* When using DLL root clock, we can use either setting, when using the 32Mhz Oscillator with a
* uninitialized DLL, only FCLK will be available.
*/
static void clock_control_bl70x_uart_set_clock(bool enable, uint32_t clock, uint32_t divider)
{
uint32_t tmp;
if (divider > 0x7) {
divider = 0x7;
}
if (clock > 1) {
clock = 1;
}
/* disable uart clock */
clock_control_bl70x_uart_set_clock_enable(false);
tmp = sys_read32(GLB_BASE + GLB_CLK_CFG2_OFFSET);
tmp = (tmp & GLB_UART_CLK_DIV_UMSK) | (divider << GLB_UART_CLK_DIV_POS);
sys_write32(tmp, GLB_BASE + GLB_CLK_CFG2_OFFSET);
tmp = sys_read32(HBN_BASE + HBN_GLB_OFFSET);
tmp = (tmp & HBN_UART_CLK_SEL_UMSK) | (clock << HBN_UART_CLK_SEL_POS);
sys_write32(tmp, HBN_BASE + HBN_GLB_OFFSET);
clock_control_bl70x_uart_set_clock_enable(enable);
}
/* Simple function to enable all peripherals for now */
static void clock_control_bl70x_peripheral_clock_init(void)
{
uint32_t regval = sys_read32(GLB_BASE + GLB_CGEN_CFG1_OFFSET);
/* enable ADC clock routing */
regval |= (1 << 2);
/* enable UART0 clock routing */
regval |= (1 << 16);
/* enable I2C0 clock routing */
regval |= (1 << 19);
sys_write32(regval, GLB_BASE + GLB_CGEN_CFG1_OFFSET);
clock_control_bl70x_uart_set_clock(1, 0, 0);
}
static int clock_control_bl70x_on(const struct device *dev, clock_control_subsys_t sys)
{
struct clock_control_bl70x_data *data = dev->data;
int ret = -EINVAL;
uint32_t key;
enum bl70x_clkid oldroot;
key = irq_lock();
if ((enum bl70x_clkid)sys == bl70x_clkid_clk_crystal) {
if (data->crystal_enabled) {
ret = 0;
} else {
data->crystal_enabled = true;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->crystal_enabled = false;
}
}
} else if ((enum bl70x_clkid)sys == bl70x_clkid_clk_dll) {
if (data->dll_enabled) {
ret = 0;
} else {
data->dll_enabled = true;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->dll_enabled = false;
}
}
} else if ((int)sys == BFLB_FORCE_ROOT_RC32M) {
if (data->root.source == bl70x_clkid_clk_rc32m) {
ret = 0;
} else {
/* Cannot fail to set root to rc32m */
data->root.source = bl70x_clkid_clk_rc32m;
ret = clock_control_bl70x_update_root(dev);
}
} else if ((int)sys == BFLB_FORCE_ROOT_CRYSTAL) {
if (data->root.source == bl70x_clkid_clk_crystal) {
ret = 0;
} else {
oldroot = data->root.source;
data->root.source = bl70x_clkid_clk_crystal;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->root.source = oldroot;
}
}
} else if ((int)sys == BFLB_FORCE_ROOT_PLL) {
if (data->root.source == bl70x_clkid_clk_dll) {
ret = 0;
} else {
oldroot = data->root.source;
data->root.source = bl70x_clkid_clk_dll;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->root.source = oldroot;
}
}
}
irq_unlock(key);
return ret;
}
static int clock_control_bl70x_off(const struct device *dev, clock_control_subsys_t sys)
{
struct clock_control_bl70x_data *data = dev->data;
int ret = -EINVAL;
uint32_t key;
key = irq_lock();
if ((enum bl70x_clkid)sys == bl70x_clkid_clk_crystal) {
if (!data->crystal_enabled) {
ret = 0;
} else {
data->crystal_enabled = false;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->crystal_enabled = true;
}
}
} else if ((enum bl70x_clkid)sys == bl70x_clkid_clk_dll) {
if (!data->dll_enabled) {
ret = 0;
} else {
data->dll_enabled = false;
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
data->dll_enabled = true;
}
}
}
irq_unlock(key);
return ret;
}
static enum clock_control_status clock_control_bl70x_get_status(const struct device *dev,
clock_control_subsys_t sys)
{
struct clock_control_bl70x_data *data = dev->data;
switch ((enum bl70x_clkid)sys) {
case bl70x_clkid_clk_root:
case bl70x_clkid_clk_bclk:
case bl70x_clkid_clk_rc32m:
return CLOCK_CONTROL_STATUS_ON;
case bl70x_clkid_clk_crystal:
if (data->crystal_enabled) {
return CLOCK_CONTROL_STATUS_ON;
}
return CLOCK_CONTROL_STATUS_OFF;
case bl70x_clkid_clk_dll:
if (data->dll_enabled) {
return CLOCK_CONTROL_STATUS_ON;
}
return CLOCK_CONTROL_STATUS_OFF;
default:
return CLOCK_CONTROL_STATUS_UNKNOWN;
}
}
static int clock_control_bl70x_get_rate(const struct device *dev, clock_control_subsys_t sys,
uint32_t *rate)
{
if ((enum bl70x_clkid)sys == bl70x_clkid_clk_root) {
*rate = clock_control_bl70x_get_clk(dev);
} else if ((enum bl70x_clkid)sys == bl70x_clkid_clk_bclk) {
*rate = clock_control_bl70x_get_bclk(dev);
} else if ((enum bl70x_clkid)sys == bl70x_clkid_clk_crystal) {
*rate = DT_PROP(DT_INST_CLOCKS_CTLR_BY_NAME(0, crystal), clock_frequency);
} else if ((enum bl70x_clkid)sys == bl70x_clkid_clk_rc32m) {
*rate = BFLB_RC32M_FREQUENCY;
} else {
return -EINVAL;
}
return 0;
}
static int clock_control_bl70x_init(const struct device *dev)
{
int ret;
uint32_t key;
key = irq_lock();
ret = clock_control_bl70x_update_root(dev);
if (ret < 0) {
irq_unlock(key);
return ret;
}
clock_control_bl70x_peripheral_clock_init();
clock_bflb_settle();
irq_unlock(key);
return 0;
}
static DEVICE_API(clock_control, clock_control_bl70x_api) = {
.on = clock_control_bl70x_on,
.off = clock_control_bl70x_off,
.get_rate = clock_control_bl70x_get_rate,
.get_status = clock_control_bl70x_get_status,
};
static struct clock_control_bl70x_data clock_control_bl70x_data = {
.crystal_enabled = DT_NODE_HAS_STATUS_OKAY(DT_INST_CLOCKS_CTLR_BY_NAME(0, crystal)),
.dll_enabled = DT_NODE_HAS_STATUS_OKAY(DT_INST_CLOCKS_CTLR_BY_NAME(0, dll_144)),
.root = {
#if CLK_SRC_IS(root, dll_144)
.source = bl70x_clkid_clk_dll,
.dll_select = DT_CLOCKS_CELL(DT_INST_CLOCKS_CTLR_BY_NAME(0, root), select),
#elif CLK_SRC_IS(root, crystal)
.source = bl70x_clkid_clk_crystal,
#else
.source = bl70x_clkid_clk_rc32m,
#endif
.divider = DT_PROP(DT_INST_CLOCKS_CTLR_BY_NAME(0, root), divider),
},
.dll = {
#if CLK_SRC_IS(dll_144, crystal)
.source = bl70x_clkid_clk_crystal,
#else
.source = bl70x_clkid_clk_rc32m,
#endif
},
.bclk = {
.divider = DT_PROP(DT_INST_CLOCKS_CTLR_BY_NAME(0, bclk), divider),
},
};
BUILD_ASSERT(CLK_SRC_IS(dll_144, crystal) || CLK_SRC_IS(root, crystal)
? DT_NODE_HAS_STATUS_OKAY(DT_INST_CLOCKS_CTLR_BY_NAME(0, crystal))
: 1,
"Crystal must be enabled to use it");
BUILD_ASSERT(CLK_SRC_IS(root, dll_144) ?
DT_NODE_HAS_STATUS_OKAY(DT_INST_CLOCKS_CTLR_BY_NAME(0, dll_144)) : 1,
"PLL must be enabled to use it");
BUILD_ASSERT(DT_NODE_HAS_STATUS_OKAY(DT_INST_CLOCKS_CTLR_BY_NAME(0, rc32m)), "RC32M is always on");
BUILD_ASSERT(DT_PROP(DT_INST_CLOCKS_CTLR_BY_NAME(0, rc32m), clock_frequency)
== BFLB_RC32M_FREQUENCY, "RC32M must be 32M");
BUILD_ASSERT(DT_PROP(DT_INST_CLOCKS_CTLR_BY_NAME(0, crystal), clock_frequency)
== BFLB_RC32M_FREQUENCY, "Crystal must be 32M for BL70x");
DEVICE_DT_INST_DEFINE(0, clock_control_bl70x_init, NULL, &clock_control_bl70x_data,
NULL, PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&clock_control_bl70x_api);