blob: aa29760364174b5eecaed5008f84e04016d569c1 [file] [log] [blame]
/*
* Copyright (c) 2018 Intel Corporation.
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <kernel.h>
#include <board.h>
#include <device.h>
#include <init.h>
#include <dma.h>
#include "dma_cavs.h"
#define SYS_LOG_DOMAIN "dev/dma_cavs"
#define SYS_LOG_LEVEL CONFIG_SYS_LOG_DMA_LEVEL
#include <logging/sys_log.h>
#define BYTE (1)
#define WORD (2)
#define DWORD (4)
/* CFG_LO */
#define DW_CFG_CLASS(x) (x << 29)
/* CFG_HI */
#define DW_CFGH_SRC_PER(x) ((x & 0xf) | ((x & 0x30) << 24))
#define DW_CFGH_DST_PER(x) (((x & 0xf) << 4) | ((x & 0x30) << 26))
/* default initial setup register values */
#define DW_CFG_LOW_DEF 0x0
#define DEV_NAME(dev) ((dev)->config->name)
#define DEV_DATA(dev) ((struct dw_dma_dev_data *const)(dev)->driver_data)
#define DEV_CFG(dev) \
((const struct dw_dma_dev_cfg *const)(dev)->config->config_info)
/* number of tries to wait for reset */
#define DW_DMA_CFG_TRIES 10000
#define INT_MASK_ALL 0xFF00
static ALWAYS_INLINE void dw_write(u32_t dma_base, u32_t reg, u32_t value)
{
*((volatile u32_t*)(dma_base + reg)) = value;
}
static ALWAYS_INLINE u32_t dw_read(u32_t dma_base, u32_t reg)
{
return *((volatile u32_t*)(dma_base + reg));
}
static void dw_dma_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dma_chan_data *chan_data;
u32_t status_tfr = 0;
u32_t status_block = 0;
u32_t status_err = 0;
u32_t status_intr;
u32_t channel;
status_intr = dw_read(dev_cfg->base, DW_INTR_STATUS);
if (!status_intr) {
SYS_LOG_ERR("status_intr = %d", status_intr);
}
/* get the source of our IRQ. */
status_block = dw_read(dev_cfg->base, DW_STATUS_BLOCK);
status_tfr = dw_read(dev_cfg->base, DW_STATUS_TFR);
/* TODO: handle errors, just clear them atm */
status_err = dw_read(dev_cfg->base, DW_STATUS_ERR);
if (status_err) {
SYS_LOG_ERR("status_err = %d\n", status_err);
dw_write(dev_cfg->base, DW_CLEAR_ERR, status_err);
}
/* clear interrupts */
dw_write(dev_cfg->base, DW_CLEAR_BLOCK, status_block);
dw_write(dev_cfg->base, DW_CLEAR_TFR, status_tfr);
/* Dispatch ISRs for channels depending upon the bit set */
if (dev_data->dma_blkcallback) {
while (status_block) {
channel = find_lsb_set(status_block) - 1;
status_block &= ~(1 << channel);
/* Ensure the linked list (chan_data->lli) is
* freed in the user callback function once
* all the blocks are transferred.
*/
dev_data->dma_blkcallback(dev, channel, 0);
}
}
if (dev_data->dma_tfrcallback) {
while (status_tfr) {
channel = find_lsb_set(status_tfr) - 1;
status_tfr &= ~(1 << channel);
chan_data = &dev_data->chan[channel];
k_free(chan_data->lli);
chan_data->lli = NULL;
dev_data->dma_tfrcallback(dev, channel, 0);
}
}
}
static int dw_dma_config(struct device *dev, u32_t channel,
struct dma_config *cfg)
{
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dma_chan_data *chan_data;
struct dma_block_config *cfg_blocks;
u32_t cnt;
u32_t m_size;
u32_t tr_width;
struct dw_lli2 *lli_desc;
struct dw_lli2 *lli_desc_tail;
if (channel >= DW_MAX_CHAN) {
return -EINVAL;
}
__ASSERT_NO_MSG(cfg->source_data_size == cfg->dest_data_size);
__ASSERT_NO_MSG(cfg->source_burst_length == cfg->dest_burst_length);
if (cfg->source_data_size != BYTE && cfg->source_data_size != WORD &&
cfg->source_data_size != DWORD) {
SYS_LOG_ERR("Invalid 'source_data_size' value");
return -EINVAL;
}
chan_data = &dev_data->chan[channel];
/* default channel config */
chan_data->direction = cfg->channel_direction;
chan_data->cfg_lo = DW_CFG_LOW_DEF;
chan_data->cfg_hi = DW_CFG_LOW_DEF;
/* data_size = (2 ^ tr_width) */
tr_width = find_msb_set(cfg->source_data_size) - 1;
SYS_LOG_DBG("tr_width=%d", tr_width);
/* burst_size = (2 ^ msize) */
m_size = find_msb_set(cfg->source_burst_length) - 1;
SYS_LOG_DBG("m_size=%d", m_size);
cfg_blocks = cfg->head_block;
/* Allocate space for the linked list */
chan_data->lli = (struct dw_lli2 *)k_malloc(sizeof(struct dw_lli2)
* (cfg->block_count));
if (chan_data->lli == NULL) {
SYS_LOG_ERR("not enough memory\n");
return -ENOMEM;
}
memset(chan_data->lli, 0, (sizeof(struct dw_lli2) * cfg->block_count));
lli_desc = chan_data->lli;
lli_desc_tail = lli_desc + cfg->block_count - 1;
/* initialize descriptors */
cnt = cfg->block_count;
do {
lli_desc->ctrl_lo |= DW_CTLL_SRC_WIDTH(tr_width);
lli_desc->ctrl_lo |= DW_CTLL_DST_WIDTH(tr_width);
lli_desc->ctrl_lo |= DW_CTLL_SRC_MSIZE(m_size);
lli_desc->ctrl_lo |= DW_CTLL_DST_MSIZE(m_size);
/* enable interrupt */
lli_desc->ctrl_lo |= DW_CTLL_INT_EN;
switch (cfg->channel_direction) {
case MEMORY_TO_MEMORY:
lli_desc->ctrl_lo |= DW_CTLL_FC_M2M;
lli_desc->ctrl_lo |= DW_CTLL_SRC_INC | DW_CTLL_DST_INC;
break;
case MEMORY_TO_PERIPHERAL:
lli_desc->ctrl_lo |= DW_CTLL_FC_M2P;
lli_desc->ctrl_lo |= DW_CTLL_SRC_INC | DW_CTLL_DST_FIX;
/* Assign a hardware handshaking interface (0-15) to the
* destination of channel
*/
chan_data->cfg_hi |=
DW_CFGH_DST_PER(cfg->dma_slot);
break;
case PERIPHERAL_TO_MEMORY:
lli_desc->ctrl_lo |= DW_CTLL_FC_P2M;
lli_desc->ctrl_lo |= DW_CTLL_SRC_FIX | DW_CTLL_DST_INC;
/* Assign a hardware handshaking interface (0-15) to the
* source of channel
*/
chan_data->cfg_hi |=
DW_CFGH_SRC_PER(cfg->dma_slot);
break;
default:
SYS_LOG_ERR("channel_direction %d is not supported",
cfg->channel_direction);
return -EINVAL;
}
lli_desc->sar = cfg_blocks->source_address;
lli_desc->dar = cfg_blocks->dest_address;
/* Block size */
lli_desc->ctrl_hi = DW_CFG_CLASS(
dev_data->channel_data->chan[channel].class) |
cfg_blocks->block_size;
/* set next descriptor in list */
lli_desc->llp = (u32_t)(lli_desc + 1);
lli_desc->ctrl_lo |= DW_CTLL_LLP_S_EN | DW_CTLL_LLP_D_EN;
/* next descriptor */
lli_desc++;
cfg_blocks = cfg_blocks->next_block;
cnt--;
} while (cfg_blocks && cnt);
/* Cyclic buffer not supported */
lli_desc_tail->llp = 0x0;
lli_desc_tail->ctrl_lo &=
~(DW_CTLL_LLP_S_EN | DW_CTLL_LLP_D_EN);
#ifdef CONFIG_DCACHE_WRITEBACK
/* Flush the cache so that the descriptors are written to the memory.
* If this is not done, DMA engine will read the old stale data at
* that location and hence the DMA operation will not succeed.
*/
dcache_writeback_region(chan_data->lli,
sizeof(struct dw_lli2) * cfg->block_count);
#endif
/* Configure a callback appropriately depending on whether the
* interrupt is requested at the end of transaction completion or
* at the end of each block.
*/
if (cfg->complete_callback_en) {
dev_data->dma_blkcallback = cfg->dma_callback;
} else {
dev_data->dma_tfrcallback = cfg->dma_callback;
}
return 0;
}
static int dw_dma_transfer_start(struct device *dev, u32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dma_chan_data *chan_data;
if (channel >= DW_MAX_CHAN) {
return -EINVAL;
}
chan_data = &dev_data->chan[channel];
if (dev_data->dma_tfrcallback) {
dw_write(dev_cfg->base, DW_MASK_TFR, INT_UNMASK(channel));
}
if (dev_data->dma_blkcallback) {
dw_write(dev_cfg->base, DW_MASK_BLOCK, INT_UNMASK(channel));
}
dw_write(dev_cfg->base, DW_MASK_ERR, INT_UNMASK(channel));
/* write interrupt clear registers for the channel
* ClearTfr, ClearBlock, ClearSrcTran, ClearDstTran, ClearErr
*/
dw_write(dev_cfg->base, DW_CLEAR_TFR, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_BLOCK, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_SRC_TRAN, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_DST_TRAN, 0x1 << channel);
dw_write(dev_cfg->base, DW_CLEAR_ERR, 0x1 << channel);
if (chan_data->lli->llp) {
/* LLP mode - only write LLP pointer */
dw_write(dev_cfg->base, DW_LLP(channel), (u32_t)chan_data->lli);
} else {
/* single transfer, must set zero */
dw_write(dev_cfg->base, DW_LLP(channel), 0);
}
/* channel needs started from scratch, so write SARn, DARn */
dw_write(dev_cfg->base, DW_SAR(channel), chan_data->lli->sar);
dw_write(dev_cfg->base, DW_DAR(channel), chan_data->lli->dar);
/* program CTLn */
dw_write(dev_cfg->base, DW_CTRL_LOW(channel), chan_data->lli->ctrl_lo);
dw_write(dev_cfg->base, DW_CTRL_HIGH(channel), chan_data->lli->ctrl_hi);
/* write channel config */
dw_write(dev_cfg->base, DW_CFG_LOW(channel), chan_data->cfg_lo);
dw_write(dev_cfg->base, DW_CFG_HIGH(channel), chan_data->cfg_hi);
/* enable the channel */
dw_write(dev_cfg->base, DW_DMA_CHAN_EN, CHAN_ENABLE(channel));
return 0;
}
static int dw_dma_transfer_stop(struct device *dev, u32_t channel)
{
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dma_chan_data *chan_data;
if (channel >= DW_MAX_CHAN) {
return -EINVAL;
}
/* Free up the dynamic memory used in case it is not already freed.
* This may have happened because of some errors.
*/
chan_data = &dev_data->chan[channel];
if (chan_data->lli) {
k_free(chan_data->lli);
}
/* mask block, transfer and error interrupts for channel */
dw_write(dev_cfg->base, DW_MASK_TFR, INT_MASK(channel));
dw_write(dev_cfg->base, DW_MASK_BLOCK, INT_MASK(channel));
dw_write(dev_cfg->base, DW_MASK_ERR, INT_MASK(channel));
return 0;
}
static void dw_dma_setup(struct device *dev)
{
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
struct dw_dma_dev_data *const dev_data = DEV_DATA(dev);
struct dw_drv_plat_data *dp = dev_data->channel_data;
int i;
/* we cannot config DMAC if DMAC has been already enabled by host */
if (dw_read(dev_cfg->base, DW_DMA_CFG) != 0) {
dw_write(dev_cfg->base, DW_DMA_CFG, 0x0);
}
/* now check that it's 0 */
for (i = DW_DMA_CFG_TRIES; i > 0; i--) {
if (dw_read(dev_cfg->base, DW_DMA_CFG) == 0) {
goto found;
}
}
SYS_LOG_ERR("DW_DMA_CFG is non-zero\n");
return;
found:
for (i = 0; i < DW_MAX_CHAN; i++) {
dw_read(dev_cfg->base, DW_DMA_CHAN_EN);
}
/* enable the DMA controller */
dw_write(dev_cfg->base, DW_DMA_CFG, 1);
/* mask all interrupts for all 8 channels */
dw_write(dev_cfg->base, DW_MASK_TFR, INT_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_BLOCK, INT_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_SRC_TRAN, INT_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_DST_TRAN, INT_MASK_ALL);
dw_write(dev_cfg->base, DW_MASK_ERR, INT_MASK_ALL);
/* set channel priorities */
for (i = 0; i < DW_MAX_CHAN; i++) {
dw_write(dev_cfg->base, DW_CTRL_HIGH(i),
DW_CFG_CLASS(dp->chan[i].class));
}
}
static int dw_dma0_initialize(struct device *dev)
{
const struct dw_dma_dev_cfg *const dev_cfg = DEV_CFG(dev);
#ifdef CONFIG_SOC_INTEL_S1000
setup_ownership_dma0();
#endif
/* Disable all channels and Channel interrupts */
dw_dma_setup(dev);
/* Configure interrupts */
dev_cfg->irq_config();
/* Enable module's IRQ */
irq_enable(dev_cfg->irq_id);
SYS_LOG_INF("Device %s initialized", DEV_NAME(dev));
return 0;
}
static const struct dma_driver_api dw_dma_driver_api = {
.config = dw_dma_config,
.start = dw_dma_transfer_start,
.stop = dw_dma_transfer_stop,
};
/* DMA0 */
static struct device DEVICE_NAME_GET(dw_dma0);
static void dw_dma0_irq_config(void)
{
IRQ_CONNECT(DW_DMA0_IRQ, CONFIG_DMA_0_IRQ_PRI, dw_dma_isr,
DEVICE_GET(dw_dma0), 0);
}
static struct dw_drv_plat_data dmac0 = {
.chan[0] = {
.class = 6,
.weight = 0,
},
.chan[1] = {
.class = 6,
.weight = 0,
},
.chan[2] = {
.class = 6,
.weight = 0,
},
.chan[3] = {
.class = 6,
.weight = 0,
},
.chan[4] = {
.class = 6,
.weight = 0,
},
.chan[5] = {
.class = 6,
.weight = 0,
},
.chan[6] = {
.class = 6,
.weight = 0,
},
.chan[7] = {
.class = 6,
.weight = 0,
},
};
static const struct dw_dma_dev_cfg dw_dma0_config = {
.base = DW_DMA0_BASE_ADDR,
.irq_config = dw_dma0_irq_config,
.irq_id = DW_DMA0_IRQ,
};
static struct dw_dma_dev_data dw_dma0_data = {
.channel_data = &dmac0,
};
DEVICE_AND_API_INIT(dw_dma0, CONFIG_DMA_0_NAME, &dw_dma0_initialize,
&dw_dma0_data, &dw_dma0_config, POST_KERNEL,
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &dw_dma_driver_api);