| /* |
| * Copyright (c) 2016-2017 Wind River Systems, Inc. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #ifndef ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ |
| #define ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ |
| |
| #include <zephyr/kernel_structs.h> |
| #include <kernel_internal.h> |
| #include <zephyr/timeout_q.h> |
| #include <zephyr/tracing/tracing.h> |
| #include <stdbool.h> |
| |
| BUILD_ASSERT(K_LOWEST_APPLICATION_THREAD_PRIO |
| >= K_HIGHEST_APPLICATION_THREAD_PRIO); |
| |
| #ifdef CONFIG_MULTITHREADING |
| #define Z_VALID_PRIO(prio, entry_point) \ |
| (((prio) == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) || \ |
| ((K_LOWEST_APPLICATION_THREAD_PRIO \ |
| >= K_HIGHEST_APPLICATION_THREAD_PRIO) \ |
| && (prio) >= K_HIGHEST_APPLICATION_THREAD_PRIO \ |
| && (prio) <= K_LOWEST_APPLICATION_THREAD_PRIO)) |
| |
| #define Z_ASSERT_VALID_PRIO(prio, entry_point) do { \ |
| __ASSERT(Z_VALID_PRIO((prio), (entry_point)), \ |
| "invalid priority (%d); allowed range: %d to %d", \ |
| (prio), \ |
| K_LOWEST_APPLICATION_THREAD_PRIO, \ |
| K_HIGHEST_APPLICATION_THREAD_PRIO); \ |
| } while (false) |
| #else |
| #define Z_VALID_PRIO(prio, entry_point) ((prio) == -1) |
| #define Z_ASSERT_VALID_PRIO(prio, entry_point) __ASSERT((prio) == -1, "") |
| #endif |
| |
| void z_sched_init(void); |
| void z_move_thread_to_end_of_prio_q(struct k_thread *thread); |
| int z_is_thread_time_slicing(struct k_thread *thread); |
| void z_unpend_thread_no_timeout(struct k_thread *thread); |
| struct k_thread *z_unpend1_no_timeout(_wait_q_t *wait_q); |
| int z_pend_curr(struct k_spinlock *lock, k_spinlock_key_t key, |
| _wait_q_t *wait_q, k_timeout_t timeout); |
| int z_pend_curr_irqlock(uint32_t key, _wait_q_t *wait_q, k_timeout_t timeout); |
| void z_pend_thread(struct k_thread *thread, _wait_q_t *wait_q, |
| k_timeout_t timeout); |
| void z_reschedule(struct k_spinlock *lock, k_spinlock_key_t key); |
| void z_reschedule_irqlock(uint32_t key); |
| struct k_thread *z_unpend_first_thread(_wait_q_t *wait_q); |
| void z_unpend_thread(struct k_thread *thread); |
| int z_unpend_all(_wait_q_t *wait_q); |
| void z_thread_priority_set(struct k_thread *thread, int prio); |
| bool z_set_prio(struct k_thread *thread, int prio); |
| void *z_get_next_switch_handle(void *interrupted); |
| void idle(void *unused1, void *unused2, void *unused3); |
| void z_time_slice(int ticks); |
| void z_reset_time_slice(struct k_thread *curr); |
| void z_sched_abort(struct k_thread *thread); |
| void z_sched_ipi(void); |
| void z_sched_start(struct k_thread *thread); |
| void z_ready_thread(struct k_thread *thread); |
| void z_requeue_current(struct k_thread *curr); |
| struct k_thread *z_swap_next_thread(void); |
| void z_thread_abort(struct k_thread *thread); |
| |
| static inline void z_pend_curr_unlocked(_wait_q_t *wait_q, k_timeout_t timeout) |
| { |
| (void) z_pend_curr_irqlock(arch_irq_lock(), wait_q, timeout); |
| } |
| |
| static inline void z_reschedule_unlocked(void) |
| { |
| (void) z_reschedule_irqlock(arch_irq_lock()); |
| } |
| |
| static inline bool z_is_idle_thread_entry(void *entry_point) |
| { |
| return entry_point == idle; |
| } |
| |
| static inline bool z_is_idle_thread_object(struct k_thread *thread) |
| { |
| #ifdef CONFIG_MULTITHREADING |
| #ifdef CONFIG_SMP |
| return thread->base.is_idle; |
| #else |
| return thread == &z_idle_threads[0]; |
| #endif |
| #else |
| return false; |
| #endif /* CONFIG_MULTITHREADING */ |
| } |
| |
| static inline bool z_is_thread_suspended(struct k_thread *thread) |
| { |
| return (thread->base.thread_state & _THREAD_SUSPENDED) != 0U; |
| } |
| |
| static inline bool z_is_thread_pending(struct k_thread *thread) |
| { |
| return (thread->base.thread_state & _THREAD_PENDING) != 0U; |
| } |
| |
| static inline bool z_is_thread_prevented_from_running(struct k_thread *thread) |
| { |
| uint8_t state = thread->base.thread_state; |
| |
| return (state & (_THREAD_PENDING | _THREAD_PRESTART | _THREAD_DEAD | |
| _THREAD_DUMMY | _THREAD_SUSPENDED)) != 0U; |
| |
| } |
| |
| static inline bool z_is_thread_timeout_active(struct k_thread *thread) |
| { |
| return !z_is_inactive_timeout(&thread->base.timeout); |
| } |
| |
| static inline bool z_is_thread_ready(struct k_thread *thread) |
| { |
| return !((z_is_thread_prevented_from_running(thread)) != 0U || |
| z_is_thread_timeout_active(thread)); |
| } |
| |
| static inline bool z_has_thread_started(struct k_thread *thread) |
| { |
| return (thread->base.thread_state & _THREAD_PRESTART) == 0U; |
| } |
| |
| static inline bool z_is_thread_state_set(struct k_thread *thread, uint32_t state) |
| { |
| return (thread->base.thread_state & state) != 0U; |
| } |
| |
| static inline bool z_is_thread_queued(struct k_thread *thread) |
| { |
| return z_is_thread_state_set(thread, _THREAD_QUEUED); |
| } |
| |
| static inline void z_mark_thread_as_suspended(struct k_thread *thread) |
| { |
| thread->base.thread_state |= _THREAD_SUSPENDED; |
| |
| SYS_PORT_TRACING_FUNC(k_thread, sched_suspend, thread); |
| } |
| |
| static inline void z_mark_thread_as_not_suspended(struct k_thread *thread) |
| { |
| thread->base.thread_state &= ~_THREAD_SUSPENDED; |
| |
| SYS_PORT_TRACING_FUNC(k_thread, sched_resume, thread); |
| } |
| |
| static inline void z_mark_thread_as_started(struct k_thread *thread) |
| { |
| thread->base.thread_state &= ~_THREAD_PRESTART; |
| } |
| |
| static inline void z_mark_thread_as_pending(struct k_thread *thread) |
| { |
| thread->base.thread_state |= _THREAD_PENDING; |
| } |
| |
| static inline void z_mark_thread_as_not_pending(struct k_thread *thread) |
| { |
| thread->base.thread_state &= ~_THREAD_PENDING; |
| } |
| |
| static inline void z_set_thread_states(struct k_thread *thread, uint32_t states) |
| { |
| thread->base.thread_state |= states; |
| } |
| |
| static inline void z_reset_thread_states(struct k_thread *thread, |
| uint32_t states) |
| { |
| thread->base.thread_state &= ~states; |
| } |
| |
| static inline bool z_is_under_prio_ceiling(int prio) |
| { |
| return prio >= CONFIG_PRIORITY_CEILING; |
| } |
| |
| static inline int z_get_new_prio_with_ceiling(int prio) |
| { |
| return z_is_under_prio_ceiling(prio) ? prio : CONFIG_PRIORITY_CEILING; |
| } |
| |
| static inline bool z_is_prio1_higher_than_or_equal_to_prio2(int prio1, int prio2) |
| { |
| return prio1 <= prio2; |
| } |
| |
| static inline bool z_is_prio_higher_or_equal(int prio1, int prio2) |
| { |
| return z_is_prio1_higher_than_or_equal_to_prio2(prio1, prio2); |
| } |
| |
| static inline bool z_is_prio1_lower_than_or_equal_to_prio2(int prio1, int prio2) |
| { |
| return prio1 >= prio2; |
| } |
| |
| static inline bool z_is_prio1_higher_than_prio2(int prio1, int prio2) |
| { |
| return prio1 < prio2; |
| } |
| |
| static inline bool z_is_prio_higher(int prio, int test_prio) |
| { |
| return z_is_prio1_higher_than_prio2(prio, test_prio); |
| } |
| |
| static inline bool z_is_prio_lower_or_equal(int prio1, int prio2) |
| { |
| return z_is_prio1_lower_than_or_equal_to_prio2(prio1, prio2); |
| } |
| |
| int32_t z_sched_prio_cmp(struct k_thread *thread_1, struct k_thread *thread_2); |
| |
| static inline bool _is_valid_prio(int prio, void *entry_point) |
| { |
| if (prio == K_IDLE_PRIO && z_is_idle_thread_entry(entry_point)) { |
| return true; |
| } |
| |
| if (!z_is_prio_higher_or_equal(prio, |
| K_LOWEST_APPLICATION_THREAD_PRIO)) { |
| return false; |
| } |
| |
| if (!z_is_prio_lower_or_equal(prio, |
| K_HIGHEST_APPLICATION_THREAD_PRIO)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static inline void _ready_one_thread(_wait_q_t *wq) |
| { |
| struct k_thread *thread = z_unpend_first_thread(wq); |
| |
| if (thread != NULL) { |
| z_ready_thread(thread); |
| } |
| } |
| |
| static inline void z_sched_lock(void) |
| { |
| __ASSERT(!arch_is_in_isr(), ""); |
| __ASSERT(_current->base.sched_locked != 1U, ""); |
| |
| --_current->base.sched_locked; |
| |
| compiler_barrier(); |
| } |
| |
| static ALWAYS_INLINE void z_sched_unlock_no_reschedule(void) |
| { |
| __ASSERT(!arch_is_in_isr(), ""); |
| __ASSERT(_current->base.sched_locked != 0U, ""); |
| |
| compiler_barrier(); |
| |
| ++_current->base.sched_locked; |
| } |
| |
| static ALWAYS_INLINE bool z_is_thread_timeout_expired(struct k_thread *thread) |
| { |
| #ifdef CONFIG_SYS_CLOCK_EXISTS |
| return thread->base.timeout.dticks == _EXPIRED; |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * APIs for working with the Zephyr kernel scheduler. Intended for use in |
| * management of IPC objects, either in the core kernel or other IPC |
| * implemented by OS compatibility layers, providing basic wait/wake operations |
| * with spinlocks used for synchronization. |
| * |
| * These APIs are public and will be treated as contract, even if the |
| * underlying scheduler implementation changes. |
| */ |
| |
| /** |
| * Wake up a thread pending on the provided wait queue |
| * |
| * Given a wait_q, wake up the highest priority thread on the queue. If the |
| * queue was empty just return false. |
| * |
| * Otherwise, do the following, in order, holding sched_spinlock the entire |
| * time so that the thread state is guaranteed not to change: |
| * - Set the thread's swap return values to swap_retval and swap_data |
| * - un-pend and ready the thread, but do not invoke the scheduler. |
| * |
| * Repeated calls to this function until it returns false is a suitable |
| * way to wake all threads on the queue. |
| * |
| * It is up to the caller to implement locking such that the return value of |
| * this function (whether a thread was woken up or not) does not immediately |
| * become stale. Calls to wait and wake on the same wait_q object must have |
| * synchronization. Calling this without holding any spinlock is a sign that |
| * this API is not being used properly. |
| * |
| * @param wait_q Wait queue to wake up the highest prio thread |
| * @param swap_retval Swap return value for woken thread |
| * @param swap_data Data return value to supplement swap_retval. May be NULL. |
| * @retval true If a thread was woken up |
| * @retval false If the wait_q was empty |
| */ |
| bool z_sched_wake(_wait_q_t *wait_q, int swap_retval, void *swap_data); |
| |
| /** |
| * Wake up all threads pending on the provided wait queue |
| * |
| * Convenience function to invoke z_sched_wake() on all threads in the queue |
| * until there are no more to wake up. |
| * |
| * @param wait_q Wait queue to wake up the highest prio thread |
| * @param swap_retval Swap return value for woken thread |
| * @param swap_data Data return value to supplement swap_retval. May be NULL. |
| * @retval true If any threads were woken up |
| * @retval false If the wait_q was empty |
| */ |
| static inline bool z_sched_wake_all(_wait_q_t *wait_q, int swap_retval, |
| void *swap_data) |
| { |
| bool woken = false; |
| |
| while (z_sched_wake(wait_q, swap_retval, swap_data)) { |
| woken = true; |
| } |
| |
| /* True if we woke at least one thread up */ |
| return woken; |
| } |
| |
| /** |
| * Atomically put the current thread to sleep on a wait queue, with timeout |
| * |
| * The thread will be added to the provided waitqueue. The lock, which should |
| * be held by the caller with the provided key, will be released once this is |
| * completely done and we have swapped out. |
| * |
| * The return value and data pointer is set by whoever woke us up via |
| * z_sched_wake. |
| * |
| * @param lock Address of spinlock to release when we swap out |
| * @param key Key to the provided spinlock when it was locked |
| * @param wait_q Wait queue to go to sleep on |
| * @param timeout Waiting period to be woken up, or K_FOREVER to wait |
| * indefinitely. |
| * @param data Storage location for data pointer set when thread was woken up. |
| * May be NULL if not used. |
| * @retval Return value set by whatever woke us up, or -EAGAIN if the timeout |
| * expired without being woken up. |
| */ |
| int z_sched_wait(struct k_spinlock *lock, k_spinlock_key_t key, |
| _wait_q_t *wait_q, k_timeout_t timeout, void **data); |
| |
| |
| /** @brief Halt thread cycle usage accounting. |
| * |
| * Halts the accumulation of thread cycle usage and adds the current |
| * total to the thread's counter. Called on context switch. |
| * |
| * Note that this function is idempotent. The core kernel code calls |
| * it at the end of interrupt handlers (because that is where we have |
| * a portable hook) where we are context switching, which will include |
| * any cycles spent in the ISR in the per-thread accounting. But |
| * architecture code can also call it earlier out of interrupt entry |
| * to improve measurement fidelity. |
| * |
| * This function assumes local interrupts are masked (so that the |
| * current CPU pointer and current thread are safe to modify), but |
| * requires no other synchronizaton. Architecture layers don't need |
| * to do anything more. |
| */ |
| void z_sched_usage_stop(void); |
| |
| void z_sched_usage_start(struct k_thread *thread); |
| |
| /** |
| * @brief Retrieves CPU cycle usage data for specified core |
| */ |
| void z_sched_cpu_usage(uint8_t core_id, struct k_thread_runtime_stats *stats); |
| |
| /** |
| * @brief Retrieves thread cycle usage data for specified thread |
| */ |
| void z_sched_thread_usage(struct k_thread *thread, |
| struct k_thread_runtime_stats *stats); |
| |
| static inline void z_sched_usage_switch(struct k_thread *thread) |
| { |
| ARG_UNUSED(thread); |
| #ifdef CONFIG_SCHED_THREAD_USAGE |
| z_sched_usage_stop(); |
| z_sched_usage_start(thread); |
| #endif |
| } |
| |
| #endif /* ZEPHYR_KERNEL_INCLUDE_KSCHED_H_ */ |