blob: 7f9ecaf90fb77aa7d274dd4acb1e69bf79f6fe8e [file] [log] [blame]
/*
* Copyright (c) 2021 BrainCo Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT gd_gd32_spi
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/clock_control/gd32.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/reset.h>
#include <zephyr/drivers/spi.h>
#ifdef CONFIG_SPI_GD32_DMA
#include <zephyr/drivers/dma.h>
#include <zephyr/drivers/dma/dma_gd32.h>
#endif
#include <gd32_spi.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(spi_gd32);
#include "spi_context.h"
/* SPI error status mask. */
#define SPI_GD32_ERR_MASK (SPI_STAT_RXORERR | SPI_STAT_CONFERR | SPI_STAT_CRCERR)
#define GD32_SPI_PSC_MAX 0x7U
#ifdef CONFIG_SPI_GD32_DMA
enum spi_gd32_dma_direction {
RX = 0,
TX,
NUM_OF_DIRECTION
};
struct spi_gd32_dma_config {
const struct device *dev;
uint32_t channel;
uint32_t config;
uint32_t slot;
uint32_t fifo_threshold;
};
struct spi_gd32_dma_data {
struct dma_config config;
struct dma_block_config block;
uint32_t count;
};
#endif
struct spi_gd32_config {
uint32_t reg;
uint16_t clkid;
struct reset_dt_spec reset;
const struct pinctrl_dev_config *pcfg;
#ifdef CONFIG_SPI_GD32_DMA
const struct spi_gd32_dma_config dma[NUM_OF_DIRECTION];
#endif
#ifdef CONFIG_SPI_GD32_INTERRUPT
void (*irq_configure)();
#endif
};
struct spi_gd32_data {
struct spi_context ctx;
#ifdef CONFIG_SPI_GD32_DMA
struct spi_gd32_dma_data dma[NUM_OF_DIRECTION];
#endif
};
#ifdef CONFIG_SPI_GD32_DMA
static uint32_t dummy_tx;
static uint32_t dummy_rx;
static bool spi_gd32_dma_enabled(const struct device *dev)
{
const struct spi_gd32_config *cfg = dev->config;
if (cfg->dma[TX].dev && cfg->dma[RX].dev) {
return true;
}
return false;
}
static size_t spi_gd32_dma_enabled_num(const struct device *dev)
{
return spi_gd32_dma_enabled(dev) ? 2 : 0;
}
#endif
static int spi_gd32_get_err(const struct spi_gd32_config *cfg)
{
uint32_t stat = SPI_STAT(cfg->reg);
if (stat & SPI_GD32_ERR_MASK) {
LOG_ERR("spi%u error status detected, err = %u",
cfg->reg, stat & (uint32_t)SPI_GD32_ERR_MASK);
return -EIO;
}
return 0;
}
static bool spi_gd32_transfer_ongoing(struct spi_gd32_data *data)
{
return spi_context_tx_on(&data->ctx) ||
spi_context_rx_on(&data->ctx);
}
static int spi_gd32_configure(const struct device *dev,
const struct spi_config *config)
{
struct spi_gd32_data *data = dev->data;
const struct spi_gd32_config *cfg = dev->config;
uint32_t bus_freq;
if (spi_context_configured(&data->ctx, config)) {
return 0;
}
if (SPI_OP_MODE_GET(config->operation) == SPI_OP_MODE_SLAVE) {
LOG_ERR("Slave mode not supported");
return -ENOTSUP;
}
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SPIEN;
SPI_CTL0(cfg->reg) |= SPI_MASTER;
SPI_CTL0(cfg->reg) &= ~SPI_TRANSMODE_BDTRANSMIT;
if (SPI_WORD_SIZE_GET(config->operation) == 8) {
SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_8BIT;
} else {
SPI_CTL0(cfg->reg) |= SPI_FRAMESIZE_16BIT;
}
/* Reset to hardware NSS mode. */
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_SWNSSEN;
if (spi_cs_is_gpio(config)) {
SPI_CTL0(cfg->reg) |= SPI_CTL0_SWNSSEN;
} else {
/*
* For single master env,
* hardware NSS mode also need to set the NSSDRV bit.
*/
SPI_CTL1(cfg->reg) |= SPI_CTL1_NSSDRV;
}
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_LF;
if (config->operation & SPI_TRANSFER_LSB) {
SPI_CTL0(cfg->reg) |= SPI_CTL0_LF;
}
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPL;
if (config->operation & SPI_MODE_CPOL) {
SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPL;
}
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_CKPH;
if (config->operation & SPI_MODE_CPHA) {
SPI_CTL0(cfg->reg) |= SPI_CTL0_CKPH;
}
(void)clock_control_get_rate(GD32_CLOCK_CONTROLLER,
(clock_control_subsys_t)&cfg->clkid,
&bus_freq);
for (uint8_t i = 0U; i <= GD32_SPI_PSC_MAX; i++) {
bus_freq = bus_freq >> 1U;
if (bus_freq <= config->frequency) {
SPI_CTL0(cfg->reg) &= ~SPI_CTL0_PSC;
SPI_CTL0(cfg->reg) |= CTL0_PSC(i);
break;
}
}
data->ctx.config = config;
return 0;
}
static int spi_gd32_frame_exchange(const struct device *dev)
{
struct spi_gd32_data *data = dev->data;
const struct spi_gd32_config *cfg = dev->config;
struct spi_context *ctx = &data->ctx;
uint16_t tx_frame = 0U, rx_frame = 0U;
while ((SPI_STAT(cfg->reg) & SPI_STAT_TBE) == 0) {
/* NOP */
}
if (SPI_WORD_SIZE_GET(ctx->config->operation) == 8) {
if (spi_context_tx_buf_on(ctx)) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
}
/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
SPI_DATA(cfg->reg) = tx_frame;
spi_context_update_tx(ctx, 1, 1);
} else {
if (spi_context_tx_buf_on(ctx)) {
tx_frame = UNALIGNED_GET((uint8_t *)(data->ctx.tx_buf));
}
SPI_DATA(cfg->reg) = tx_frame;
spi_context_update_tx(ctx, 2, 1);
}
while ((SPI_STAT(cfg->reg) & SPI_STAT_RBNE) == 0) {
/* NOP */
}
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
/* For 8 bits mode, spi will forced SPI_DATA[15:8] to 0. */
rx_frame = SPI_DATA(cfg->reg);
if (spi_context_rx_buf_on(ctx)) {
UNALIGNED_PUT(rx_frame, (uint8_t *)data->ctx.rx_buf);
}
spi_context_update_rx(ctx, 1, 1);
} else {
rx_frame = SPI_DATA(cfg->reg);
if (spi_context_rx_buf_on(ctx)) {
UNALIGNED_PUT(rx_frame, (uint16_t *)data->ctx.rx_buf);
}
spi_context_update_rx(ctx, 2, 1);
}
return spi_gd32_get_err(cfg);
}
#ifdef CONFIG_SPI_GD32_DMA
static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status);
static uint32_t spi_gd32_dma_setup(const struct device *dev, const uint32_t dir)
{
const struct spi_gd32_config *cfg = dev->config;
struct spi_gd32_data *data = dev->data;
struct dma_config *dma_cfg = &data->dma[dir].config;
struct dma_block_config *block_cfg = &data->dma[dir].block;
const struct spi_gd32_dma_config *dma = &cfg->dma[dir];
int ret;
memset(dma_cfg, 0, sizeof(struct dma_config));
memset(block_cfg, 0, sizeof(struct dma_block_config));
dma_cfg->source_burst_length = 1;
dma_cfg->dest_burst_length = 1;
dma_cfg->user_data = (void *)dev;
dma_cfg->dma_callback = spi_gd32_dma_callback;
dma_cfg->block_count = 1U;
dma_cfg->head_block = block_cfg;
dma_cfg->dma_slot = cfg->dma[dir].slot;
dma_cfg->channel_priority =
GD32_DMA_CONFIG_PRIORITY(cfg->dma[dir].config);
dma_cfg->channel_direction =
dir == TX ? MEMORY_TO_PERIPHERAL : PERIPHERAL_TO_MEMORY;
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
dma_cfg->source_data_size = 1;
dma_cfg->dest_data_size = 1;
} else {
dma_cfg->source_data_size = 2;
dma_cfg->dest_data_size = 2;
}
block_cfg->block_size = spi_context_max_continuous_chunk(&data->ctx);
if (dir == TX) {
block_cfg->dest_address = (uint32_t)&SPI_DATA(cfg->reg);
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_tx_buf_on(&data->ctx)) {
block_cfg->source_address = (uint32_t)data->ctx.tx_buf;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->source_address = (uint32_t)&dummy_tx;
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
if (dir == RX) {
block_cfg->source_address = (uint32_t)&SPI_DATA(cfg->reg);
block_cfg->source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
if (spi_context_rx_buf_on(&data->ctx)) {
block_cfg->dest_address = (uint32_t)data->ctx.rx_buf;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_INCREMENT;
} else {
block_cfg->dest_address = (uint32_t)&dummy_rx;
block_cfg->dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE;
}
}
ret = dma_config(dma->dev, dma->channel, dma_cfg);
if (ret < 0) {
LOG_ERR("dma_config %p failed %d\n", dma->dev, ret);
return ret;
}
ret = dma_start(dma->dev, dma->channel);
if (ret < 0) {
LOG_ERR("dma_start %p failed %d\n", dma->dev, ret);
return ret;
}
return 0;
}
static int spi_gd32_start_dma_transceive(const struct device *dev)
{
const struct spi_gd32_config *cfg = dev->config;
struct spi_gd32_data *data = dev->data;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
struct dma_status stat;
int ret = 0;
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
dma_get_status(cfg->dma[i].dev, cfg->dma[i].channel, &stat);
if ((chunk_len != data->dma[i].count) && !stat.busy) {
ret = spi_gd32_dma_setup(dev, i);
if (ret < 0) {
goto on_error;
}
}
}
SPI_CTL1(cfg->reg) |= (SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);
on_error:
if (ret < 0) {
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
}
return ret;
}
#endif
static int spi_gd32_transceive_impl(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
struct spi_gd32_data *data = dev->data;
const struct spi_gd32_config *cfg = dev->config;
int ret;
spi_context_lock(&data->ctx, (cb != NULL), cb, userdata, config);
ret = spi_gd32_configure(dev, config);
if (ret < 0) {
goto error;
}
SPI_CTL0(cfg->reg) |= SPI_CTL0_SPIEN;
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
#ifdef CONFIG_SPI_GD32_INTERRUPT
#ifdef CONFIG_SPI_GD32_DMA
if (spi_gd32_dma_enabled(dev)) {
for (size_t i = 0; i < ARRAY_SIZE(data->dma); i++) {
data->dma[i].count = 0;
}
ret = spi_gd32_start_dma_transceive(dev);
if (ret < 0) {
goto dma_error;
}
} else
#endif
{
SPI_STAT(cfg->reg) &=
~(SPI_STAT_RBNE | SPI_STAT_TBE | SPI_GD32_ERR_MASK);
SPI_CTL1(cfg->reg) |=
(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);
}
ret = spi_context_wait_for_completion(&data->ctx);
#else
do {
ret = spi_gd32_frame_exchange(dev);
if (ret < 0) {
break;
}
} while (spi_gd32_transfer_ongoing(data));
#ifdef CONFIG_SPI_ASYNC
spi_context_complete(&data->ctx, dev, ret);
#endif
#endif
while (!(SPI_STAT(cfg->reg) & SPI_STAT_TBE) ||
(SPI_STAT(cfg->reg) & SPI_STAT_TRANS)) {
/* Wait until last frame transfer complete. */
}
#ifdef CONFIG_SPI_GD32_DMA
dma_error:
#endif
spi_context_cs_control(&data->ctx, false);
SPI_CTL0(cfg->reg) &=
~(SPI_CTL0_SPIEN | SPI_CTL1_DMATEN | SPI_CTL1_DMAREN);
error:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_gd32_transceive(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, NULL, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_gd32_transceive_async(const struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
spi_callback_t cb,
void *userdata)
{
return spi_gd32_transceive_impl(dev, config, tx_bufs, rx_bufs, cb, userdata);
}
#endif
#ifdef CONFIG_SPI_GD32_INTERRUPT
static void spi_gd32_complete(const struct device *dev, int status)
{
struct spi_gd32_data *data = dev->data;
const struct spi_gd32_config *cfg = dev->config;
SPI_CTL1(cfg->reg) &=
~(SPI_CTL1_RBNEIE | SPI_CTL1_TBEIE | SPI_CTL1_ERRIE);
#ifdef CONFIG_SPI_GD32_DMA
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
dma_stop(cfg->dma[i].dev, cfg->dma[i].channel);
}
#endif
spi_context_complete(&data->ctx, dev, status);
}
static void spi_gd32_isr(struct device *dev)
{
const struct spi_gd32_config *cfg = dev->config;
struct spi_gd32_data *data = dev->data;
int err = 0;
err = spi_gd32_get_err(cfg);
if (err) {
spi_gd32_complete(dev, err);
return;
}
if (spi_gd32_transfer_ongoing(data)) {
err = spi_gd32_frame_exchange(dev);
}
if (err || !spi_gd32_transfer_ongoing(data)) {
spi_gd32_complete(dev, err);
}
}
#endif /* SPI_GD32_INTERRUPT */
#ifdef CONFIG_SPI_GD32_DMA
static bool spi_gd32_chunk_transfer_finished(const struct device *dev)
{
struct spi_gd32_data *data = dev->data;
struct spi_gd32_dma_data *dma = data->dma;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
return (MIN(dma[TX].count, dma[RX].count) >= chunk_len);
}
static void spi_gd32_dma_callback(const struct device *dma_dev, void *arg,
uint32_t channel, int status)
{
const struct device *dev = (const struct device *)arg;
const struct spi_gd32_config *cfg = dev->config;
struct spi_gd32_data *data = dev->data;
const size_t chunk_len = spi_context_max_continuous_chunk(&data->ctx);
int err = 0;
if (status < 0) {
LOG_ERR("dma:%p ch:%d callback gets error: %d", dma_dev, channel,
status);
spi_gd32_complete(dev, status);
return;
}
for (size_t i = 0; i < ARRAY_SIZE(cfg->dma); i++) {
if (dma_dev == cfg->dma[i].dev &&
channel == cfg->dma[i].channel) {
data->dma[i].count += chunk_len;
}
}
/* Check transfer finished.
* The transmission of this chunk is complete if both the dma[TX].count
* and the dma[RX].count reach greater than or equal to the chunk_len.
* chunk_len is zero here means the transfer is already complete.
*/
if (spi_gd32_chunk_transfer_finished(dev)) {
if (SPI_WORD_SIZE_GET(data->ctx.config->operation) == 8) {
spi_context_update_tx(&data->ctx, 1, chunk_len);
spi_context_update_rx(&data->ctx, 1, chunk_len);
} else {
spi_context_update_tx(&data->ctx, 2, chunk_len);
spi_context_update_rx(&data->ctx, 2, chunk_len);
}
if (spi_gd32_transfer_ongoing(data)) {
/* Next chunk is available, reset the count and
* continue processing
*/
data->dma[TX].count = 0;
data->dma[RX].count = 0;
} else {
/* All data is processed, complete the process */
spi_context_complete(&data->ctx, dev, 0);
return;
}
}
err = spi_gd32_start_dma_transceive(dev);
if (err) {
spi_gd32_complete(dev, err);
}
}
#endif /* DMA */
static int spi_gd32_release(const struct device *dev,
const struct spi_config *config)
{
struct spi_gd32_data *data = dev->data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static struct spi_driver_api spi_gd32_driver_api = {
.transceive = spi_gd32_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_gd32_transceive_async,
#endif
.release = spi_gd32_release
};
int spi_gd32_init(const struct device *dev)
{
struct spi_gd32_data *data = dev->data;
const struct spi_gd32_config *cfg = dev->config;
int ret;
#ifdef CONFIG_SPI_GD32_DMA
uint32_t ch_filter;
#endif
(void)clock_control_on(GD32_CLOCK_CONTROLLER,
(clock_control_subsys_t)&cfg->clkid);
(void)reset_line_toggle_dt(&cfg->reset);
ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret) {
LOG_ERR("Failed to apply pinctrl state");
return ret;
}
#ifdef CONFIG_SPI_GD32_DMA
if ((cfg->dma[RX].dev && !cfg->dma[TX].dev) ||
(cfg->dma[TX].dev && !cfg->dma[RX].dev)) {
LOG_ERR("DMA must be enabled for both TX and RX channels");
return -ENODEV;
}
for (size_t i = 0; i < spi_gd32_dma_enabled_num(dev); i++) {
if (!device_is_ready(cfg->dma[i].dev)) {
LOG_ERR("DMA %s not ready", cfg->dma[i].dev->name);
return -ENODEV;
}
ch_filter = BIT(cfg->dma[i].channel);
ret = dma_request_channel(cfg->dma[i].dev, &ch_filter);
if (ret < 0) {
LOG_ERR("dma_request_channel failed %d", ret);
return ret;
}
}
#endif
ret = spi_context_cs_configure_all(&data->ctx);
if (ret < 0) {
return ret;
}
#ifdef CONFIG_SPI_GD32_INTERRUPT
cfg->irq_configure(dev);
#endif
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
#define DMA_INITIALIZER(idx, dir) \
{ \
.dev = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(idx, dir)), \
.channel = DT_INST_DMAS_CELL_BY_NAME(idx, dir, channel), \
.slot = COND_CODE_1( \
DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \
(DT_INST_DMAS_CELL_BY_NAME(idx, dir, slot)), (0)), \
.config = DT_INST_DMAS_CELL_BY_NAME(idx, dir, config), \
.fifo_threshold = COND_CODE_1( \
DT_HAS_COMPAT_STATUS_OKAY(gd_gd32_dma_v1), \
(DT_INST_DMAS_CELL_BY_NAME(idx, dir, fifo_threshold)), \
(0)), \
}
#define DMAS_DECL(idx) \
{ \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, rx), \
(DMA_INITIALIZER(idx, rx)), ({0})), \
COND_CODE_1(DT_INST_DMAS_HAS_NAME(idx, tx), \
(DMA_INITIALIZER(idx, tx)), ({0})), \
}
#define GD32_IRQ_CONFIGURE(idx) \
static void spi_gd32_irq_configure_##idx(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \
spi_gd32_isr, \
DEVICE_DT_INST_GET(idx), 0); \
irq_enable(DT_INST_IRQN(idx)); \
}
#define GD32_SPI_INIT(idx) \
PINCTRL_DT_INST_DEFINE(idx); \
IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, (GD32_IRQ_CONFIGURE(idx))); \
static struct spi_gd32_data spi_gd32_data_##idx = { \
SPI_CONTEXT_INIT_LOCK(spi_gd32_data_##idx, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_gd32_data_##idx, ctx), \
SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(idx), ctx) }; \
static struct spi_gd32_config spi_gd32_config_##idx = { \
.reg = DT_INST_REG_ADDR(idx), \
.clkid = DT_INST_CLOCKS_CELL(idx, id), \
.reset = RESET_DT_SPEC_INST_GET(idx), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \
IF_ENABLED(CONFIG_SPI_GD32_DMA, (.dma = DMAS_DECL(idx),)) \
IF_ENABLED(CONFIG_SPI_GD32_INTERRUPT, \
(.irq_configure = spi_gd32_irq_configure_##idx)) }; \
DEVICE_DT_INST_DEFINE(idx, &spi_gd32_init, NULL, \
&spi_gd32_data_##idx, &spi_gd32_config_##idx, \
POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \
&spi_gd32_driver_api);
DT_INST_FOREACH_STATUS_OKAY(GD32_SPI_INIT)