| /* |
| * Copyright (c) 2018 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| #include <drivers/system_timer.h> |
| #include <sys_clock.h> |
| #include <spinlock.h> |
| #include <soc.h> |
| |
| #define CYC_PER_TICK ((u32_t)((u64_t)CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ |
| / (u64_t)CONFIG_SYS_CLOCK_TICKS_PER_SEC)) |
| #define MAX_TICKS ((0xffffffffu - CYC_PER_TICK) / CYC_PER_TICK) |
| #define MIN_DELAY 1000 |
| |
| #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL) && \ |
| !IS_ENABLED(CONFIG_QEMU_TICKLESS_WORKAROUND)) |
| |
| static struct k_spinlock lock; |
| static u64_t last_count; |
| |
| static void set_mtimecmp(u64_t time) |
| { |
| volatile u32_t *r = (u32_t *)RISCV_MTIMECMP_BASE; |
| |
| /* Per spec, the RISC-V MTIME/MTIMECMP registers are 64 bit, |
| * but are NOT internally latched for multiword transfers. So |
| * we have to be careful about sequencing to avoid triggering |
| * spurious interrupts: always set the high word to a max |
| * value first. |
| */ |
| r[1] = 0xffffffff; |
| r[0] = (u32_t)time; |
| r[1] = (u32_t)(time >> 32); |
| } |
| |
| static u64_t mtime(void) |
| { |
| volatile u32_t *r = (u32_t *)RISCV_MTIME_BASE; |
| u32_t lo, hi; |
| |
| /* Likewise, must guard against rollover when reading */ |
| do { |
| hi = r[1]; |
| lo = r[0]; |
| } while (r[1] != hi); |
| |
| return (((u64_t)hi) << 32) | lo; |
| } |
| |
| static void timer_isr(void *arg) |
| { |
| ARG_UNUSED(arg); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| u64_t now = mtime(); |
| u32_t dticks = (u32_t)((now - last_count) / CYC_PER_TICK); |
| |
| last_count += dticks * CYC_PER_TICK; |
| |
| if (!TICKLESS) { |
| u64_t next = last_count + CYC_PER_TICK; |
| |
| if ((s64_t)(next - now) < MIN_DELAY) { |
| next += CYC_PER_TICK; |
| } |
| set_mtimecmp(next); |
| } |
| |
| k_spin_unlock(&lock, key); |
| z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : 1); |
| } |
| |
| int z_clock_driver_init(struct device *device) |
| { |
| IRQ_CONNECT(RISCV_MACHINE_TIMER_IRQ, 0, timer_isr, NULL, 0); |
| set_mtimecmp(mtime() + CYC_PER_TICK); |
| irq_enable(RISCV_MACHINE_TIMER_IRQ); |
| return 0; |
| } |
| |
| void z_clock_set_timeout(s32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| #if defined(CONFIG_TICKLESS_KERNEL) && !defined(CONFIG_QEMU_TICKLESS_WORKAROUND) |
| /* RISCV has no idle handler yet, so if we try to spin on the |
| * logic below to reset the comparator, we'll always bump it |
| * forward to the "next tick" due to MIN_DELAY handling and |
| * the interrupt will never fire! Just rely on the fact that |
| * the OS gave us the proper timeout already. |
| */ |
| if (idle) { |
| return; |
| } |
| |
| ticks = ticks == K_FOREVER ? MAX_TICKS : ticks; |
| ticks = MAX(MIN(ticks - 1, (s32_t)MAX_TICKS), 0); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| u64_t now = mtime(); |
| u32_t cyc = ticks * CYC_PER_TICK; |
| |
| /* Round up to next tick boundary. Note use of 32 bit math, |
| * max_ticks is calibrated to permit this. |
| */ |
| cyc += (u32_t)(now - last_count) + (CYC_PER_TICK - 1); |
| cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; |
| |
| if ((s32_t)(cyc + last_count - now) < MIN_DELAY) { |
| cyc += CYC_PER_TICK; |
| } |
| |
| set_mtimecmp(cyc + last_count); |
| k_spin_unlock(&lock, key); |
| #endif |
| } |
| |
| u32_t z_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| u32_t ret = ((u32_t)mtime() - (u32_t)last_count) / CYC_PER_TICK; |
| |
| k_spin_unlock(&lock, key); |
| return ret; |
| } |
| |
| u32_t _timer_cycle_get_32(void) |
| { |
| return (u32_t)mtime(); |
| } |