blob: 0e317c3d8ba948f994cda41e05f14c2072622c67 [file] [log] [blame]
/* ENC424J600 Stand-alone Ethernet Controller with SPI
*
* Copyright (c) 2016 Intel Corporation
* Copyright (c) 2019 PHYTEC Messtechnik GmbH
* Copyright (c) 2021 Laird Connectivity
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_enc424j600
#include <zephyr/kernel.h>
#include <zephyr/device.h>
#include <string.h>
#include <errno.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/drivers/spi.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/ethernet.h>
#include <ethernet/eth_stats.h>
#include "eth_enc424j600_priv.h"
LOG_MODULE_REGISTER(ethdrv, CONFIG_ETHERNET_LOG_LEVEL);
static void enc424j600_write_sbc(const struct device *dev, uint8_t cmd)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[2] = { cmd, 0xFF };
const struct spi_buf tx_buf = {
.buf = buf,
.len = 1,
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
spi_write_dt(&config->spi, &tx);
}
static void enc424j600_write_sfru(const struct device *dev, uint8_t addr,
uint16_t value)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[4];
const struct spi_buf tx_buf = {
.buf = buf,
.len = sizeof(buf)
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
buf[0] = ENC424J600_NBC_WCRU;
buf[1] = addr;
buf[2] = value;
buf[3] = value >> 8;
spi_write_dt(&config->spi, &tx);
}
static void enc424j600_read_sfru(const struct device *dev, uint8_t addr,
uint16_t *value)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[4];
const struct spi_buf tx_buf = {
.buf = buf,
.len = 2
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
struct spi_buf rx_buf = {
.buf = buf,
.len = sizeof(buf),
};
const struct spi_buf_set rx = {
.buffers = &rx_buf,
.count = 1
};
buf[0] = ENC424J600_NBC_RCRU;
buf[1] = addr;
if (!spi_transceive_dt(&config->spi, &tx, &rx)) {
*value = ((uint16_t)buf[3] << 8 | buf[2]);
} else {
LOG_DBG("Failure while reading register 0x%02x", addr);
*value = 0U;
}
}
static void enc424j600_modify_sfru(const struct device *dev, uint8_t opcode,
uint16_t addr, uint16_t value)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[4];
const struct spi_buf tx_buf = {
.buf = buf,
.len = sizeof(buf)
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
buf[0] = opcode;
buf[1] = addr;
buf[2] = value;
buf[3] = value >> 8;
spi_write_dt(&config->spi, &tx);
}
#define enc424j600_set_sfru(dev, addr, value) \
enc424j600_modify_sfru(dev, ENC424J600_NBC_BFSU, addr, value)
#define enc424j600_clear_sfru(dev, addr, value) \
enc424j600_modify_sfru(dev, ENC424J600_NBC_BFCU, addr, value)
static void enc424j600_write_phy(const struct device *dev, uint16_t addr,
uint16_t data)
{
uint16_t mistat;
enc424j600_write_sfru(dev, ENC424J600_SFR2_MIREGADRL, addr);
enc424j600_write_sfru(dev, ENC424J600_SFR3_MIWRL, data);
do {
k_busy_wait(ENC424J600_PHY_ACCESS_DELAY);
enc424j600_read_sfru(dev, ENC424J600_SFR3_MISTATL, &mistat);
} while ((mistat & ENC424J600_MISTAT_BUSY));
}
static void enc424j600_read_phy(const struct device *dev, uint16_t addr,
uint16_t *data)
{
uint16_t mistat;
enc424j600_write_sfru(dev, ENC424J600_SFR2_MIREGADRL, addr);
enc424j600_write_sfru(dev, ENC424J600_SFR2_MICMDL,
ENC424J600_MICMD_MIIRD);
do {
k_busy_wait(ENC424J600_PHY_ACCESS_DELAY);
enc424j600_read_sfru(dev, ENC424J600_SFR3_MISTATL, &mistat);
} while ((mistat & ENC424J600_MISTAT_BUSY));
enc424j600_write_sfru(dev, ENC424J600_SFR2_MICMDL, 0);
enc424j600_read_sfru(dev, ENC424J600_SFR3_MIRDL, data);
}
static void enc424j600_write_mem(const struct device *dev, uint8_t opcode,
uint8_t *data_buffer, uint16_t buf_len)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[1] = { opcode };
const struct spi_buf tx_buf[2] = {
{
.buf = buf,
.len = 1
},
{
.buf = data_buffer,
.len = buf_len
},
};
const struct spi_buf_set tx = {
.buffers = tx_buf,
.count = 2
};
if (spi_write_dt(&config->spi, &tx)) {
LOG_ERR("Failed to write SRAM buffer");
return;
}
}
static void enc424j600_read_mem(const struct device *dev, uint8_t opcode,
uint8_t *data_buffer, uint16_t buf_len)
{
const struct enc424j600_config *config = dev->config;
uint8_t buf[1] = { opcode };
const struct spi_buf tx_buf = {
.buf = buf,
.len = 1
};
const struct spi_buf_set tx = {
.buffers = &tx_buf,
.count = 1
};
struct spi_buf rx_buf[2] = {
{
.buf = NULL,
.len = 1
},
{
.buf = data_buffer,
.len = buf_len
},
};
const struct spi_buf_set rx = {
.buffers = rx_buf,
.count = 2
};
if (spi_transceive_dt(&config->spi, &tx, &rx)) {
LOG_ERR("Failed to read SRAM buffer");
return;
}
}
static void enc424j600_gpio_callback(const struct device *dev,
struct gpio_callback *cb,
uint32_t pins)
{
struct enc424j600_runtime *context =
CONTAINER_OF(cb, struct enc424j600_runtime, gpio_cb);
k_sem_give(&context->int_sem);
}
static void enc424j600_init_filters(const struct device *dev)
{
uint16_t tmp;
enc424j600_write_sfru(dev, ENC424J600_SFR1_ERXFCONL,
ENC424J600_ERXFCON_CRCEN |
ENC424J600_ERXFCON_RUNTEN |
ENC424J600_ERXFCON_UCEN |
ENC424J600_ERXFCON_MCEN |
ENC424J600_ERXFCON_BCEN);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR1_ERXFCONL, &tmp);
LOG_DBG("ERXFCON: 0x%04x", tmp);
}
}
static void enc424j600_init_phy(const struct device *dev)
{
uint16_t tmp;
enc424j600_write_phy(dev, ENC424J600_PSFR_PHANA,
ENC424J600_PHANA_ADPAUS_SYMMETRIC_ONLY |
ENC424J600_PHANA_AD100FD |
ENC424J600_PHANA_AD100 |
ENC424J600_PHANA_AD10FD |
ENC424J600_PHANA_AD10 |
ENC424J600_PHANA_ADIEEE_DEFAULT);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_phy(dev, ENC424J600_PSFR_PHANA, &tmp);
LOG_DBG("PHANA: 0x%04x", tmp);
}
enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp);
tmp |= ENC424J600_PHCON1_RENEG;
LOG_DBG("PHCON1: 0x%04x", tmp);
enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp);
}
static void enc424j600_setup_mac(const struct device *dev)
{
uint16_t tmp;
uint16_t macon2;
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_phy(dev, ENC424J600_PSFR_PHANLPA, &tmp);
LOG_DBG("PHANLPA: 0x%04x", tmp);
}
enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp);
if (tmp & ENC424J600_PHSTAT3_SPDDPX_100) {
LOG_INF("100Mbps");
} else if (tmp & ENC424J600_PHSTAT3_SPDDPX_10) {
LOG_INF("10Mbps");
} else {
LOG_ERR("Unknown speed configuration");
}
if (tmp & ENC424J600_PHSTAT3_SPDDPX_FD) {
LOG_INF("full duplex");
enc424j600_read_sfru(dev, ENC424J600_SFR2_MACON2L, &macon2);
macon2 |= ENC424J600_MACON2_FULDPX;
enc424j600_write_sfru(dev, ENC424J600_SFR2_MACON2L, macon2);
enc424j600_write_sfru(dev, ENC424J600_SFR2_MABBIPGL,
ENC424J600_MABBIPG_DEFAULT);
} else {
LOG_INF("half duplex");
}
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR2_MACON2L, &tmp);
LOG_DBG("MACON2: 0x%04x", tmp);
enc424j600_read_sfru(dev, ENC424J600_SFR2_MAMXFLL, &tmp);
LOG_DBG("MAMXFL (maximum frame length): %u", tmp);
}
}
static int enc424j600_tx(const struct device *dev, struct net_pkt *pkt)
{
struct enc424j600_runtime *context = dev->data;
uint16_t len = net_pkt_get_len(pkt);
struct net_buf *frag;
uint16_t tmp;
LOG_DBG("pkt %p (len %u)", pkt, len);
k_sem_take(&context->tx_rx_sem, K_FOREVER);
enc424j600_write_sfru(dev, ENC424J600_SFR4_EGPWRPTL,
ENC424J600_TXSTART);
for (frag = pkt->frags; frag; frag = frag->frags) {
enc424j600_write_mem(dev, ENC424J600_NBC_WGPDATA, frag->data,
frag->len);
}
enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXSTL,
ENC424J600_TXSTART);
enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXLENL, len);
enc424j600_write_sbc(dev, ENC424J600_1BC_SETTXRTS);
do {
k_sleep(K_MSEC(1));
enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp);
} while (tmp & ENC424J600_ECON1_TXRTS);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR0_ETXSTATL, &tmp);
LOG_DBG("ETXSTAT: 0x%04x", tmp);
}
k_sem_give(&context->tx_rx_sem);
return 0;
}
static int enc424j600_rx(const struct device *dev)
{
struct enc424j600_runtime *context = dev->data;
const struct enc424j600_config *config = dev->config;
uint8_t info[ENC424J600_RSV_SIZE + ENC424J600_PTR_NXP_PKT_SIZE];
struct net_buf *pkt_buf = NULL;
struct net_pkt *pkt;
uint16_t frm_len = 0U;
uint32_t status;
uint16_t tmp;
k_sem_take(&context->tx_rx_sem, K_FOREVER);
enc424j600_write_sfru(dev, ENC424J600_SFR4_ERXRDPTL,
context->next_pkt_ptr);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR4_ERXRDPTL, &tmp);
LOG_DBG("set ERXRDPT to 0x%04x", tmp);
}
enc424j600_read_mem(dev, ENC424J600_NBC_RRXDATA, info,
sizeof(info));
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR4_ERXRDPTL, &tmp);
LOG_DBG("ERXRDPT is 0x%04x now", tmp);
}
context->next_pkt_ptr = sys_get_le16(&info[0]);
frm_len = sys_get_le16(&info[2]);
status = sys_get_le32(&info[4]);
LOG_DBG("npp 0x%04x, length %u, status 0x%08x",
context->next_pkt_ptr, frm_len, status);
/* frame length without FCS */
frm_len -= 4;
if (frm_len > NET_ETH_MAX_FRAME_SIZE) {
LOG_ERR("Maximum frame length exceeded");
eth_stats_update_errors_rx(context->iface);
goto done;
}
/* Get the frame from the buffer */
pkt = net_pkt_rx_alloc_with_buffer(context->iface, frm_len,
AF_UNSPEC, 0,
K_MSEC(config->timeout));
if (!pkt) {
LOG_ERR("Could not allocate rx buffer");
eth_stats_update_errors_rx(context->iface);
goto done;
}
pkt_buf = pkt->buffer;
do {
size_t frag_len;
uint8_t *data_ptr;
size_t spi_frame_len;
data_ptr = pkt_buf->data;
/* Review the space available for the new frag */
frag_len = net_buf_tailroom(pkt_buf);
if (frm_len > frag_len) {
spi_frame_len = frag_len;
} else {
spi_frame_len = frm_len;
}
enc424j600_read_mem(dev, ENC424J600_NBC_RRXDATA, data_ptr,
spi_frame_len);
net_buf_add(pkt_buf, spi_frame_len);
/* One fragment has been written via SPI */
frm_len -= spi_frame_len;
pkt_buf = pkt_buf->frags;
} while (frm_len > 0);
if (net_recv_data(context->iface, pkt) < 0) {
net_pkt_unref(pkt);
}
done:
if (context->next_pkt_ptr == ENC424J600_RXSTART) {
tmp = ENC424J600_RXEND - 1;
LOG_DBG("wrap back");
} else {
tmp = context->next_pkt_ptr - 2;
}
enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXTAILL, tmp);
enc424j600_write_sbc(dev, ENC424J600_1BC_SETPKTDEC);
k_sem_give(&context->tx_rx_sem);
return 0;
}
static void enc424j600_rx_thread(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
struct enc424j600_runtime *context = p1;
uint16_t eir;
uint16_t estat;
uint8_t counter;
while (true) {
k_sem_take(&context->int_sem, K_FOREVER);
enc424j600_write_sbc(context->dev, ENC424J600_1BC_CLREIE);
enc424j600_read_sfru(context->dev, ENC424J600_SFRX_EIRL, &eir);
enc424j600_read_sfru(context->dev,
ENC424J600_SFRX_ESTATL, &estat);
LOG_DBG("ESTAT: 0x%04x", estat);
if (eir & ENC424J600_EIR_PKTIF) {
counter = (uint8_t)estat;
while (counter) {
enc424j600_rx(context->dev);
enc424j600_read_sfru(context->dev,
ENC424J600_SFRX_ESTATL,
&estat);
counter = (uint8_t)estat;
LOG_DBG("ESTAT: 0x%04x", estat);
}
} else if (eir & ENC424J600_EIR_LINKIF) {
enc424j600_clear_sfru(context->dev,
ENC424J600_SFRX_EIRL,
ENC424J600_EIR_LINKIF);
if (estat & ENC424J600_ESTAT_PHYLNK) {
LOG_INF("Link up");
enc424j600_setup_mac(context->dev);
net_eth_carrier_on(context->iface);
} else {
LOG_INF("Link down");
if (context->iface_initialized) {
net_eth_carrier_off(context->iface);
}
}
} else {
LOG_ERR("Unknown Interrupt, EIR: 0x%04x", eir);
/*
* Terminate interrupt handling thread
* only when debugging.
*/
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
k_oops();
}
}
enc424j600_write_sbc(context->dev, ENC424J600_1BC_SETEIE);
}
}
static int enc424j600_get_config(const struct device *dev,
enum ethernet_config_type type,
struct ethernet_config *config)
{
uint16_t tmp;
int rc = 0;
struct enc424j600_runtime *context = dev->data;
if (type != ETHERNET_CONFIG_TYPE_LINK &&
type != ETHERNET_CONFIG_TYPE_DUPLEX) {
/* Unsupported configuration query */
return -ENOTSUP;
}
k_sem_take(&context->tx_rx_sem, K_FOREVER);
if (type == ETHERNET_CONFIG_TYPE_LINK) {
/* Query active link speed */
enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp);
if (tmp & ENC424J600_PHSTAT3_SPDDPX_100) {
/* 100Mbps link speed */
config->l.link_100bt = true;
} else if (tmp & ENC424J600_PHSTAT3_SPDDPX_10) {
/* 10Mbps link speed */
config->l.link_10bt = true;
} else {
/* Unknown link speed */
rc = -EINVAL;
}
} else if (type == ETHERNET_CONFIG_TYPE_DUPLEX) {
/* Query if half or full duplex */
enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp);
/* Assume operating in half duplex mode */
config->full_duplex = false;
if (tmp & ENC424J600_PHSTAT3_SPDDPX_FD) {
/* Operating in full duplex mode */
config->full_duplex = true;
}
}
k_sem_give(&context->tx_rx_sem);
return rc;
}
static enum ethernet_hw_caps enc424j600_get_capabilities(const struct device *dev)
{
ARG_UNUSED(dev);
return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T;
}
static int enc424j600_set_config(const struct device *dev,
enum ethernet_config_type type,
const struct ethernet_config *config)
{
struct enc424j600_runtime *ctx = dev->data;
uint16_t tmp;
switch (type) {
case ETHERNET_CONFIG_TYPE_MAC_ADDRESS:
ctx->mac_address[0] = config->mac_address.addr[0];
ctx->mac_address[1] = config->mac_address.addr[1];
ctx->mac_address[2] = config->mac_address.addr[2];
ctx->mac_address[3] = config->mac_address.addr[3];
ctx->mac_address[4] = config->mac_address.addr[4];
ctx->mac_address[5] = config->mac_address.addr[5];
/* write MAC address byte 2 and 1 */
tmp = config->mac_address.addr[0] | config->mac_address.addr[1] << 8;
enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR1L, tmp);
/* write MAC address byte 4 and 3 */
tmp = config->mac_address.addr[2] | config->mac_address.addr[3] << 8;
enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR2L, tmp);
/* write MAC address byte 6 and 5 */
tmp = config->mac_address.addr[4] | config->mac_address.addr[5] << 8;
enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR3L, tmp);
return 0;
default:
return -ENOTSUP;
}
}
static void enc424j600_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct enc424j600_runtime *context = dev->data;
net_if_set_link_addr(iface, context->mac_address,
sizeof(context->mac_address),
NET_LINK_ETHERNET);
context->iface = iface;
ethernet_init(iface);
net_if_carrier_off(iface);
context->iface_initialized = true;
}
static int enc424j600_start_device(const struct device *dev)
{
struct enc424j600_runtime *context = dev->data;
uint16_t tmp;
if (!context->suspended) {
LOG_INF("Not suspended");
return 0;
}
k_sem_take(&context->tx_rx_sem, K_FOREVER);
enc424j600_set_sfru(dev, ENC424J600_SFR3_ECON2L,
ENC424J600_ECON2_ETHEN |
ENC424J600_ECON2_STRCH);
enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp);
tmp &= ~ENC424J600_PHCON1_PSLEEP;
enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp);
enc424j600_set_sfru(dev, ENC424J600_SFRX_ECON1L,
ENC424J600_ECON1_RXEN);
context->suspended = false;
k_sem_give(&context->tx_rx_sem);
LOG_INF("started");
return 0;
}
static int enc424j600_stop_device(const struct device *dev)
{
struct enc424j600_runtime *context = dev->data;
uint16_t tmp;
if (context->suspended) {
LOG_WRN("Already suspended");
return 0;
}
k_sem_take(&context->tx_rx_sem, K_FOREVER);
enc424j600_clear_sfru(dev, ENC424J600_SFRX_ECON1L,
ENC424J600_ECON1_RXEN);
do {
k_sleep(K_MSEC(10U));
enc424j600_read_sfru(dev, ENC424J600_SFRX_ESTATL, &tmp);
} while (tmp & ENC424J600_ESTAT_RXBUSY);
do {
k_sleep(K_MSEC(10U));
enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp);
} while (tmp & ENC424J600_ECON1_TXRTS);
enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp);
tmp |= ENC424J600_PHCON1_PSLEEP;
enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp);
enc424j600_clear_sfru(dev, ENC424J600_SFR3_ECON2L,
ENC424J600_ECON2_ETHEN |
ENC424J600_ECON2_STRCH);
context->suspended = true;
k_sem_give(&context->tx_rx_sem);
LOG_INF("stopped");
return 0;
}
static const struct ethernet_api api_funcs = {
.iface_api.init = enc424j600_iface_init,
.get_config = enc424j600_get_config,
.set_config = enc424j600_set_config,
.get_capabilities = enc424j600_get_capabilities,
.send = enc424j600_tx,
.start = enc424j600_start_device,
.stop = enc424j600_stop_device,
};
static int enc424j600_init(const struct device *dev)
{
const struct enc424j600_config *config = dev->config;
struct enc424j600_runtime *context = dev->data;
uint8_t retries = ENC424J600_DEFAULT_NUMOF_RETRIES;
uint16_t tmp;
context->dev = dev;
/* SPI config */
if (!spi_is_ready_dt(&config->spi)) {
LOG_ERR("SPI master port %s not ready", config->spi.bus->name);
return -EINVAL;
}
/* Initialize GPIO */
if (!gpio_is_ready_dt(&config->interrupt)) {
LOG_ERR("GPIO port %s not ready", config->interrupt.port->name);
return -EINVAL;
}
if (gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT)) {
LOG_ERR("Unable to configure GPIO pin %u",
config->interrupt.pin);
return -EINVAL;
}
gpio_init_callback(&(context->gpio_cb), enc424j600_gpio_callback,
BIT(config->interrupt.pin));
if (gpio_add_callback(config->interrupt.port, &(context->gpio_cb))) {
return -EINVAL;
}
gpio_pin_interrupt_configure_dt(&config->interrupt,
GPIO_INT_EDGE_TO_ACTIVE);
/* Check SPI connection */
do {
k_busy_wait(USEC_PER_MSEC * 1U);
enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDASTL, 0x4AFE);
enc424j600_read_sfru(dev, ENC424J600_SFRX_EUDASTL, &tmp);
retries--;
} while (tmp != 0x4AFE && retries);
if (tmp != 0x4AFE) {
LOG_ERR("Timeout, failed to establish SPI connection");
return -EIO;
}
retries = ENC424J600_DEFAULT_NUMOF_RETRIES;
do {
k_busy_wait(USEC_PER_MSEC * 1U);
enc424j600_read_sfru(dev, ENC424J600_SFRX_ESTATL, &tmp);
retries--;
} while (!(tmp & ENC424J600_ESTAT_CLKRDY) && retries);
if (!(tmp & ENC424J600_ESTAT_CLKRDY)) {
LOG_ERR("CLKRDY not set");
return -EIO;
}
enc424j600_write_sbc(dev, ENC424J600_1BC_SETETHRST);
k_busy_wait(ENC424J600_PHY_READY_DELAY);
enc424j600_read_sfru(dev, ENC424J600_SFRX_EUDASTL, &tmp);
if (tmp) {
LOG_ERR("Failed to initialize ENC424J600");
return -EIO;
}
/* Disable INTIE and setup interrupt logic */
enc424j600_write_sfru(dev, ENC424J600_SFR3_EIEL,
ENC424J600_EIE_PKTIE | ENC424J600_EIE_LINKIE);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFR3_EIEL, &tmp);
LOG_DBG("EIE: 0x%04x", tmp);
}
/* Configure TX and RX buffer */
enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXSTL,
ENC424J600_TXSTART);
enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXSTL,
ENC424J600_RXSTART);
enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXTAILL,
(ENC424J600_RXEND - 1));
context->next_pkt_ptr = ENC424J600_RXSTART;
/* Disable user-defined buffer */
enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDASTL,
(ENC424J600_RXEND - 1));
enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDANDL,
(ENC424J600_RXEND - 1));
/* read MAC address byte 2 and 1 */
enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR1L, &tmp);
context->mac_address[0] = tmp;
context->mac_address[1] = tmp >> 8;
/* read MAC address byte 4 and 3 */
enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR2L, &tmp);
context->mac_address[2] = tmp;
context->mac_address[3] = tmp >> 8;
/* read MAC address byte 6 and 5 */
enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR3L, &tmp);
context->mac_address[4] = tmp;
context->mac_address[5] = tmp >> 8;
enc424j600_init_filters(dev);
enc424j600_init_phy(dev);
/* Enable Reception */
enc424j600_set_sfru(dev, ENC424J600_SFRX_ECON1L, ENC424J600_ECON1_RXEN);
if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) {
enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp);
LOG_DBG("ECON1: 0x%04x", tmp);
}
/* Start interruption-poll thread */
k_thread_create(&context->thread, context->thread_stack,
CONFIG_ETH_ENC424J600_RX_THREAD_STACK_SIZE,
enc424j600_rx_thread,
context, NULL, NULL,
K_PRIO_COOP(CONFIG_ETH_ENC424J600_RX_THREAD_PRIO),
0, K_NO_WAIT);
enc424j600_write_sbc(dev, ENC424J600_1BC_SETEIE);
context->suspended = false;
LOG_INF("ENC424J600 Initialized");
return 0;
}
static struct enc424j600_runtime enc424j600_0_runtime = {
.tx_rx_sem = Z_SEM_INITIALIZER(enc424j600_0_runtime.tx_rx_sem,
1, UINT_MAX),
.int_sem = Z_SEM_INITIALIZER(enc424j600_0_runtime.int_sem,
0, UINT_MAX),
};
static const struct enc424j600_config enc424j600_0_config = {
.spi = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
.interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios),
.timeout = CONFIG_ETH_ENC424J600_TIMEOUT,
};
ETH_NET_DEVICE_DT_INST_DEFINE(0,
enc424j600_init, NULL,
&enc424j600_0_runtime, &enc424j600_0_config,
CONFIG_ETH_INIT_PRIORITY, &api_funcs, NET_ETH_MTU);