blob: e03181e0f6b9b7d2fafbdde541490cca2b167a4f [file] [log] [blame]
/*
* Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT microchip_xec_peci
#include <errno.h>
#include <zephyr/device.h>
#include <zephyr/kernel.h>
#ifdef CONFIG_SOC_SERIES_MEC172X
#include <zephyr/drivers/clock_control/mchp_xec_clock_control.h>
#include <zephyr/drivers/interrupt_controller/intc_mchp_xec_ecia.h>
#endif
#include <zephyr/drivers/peci.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/pm/device.h>
#include <zephyr/pm/policy.h>
#include <soc.h>
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
LOG_MODULE_REGISTER(peci_mchp_xec, CONFIG_PECI_LOG_LEVEL);
/* Maximum PECI core clock is the main clock 48Mhz */
#define MAX_PECI_CORE_CLOCK 48000u
/* 1 ms */
#define PECI_RESET_DELAY 1000u
#define PECI_RESET_DELAY_MS 1u
/* 100 us */
#define PECI_IDLE_DELAY 100u
/* 5 ms */
#define PECI_IDLE_TIMEOUT 50u
/* Maximum retries */
#define PECI_TIMEOUT_RETRIES 3u
/* Maximum read buffer fill wait retries */
#define PECI_RX_BUF_FILL_WAIT_RETRY 100u
/* 10 us */
#define PECI_IO_DELAY 10
#define OPT_BIT_TIME_MSB_OFS 8u
#define PECI_FCS_LEN 2
struct peci_xec_config {
struct peci_regs * const regs;
uint8_t irq_num;
uint8_t girq;
uint8_t girq_pos;
uint8_t pcr_idx;
uint8_t pcr_pos;
const struct pinctrl_dev_config *pcfg;
};
enum peci_pm_policy_state_flag {
PECI_PM_POLICY_FLAG,
PECI_PM_POLICY_FLAG_COUNT,
};
struct peci_xec_data {
struct k_sem tx_lock;
uint32_t bitrate;
int timeout_retries;
#ifdef CONFIG_PM_DEVICE
ATOMIC_DEFINE(pm_policy_state_flag, PECI_PM_POLICY_FLAG_COUNT);
#endif
};
#ifdef CONFIG_PM_DEVICE
static void peci_xec_pm_policy_state_lock_get(struct peci_xec_data *data,
enum peci_pm_policy_state_flag flag)
{
if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) {
pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
static void peci_xec_pm_policy_state_lock_put(struct peci_xec_data *data,
enum peci_pm_policy_state_flag flag)
{
if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) {
pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES);
}
}
#endif
#ifdef CONFIG_SOC_SERIES_MEC172X
static inline void peci_girq_enable(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
mchp_xec_ecia_girq_src_en(cfg->girq, cfg->girq_pos);
}
static inline void peci_girq_status_clear(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
mchp_soc_ecia_girq_src_clr(cfg->girq, cfg->girq_pos);
}
static inline void peci_clr_slp_en(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
z_mchp_xec_pcr_periph_sleep(cfg->pcr_idx, cfg->pcr_pos, 0);
}
#else
static inline void peci_girq_enable(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
MCHP_GIRQ_ENSET(cfg->girq) = BIT(cfg->girq_pos);
}
static inline void peci_girq_status_clear(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
MCHP_GIRQ_SRC(cfg->girq) = BIT(cfg->girq_pos);
}
static inline void peci_clr_slp_en(const struct device *dev)
{
ARG_UNUSED(dev);
mchp_pcr_periph_slp_ctrl(PCR_PECI, 0);
}
#endif
static int check_bus_idle(struct peci_regs * const regs)
{
uint8_t delay_cnt = PECI_IDLE_TIMEOUT;
/* Wait until PECI bus becomes idle.
* Note that when IDLE bit in the status register changes, HW do not
* generate an interrupt, so need to poll.
*/
while (!(regs->STATUS2 & MCHP_PECI_STS2_IDLE)) {
k_busy_wait(PECI_IDLE_DELAY);
delay_cnt--;
if (!delay_cnt) {
LOG_WRN("Bus is busy");
return -EBUSY;
}
}
return 0;
}
static int peci_xec_configure(const struct device *dev, uint32_t bitrate)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_xec_data * const data = dev->data;
struct peci_regs * const regs = cfg->regs;
uint16_t value;
data->bitrate = bitrate;
/* Power down PECI interface */
regs->CONTROL = MCHP_PECI_CTRL_PD;
/* Adjust bitrate */
value = MAX_PECI_CORE_CLOCK / bitrate;
regs->OPT_BIT_TIME_LSB = value & MCHP_PECI_OPT_BT_LSB_MASK;
regs->OPT_BIT_TIME_MSB = ((value >> OPT_BIT_TIME_MSB_OFS) &
MCHP_PECI_OPT_BT_MSB_MASK);
/* Power up PECI interface */
regs->CONTROL &= ~MCHP_PECI_CTRL_PD;
return 0;
}
static int peci_xec_disable(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_regs * const regs = cfg->regs;
int ret;
/* Make sure no transaction is interrupted before disabling the HW */
ret = check_bus_idle(regs);
if (ret) {
return ret;
}
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
peci_girq_status_clear(dev);
NVIC_ClearPendingIRQ(cfg->irq_num);
irq_disable(cfg->irq_num);
#endif
regs->CONTROL |= MCHP_PECI_CTRL_PD;
return 0;
}
static int peci_xec_enable(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_regs * const regs = cfg->regs;
regs->CONTROL &= ~MCHP_PECI_CTRL_PD;
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
peci_girq_status_clear(dev);
peci_girq_enable(dev);
irq_enable(cfg->irq_num);
#endif
return 0;
}
static void peci_xec_bus_recovery(const struct device *dev, bool full_reset)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_xec_data * const data = dev->data;
struct peci_regs * const regs = cfg->regs;
LOG_WRN("%s full_reset:%d", __func__, full_reset);
if (full_reset) {
regs->CONTROL = MCHP_PECI_CTRL_PD | MCHP_PECI_CTRL_RST;
if (k_is_in_isr()) {
k_busy_wait(PECI_RESET_DELAY_MS);
} else {
k_msleep(PECI_RESET_DELAY);
}
regs->CONTROL &= ~MCHP_PECI_CTRL_RST;
peci_xec_configure(dev, data->bitrate);
} else {
/* Only reset internal FIFOs */
regs->CONTROL |= MCHP_PECI_CTRL_FRST;
}
}
static int peci_xec_write(const struct device *dev, struct peci_msg *msg)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_xec_data * const data = dev->data;
struct peci_regs * const regs = cfg->regs;
int i;
int ret;
struct peci_buf *tx_buf = &msg->tx_buffer;
struct peci_buf *rx_buf = &msg->rx_buffer;
/* Check if FIFO is full */
if (regs->STATUS2 & MCHP_PECI_STS2_WFF) {
LOG_WRN("%s FIFO is full", __func__);
return -EIO;
}
regs->CONTROL &= ~MCHP_PECI_CTRL_FRST;
/* Add PECI transaction header to TX FIFO */
regs->WR_DATA = msg->addr;
regs->WR_DATA = tx_buf->len;
regs->WR_DATA = rx_buf->len;
/* Add PECI payload to Tx FIFO only if write length is valid */
if (tx_buf->len) {
regs->WR_DATA = msg->cmd_code;
for (i = 0; i < tx_buf->len - 1; i++) {
if (!(regs->STATUS2 & MCHP_PECI_STS2_WFF)) {
regs->WR_DATA = tx_buf->buf[i];
}
}
}
/* Check bus is idle before starting a new transfer */
ret = check_bus_idle(regs);
if (ret) {
return ret;
}
regs->CONTROL |= MCHP_PECI_CTRL_TXEN;
k_busy_wait(PECI_IO_DELAY);
/* Wait for transmission to complete */
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
if (k_sem_take(&data->tx_lock, PECI_IO_DELAY * tx_buf->len)) {
return -ETIMEDOUT;
}
#else
/* In worst case, overall timeout will be 1msec (100 * 10usec) */
uint8_t wait_timeout_cnt = 100;
while (!(regs->STATUS1 & MCHP_PECI_STS1_EOF)) {
k_busy_wait(PECI_IO_DELAY);
wait_timeout_cnt--;
if (!wait_timeout_cnt) {
LOG_WRN("Tx timeout");
data->timeout_retries++;
/* Full reset only if multiple consecutive failures */
if (data->timeout_retries > PECI_TIMEOUT_RETRIES) {
peci_xec_bus_recovery(dev, true);
} else {
peci_xec_bus_recovery(dev, false);
}
return -ETIMEDOUT;
}
}
#endif
data->timeout_retries = 0;
return 0;
}
static int peci_xec_read(const struct device *dev, struct peci_msg *msg)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_regs * const regs = cfg->regs;
int i;
int ret;
uint8_t tx_fcs;
uint8_t bytes_rcvd;
uint8_t wait_timeout_cnt;
struct peci_buf *rx_buf = &msg->rx_buffer;
/* Attempt to read data from RX FIFO */
bytes_rcvd = 0;
for (i = 0; i < (rx_buf->len + PECI_FCS_LEN); i++) {
/* Worst case timeout will be 1msec (100 * 10usec) */
wait_timeout_cnt = PECI_RX_BUF_FILL_WAIT_RETRY;
/* Wait for read buffer to fill up */
while (regs->STATUS2 & MCHP_PECI_STS2_RFE) {
k_usleep(PECI_IO_DELAY);
wait_timeout_cnt--;
if (!wait_timeout_cnt) {
LOG_WRN("Rx buffer empty");
return -ETIMEDOUT;
}
}
if (i == 0) {
/* Get write block FCS just for debug */
tx_fcs = regs->RD_DATA;
LOG_DBG("TX FCS %x", tx_fcs);
/* If a Ping is done, write Tx fcs to rx buffer*/
if (msg->cmd_code == PECI_CMD_PING) {
rx_buf->buf[0] = tx_fcs;
break;
}
} else if (i == (rx_buf->len + 1)) {
/* Get read block FCS, but don't count it */
rx_buf->buf[i-1] = regs->RD_DATA;
} else {
/* Get response */
rx_buf->buf[i-1] = regs->RD_DATA;
bytes_rcvd++;
}
}
/* Check if transaction is as expected */
if (rx_buf->len != bytes_rcvd) {
LOG_INF("Incomplete %x vs %x", bytes_rcvd, rx_buf->len);
}
/* Once write-read transaction is complete, ensure bus is idle
* before resetting the internal FIFOs
*/
ret = check_bus_idle(regs);
if (ret) {
return ret;
}
return 0;
}
static int peci_xec_transfer(const struct device *dev, struct peci_msg *msg)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_regs * const regs = cfg->regs;
int ret = 0;
uint8_t err_val = 0;
#ifdef CONFIG_PM_DEVICE
struct peci_xec_data *data = dev->data;
peci_xec_pm_policy_state_lock_get(data, PECI_PM_POLICY_FLAG);
#endif
do {
ret = peci_xec_write(dev, msg);
if (ret) {
break;
}
/* If a PECI transmission is successful, it may or not involve
* a read operation, check if transaction expects a response
* Also perform a read when PECI cmd is Ping to get Write FCS
*/
if (msg->rx_buffer.len || (msg->cmd_code == PECI_CMD_PING)) {
ret = peci_xec_read(dev, msg);
if (ret) {
break;
}
}
/* Cleanup */
if (regs->STATUS1 & MCHP_PECI_STS1_EOF) {
regs->STATUS1 |= MCHP_PECI_STS1_EOF;
}
/* Check for error conditions and perform bus recovery if necessary */
err_val = regs->ERROR;
if (err_val) {
if (err_val & MCHP_PECI_ERR_RDOV) {
LOG_ERR("Read buffer is not empty");
}
if (err_val & MCHP_PECI_ERR_WRUN) {
LOG_ERR("Write buffer is not empty");
}
if (err_val & MCHP_PECI_ERR_BERR) {
LOG_ERR("PECI bus error");
}
LOG_DBG("PECI err %x", err_val);
LOG_DBG("PECI sts1 %x", regs->STATUS1);
LOG_DBG("PECI sts2 %x", regs->STATUS2);
/* ERROR is a clear-on-write register, need to clear errors
* occurring at the end of a transaction. A temp variable is
* used to overcome complaints by the static code analyzer
*/
regs->ERROR = err_val;
peci_xec_bus_recovery(dev, false);
ret = -EIO;
break;
}
} while (0);
#ifdef CONFIG_PM_DEVICE
peci_xec_pm_policy_state_lock_put(data, PECI_PM_POLICY_FLAG);
#endif
return ret;
}
#ifdef CONFIG_PM_DEVICE
static int peci_xec_pm_action(const struct device *dev, enum pm_device_action action)
{
const struct peci_xec_config *const devcfg = dev->config;
struct peci_regs * const regs = devcfg->regs;
struct ecs_regs * const ecs_regs = (struct ecs_regs *)(DT_REG_ADDR(DT_NODELABEL(ecs)));
int ret;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT);
/* VREF_VTT function is enabled*/
ecs_regs->PECI_DIS = 0x00u;
/* Power up PECI interface */
regs->CONTROL &= ~MCHP_PECI_CTRL_PD;
break;
case PM_DEVICE_ACTION_SUSPEND:
regs->CONTROL |= MCHP_PECI_CTRL_PD;
/* This bit reduces leakage current through the CPU voltage reference
* pin if PECI is not used. VREF_VTT function is disabled.
*/
ecs_regs->PECI_DIS = 0x01u;
/* If application does not want to turn off PECI pins it will
* not define pinctrl-1 for this node.
*/
ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP);
if (ret == -ENOENT) { /* pinctrl-1 does not exist. */
ret = 0;
}
break;
default:
ret = -ENOTSUP;
}
return ret;
}
#endif /* CONFIG_PM_DEVICE */
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
static void peci_xec_isr(const void *arg)
{
const struct device *dev = arg;
struct peci_xec_config * const cfg = dev->config;
struct peci_xec_data * const data = dev->data;
struct peci_regs * const regs = cfg->regs;
uint8_t peci_error = regs->ERROR;
uint8_t peci_status2 = regs->STATUS2;
peci_girq_status_clear(dev);
if (peci_error) {
regs->ERROR = peci_error;
}
if (peci_status2 & MCHP_PECI_STS2_WFE) {
LOG_WRN("TX FIFO empty ST2:%x", peci_status2);
k_sem_give(&data->tx_lock);
}
if (peci_status2 & MCHP_PECI_STS2_RFE) {
LOG_WRN("RX FIFO full ST2:%x", peci_status2);
}
}
#endif
static const struct peci_driver_api peci_xec_driver_api = {
.config = peci_xec_configure,
.enable = peci_xec_enable,
.disable = peci_xec_disable,
.transfer = peci_xec_transfer,
};
static int peci_xec_init(const struct device *dev)
{
const struct peci_xec_config * const cfg = dev->config;
struct peci_regs * const regs = cfg->regs;
struct ecs_regs * const ecs_regs = (struct ecs_regs *)(DT_REG_ADDR(DT_NODELABEL(ecs)));
int ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT);
if (ret != 0) {
LOG_ERR("XEC PECI pinctrl init failed (%d)", ret);
return ret;
}
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
k_sem_init(&data->tx_lock, 0, 1);
#endif
peci_clr_slp_en(dev);
ecs_regs->PECI_DIS = 0x00u;
/* Reset PECI interface */
regs->CONTROL |= MCHP_PECI_CTRL_RST;
k_msleep(PECI_RESET_DELAY_MS);
regs->CONTROL &= ~MCHP_PECI_CTRL_RST;
#ifdef CONFIG_PECI_INTERRUPT_DRIVEN
/* Enable interrupt for errors */
regs->INT_EN1 = (MCHP_PECI_IEN1_EREN | MCHP_PECI_IEN1_EIEN);
/* Enable interrupt for Tx FIFO is empty */
regs->INT_EN2 |= MCHP_PECI_IEN2_ENWFE;
/* Enable interrupt for Rx FIFO is full */
regs->INT_EN2 |= MCHP_PECI_IEN2_ENRFF;
regs->CONTROL |= MCHP_PECI_CTRL_MIEN;
/* Direct NVIC */
IRQ_CONNECT(cfg->irq_num,
DT_INST_IRQ(0, priority),
peci_xec_isr, NULL, 0);
#endif
return 0;
}
static struct peci_xec_data peci_data;
PINCTRL_DT_INST_DEFINE(0);
static const struct peci_xec_config peci_xec_config = {
.regs = (struct peci_regs * const)(DT_INST_REG_ADDR(0)),
.irq_num = DT_INST_IRQN(0),
.girq = DT_INST_PROP_BY_IDX(0, girqs, 0),
.girq_pos = DT_INST_PROP_BY_IDX(0, girqs, 1),
.pcr_idx = DT_INST_PROP_BY_IDX(0, pcrs, 0),
.pcr_pos = DT_INST_PROP_BY_IDX(0, pcrs, 1),
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0),
};
PM_DEVICE_DT_INST_DEFINE(0, peci_xec_pm_action);
DEVICE_DT_INST_DEFINE(0,
&peci_xec_init,
PM_DEVICE_DT_INST_GET(0),
&peci_data, &peci_xec_config,
POST_KERNEL, CONFIG_PECI_INIT_PRIORITY,
&peci_xec_driver_api);