| /* |
| * Copyright (c) 2016 Intel Corporation. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| /** |
| * @file |
| * @brief Crypto Cipher APIs |
| * |
| * This file contains the Crypto Abstraction layer APIs. |
| * |
| * [Experimental] Users should note that the APIs can change |
| * as a part of ongoing development. |
| */ |
| |
| #ifndef __CRYPTO_CIPHER_H__ |
| #define __CRYPTO_CIPHER_H__ |
| |
| #include <device.h> |
| #include <errno.h> |
| #include <misc/util.h> |
| #include <misc/__assert.h> |
| #include "cipher_structs.h" |
| |
| /* The API a crypto driver should implement */ |
| struct crypto_driver_api { |
| int (*query_hw_caps)(struct device *dev); |
| |
| /* Setup a crypto session */ |
| int (*begin_session)(struct device *dev, struct cipher_ctx *ctx, |
| enum cipher_algo algo, enum cipher_mode mode, |
| enum cipher_op op_type); |
| |
| /* Tear down an established session */ |
| int (*free_session)(struct device *dev, struct cipher_ctx *ctx); |
| |
| /* Register async crypto op completion callback with the driver*/ |
| int (*crypto_async_callback_set)(struct device *dev, |
| crypto_completion_cb cb); |
| }; |
| |
| /* Following are the calls an app could make to get cipher stuff done. |
| * The first two relates to crypto "session" setup / tear down. |
| * Further we have four mode specific (CTR, CCM, CBC ...) calls to perform the |
| * actual crypto operation in the context of a session. Also we have an |
| * API to provide the callback for async operations. |
| */ |
| |
| |
| /* |
| * @brief Query the crypto hardware capabilities |
| * |
| * This API is used by the app to query the capabilities supported by the |
| * crypto device. Based on this the app can specify a subset of the supported |
| * options to be honored for a session during cipher_begin_session() |
| * |
| * @param[in] dev Pointer to the device structure for the driver instance. |
| * |
| * @return bitmask of supported options. |
| */ |
| static inline int cipher_query_hwcaps(struct device *dev) |
| { |
| struct crypto_driver_api *api; |
| int tmp; |
| |
| api = (struct crypto_driver_api *) dev->driver_api; |
| |
| tmp = api->query_hw_caps(dev); |
| |
| __ASSERT((tmp & (CAP_OPAQUE_KEY_HNDL | CAP_RAW_KEY)) != 0, |
| "Driver should support atleast one key type: RAW/Opaque"); |
| |
| __ASSERT((tmp & (CAP_INPLACE_OPS | CAP_SEPARATE_IO_BUFS)) != 0, |
| "Driver should support atleast one IO buf type: Inplace/separate"); |
| |
| __ASSERT((tmp & (CAP_SYNC_OPS | CAP_ASYNC_OPS)) != 0, |
| "Driver should support atleast one op-type: sync/async"); |
| return tmp; |
| |
| } |
| |
| /* |
| * @brief Setup a crypto session |
| * |
| * Initializes one time parameters, like the session key, algorithm and cipher |
| * mode which may remain constant for all operations in the session. The state |
| * may be cached in hardware and/or driver data state variables. |
| * |
| * @param[in] dev Pointer to the device structure for the driver instance. |
| * @param[in] ctx Pointer to the context structure. Various one time |
| * parameters like key, keylength etc are supplied via |
| * this field. Take a look at the ctx structure definition |
| * to know which fields are to be populated by the app |
| * before making this call. |
| * @param[in] algo The crypto algorithm to be used in this session. e.g AES |
| * @param[in] mode The cipher mode to be used in this session. e.g CBC, CTR |
| * @param[in] optype Whether we should encrypt or decrypt in this session |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_begin_session(struct device *dev, |
| struct cipher_ctx *ctx, |
| enum cipher_algo algo, |
| enum cipher_mode mode, |
| enum cipher_op optype) |
| { |
| struct crypto_driver_api *api; |
| u32_t flags; |
| |
| api = (struct crypto_driver_api *) dev->driver_api; |
| ctx->device = dev; |
| ctx->ops.cipher_mode = mode; |
| |
| flags = (ctx->flags & (CAP_OPAQUE_KEY_HNDL | CAP_RAW_KEY)); |
| __ASSERT(flags != 0, "Keytype missing: RAW Key or OPAQUE handle"); |
| __ASSERT(flags != (CAP_OPAQUE_KEY_HNDL | CAP_RAW_KEY), |
| "conflicting options for keytype"); |
| |
| flags = (ctx->flags & (CAP_INPLACE_OPS | CAP_SEPARATE_IO_BUFS)); |
| __ASSERT(flags != 0, "IO buffer type missing"); |
| __ASSERT(flags != (CAP_INPLACE_OPS | CAP_SEPARATE_IO_BUFS), |
| "conflicting options for IO buffer type"); |
| |
| flags = (ctx->flags & (CAP_SYNC_OPS | CAP_ASYNC_OPS)); |
| __ASSERT(flags != 0, "sync/async type missing"); |
| __ASSERT(flags != (CAP_SYNC_OPS | CAP_ASYNC_OPS), |
| "conflicting options for sync/async"); |
| |
| return api->begin_session(dev, ctx, algo, mode, optype); |
| } |
| |
| /* |
| * @brief Cleanup a crypto session |
| * |
| * Clears the hardware and/or driver state of a previous session. |
| * |
| * @param[in] dev Pointer to the device structure for the driver instance. |
| * @param[in] ctx Pointer to the crypto context structure, of the session |
| * to be freed. |
| * |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_free_session(struct device *dev, |
| struct cipher_ctx *ctx) |
| { |
| struct crypto_driver_api *api; |
| |
| api = (struct crypto_driver_api *) dev->driver_api; |
| |
| return api->free_session(dev, ctx); |
| } |
| |
| /* |
| * @brief Registers an async crypto op completion callback with the driver |
| * |
| * The application can register an async crypto op completion callback handler |
| * to be invoked by the driver, on completion of a prior request submitted via |
| * crypto_do_op(). Based on crypto device hardware semantics, this is likely to |
| * be invoked from an ISR context. |
| * |
| * @param[in] dev Pointer to the device structure for the driver instance. |
| * @param[in] cb Pointer to application callback to be called by the driver. |
| * |
| * @return 0 on success, -ENOTSUP if the driver does not support async op, |
| * negative errno code on fail. |
| */ |
| static inline int cipher_callback_set(struct device *dev, |
| crypto_completion_cb cb) |
| { |
| struct crypto_driver_api *api; |
| |
| api = (struct crypto_driver_api *) dev->driver_api; |
| |
| if (api->crypto_async_callback_set) { |
| return api->crypto_async_callback_set(dev, cb); |
| } |
| |
| return -ENOTSUP; |
| |
| } |
| |
| /* |
| * @brief Perform Single block crypto op. This should not be overloaded to |
| * operate on multiple blocks for security reasons. |
| * |
| * @param[in] ctx Pointer to the crypto context of this op. |
| * @param[in/out] pkt Structure holding the Input/Output buffer pointers. |
| * |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_block_op(struct cipher_ctx *ctx, |
| struct cipher_pkt *pkt) |
| { |
| __ASSERT(ctx->ops.cipher_mode == CRYPTO_CIPHER_MODE_ECB, "ECB mode " |
| "session invoking a different mode handler"); |
| |
| pkt->ctx = ctx; |
| return ctx->ops.block_crypt_hndlr(ctx, pkt); |
| } |
| |
| /* |
| * @brief Perform Cipher Block Chaining (CBC) crypto operation. |
| * |
| * @param[in] ctx Pointer to the crypto context of this op. |
| * @param[in/out] pkt Structure holding the Input/Output buffer pointers. |
| * @param[in] iv Initialization Vector for the operation. Same |
| * iv value should not be reused across multiple |
| * operations (within a session context) for security. |
| * |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_cbc_op(struct cipher_ctx *ctx, |
| struct cipher_pkt *pkt, u8_t *iv) |
| { |
| __ASSERT(ctx->ops.cipher_mode == CRYPTO_CIPHER_MODE_CBC, "CBC mode " |
| "session invoking a different mode handler"); |
| |
| pkt->ctx = ctx; |
| return ctx->ops.cbc_crypt_hndlr(ctx, pkt, iv); |
| } |
| |
| /* |
| * @brief Perform Counter (CTR) mode crypto operation. |
| * |
| * @param[in] ctx Pointer to the crypto context of this op. |
| * @param[in/out] pkt Structure holding the Input/Output buffer pointers. |
| * @param[in] iv Initialization Vector for the operation. We use a |
| * split counter formed by appending iv and ctr. |
| * Consequently ivlen = keylen - ctrlen. 'ctrlen' is |
| * specified during session setup through the |
| * 'ctx.mode_params.ctr_params.ctr_len' parameter. IV |
| * should not be reused across multiple operations |
| * (within a session context) for security. The non-iv |
| * part of the split counter is transparent to the caller |
| * and is fully managed by the crypto provider. |
| * |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_ctr_op(struct cipher_ctx *ctx, |
| struct cipher_pkt *pkt, u8_t *iv) |
| { |
| __ASSERT(ctx->ops.cipher_mode == CRYPTO_CIPHER_MODE_CTR, "CTR mode " |
| "session invoking a different mode handler"); |
| |
| pkt->ctx = ctx; |
| return ctx->ops.ctr_crypt_hndlr(ctx, pkt, iv); |
| } |
| |
| /* |
| * @brief Perform Counter with CBC-MAC (CCM) mode crypto operation |
| * |
| * @param[in] ctx Pointer to the crypto context of this op. |
| * @param[in/out] pkt Structure holding the Input/Output, Assosciated Data |
| * and tag buffer pointers. |
| * @param[in] nonce Nonce for the operation. Same Nonce value should not |
| * be reused across multiple operations (within a |
| * session context) for security. |
| * |
| * @return 0 on success, negative errno code on fail. |
| */ |
| static inline int cipher_ccm_op(struct cipher_ctx *ctx, |
| struct cipher_aead_pkt *pkt, u8_t *nonce) |
| { |
| __ASSERT(ctx->ops.cipher_mode == CRYPTO_CIPHER_MODE_CCM, "CCM mode " |
| "session invoking a different mode handler"); |
| |
| pkt->pkt->ctx = ctx; |
| return ctx->ops.ccm_crypt_hndlr(ctx, pkt, nonce); |
| } |
| |
| #endif /* __CRYPTO_CIPHER_H__ */ |