blob: cac1cde930d7813917e9260f91ee30a65bb584a4 [file] [log] [blame]
/** @file
* @brief TCP handler
*
* Handle TCP connections.
*/
/*
* Copyright (c) 2016 Intel Corporation
* Copyright 2011-2015 by Andrey Butok. FNET Community.
* Copyright 2008-2010 by Andrey Butok. Freescale Semiconductor, Inc.
* Copyright 2003 by Alexey Shervashidze, Andrey Butok. Motorola SPS.
*
* SPDX-License-Identifier: Apache-2.0
*/
#if defined(CONFIG_NET_DEBUG_TCP)
#define SYS_LOG_DOMAIN "net/tcp"
#define NET_LOG_ENABLED 1
#endif
#include <kernel.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <net/net_pkt.h>
#include <net/net_ip.h>
#include <net/net_context.h>
#include <misc/byteorder.h>
#include "connection.h"
#include "net_private.h"
#include "ipv6.h"
#include "ipv4.h"
#include "tcp.h"
#include "net_stats.h"
#define ALLOC_TIMEOUT 500
/*
* Each TCP connection needs to be tracked by net_context, so
* we need to allocate equal number of control structures here.
*/
#define NET_MAX_TCP_CONTEXT CONFIG_NET_MAX_CONTEXTS
static struct net_tcp tcp_context[NET_MAX_TCP_CONTEXT];
#define INIT_RETRY_MS 200
/* 2MSL timeout, where "MSL" is arbitrarily 2 minutes in the RFC */
#if defined(CONFIG_NET_TCP_2MSL_TIME)
#define TIME_WAIT_MS K_SECONDS(CONFIG_NET_TCP_2MSL_TIME)
#else
#define TIME_WAIT_MS K_SECONDS(2 * 2 * 60)
#endif
struct tcp_segment {
u32_t seq;
u32_t ack;
u16_t wnd;
u8_t flags;
u8_t optlen;
void *options;
struct sockaddr_ptr *src_addr;
const struct sockaddr *dst_addr;
};
#if defined(CONFIG_NET_DEBUG_TCP) && (CONFIG_SYS_LOG_NET_LEVEL > 2)
static char upper_if_set(char chr, bool set)
{
if (set) {
return chr & ~0x20;
}
return chr | 0x20;
}
static void net_tcp_trace(struct net_pkt *pkt, struct net_tcp *tcp)
{
struct net_tcp_hdr hdr, *tcp_hdr;
u32_t rel_ack, ack;
u8_t flags;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
return;
}
flags = NET_TCP_FLAGS(tcp_hdr);
ack = sys_get_be32(tcp_hdr->ack);
if (!tcp->sent_ack) {
rel_ack = 0;
} else {
rel_ack = ack ? ack - tcp->sent_ack : 0;
}
NET_DBG("[%p] pkt %p src %u dst %u seq 0x%04x (%u) ack 0x%04x (%u/%u) "
"flags %c%c%c%c%c%c win %u chk 0x%04x",
tcp, pkt,
ntohs(tcp_hdr->src_port),
ntohs(tcp_hdr->dst_port),
sys_get_be32(tcp_hdr->seq),
sys_get_be32(tcp_hdr->seq),
ack,
ack,
/* This tells how many bytes we are acking now */
rel_ack,
upper_if_set('u', flags & NET_TCP_URG),
upper_if_set('a', flags & NET_TCP_ACK),
upper_if_set('p', flags & NET_TCP_PSH),
upper_if_set('r', flags & NET_TCP_RST),
upper_if_set('s', flags & NET_TCP_SYN),
upper_if_set('f', flags & NET_TCP_FIN),
sys_get_be16(tcp_hdr->wnd),
ntohs(tcp_hdr->chksum));
}
#else
#define net_tcp_trace(...)
#endif /* CONFIG_NET_DEBUG_TCP */
static inline u32_t retry_timeout(const struct net_tcp *tcp)
{
return ((u32_t)1 << tcp->retry_timeout_shift) * INIT_RETRY_MS;
}
#define is_6lo_technology(pkt) \
(IS_ENABLED(CONFIG_NET_IPV6) && net_pkt_family(pkt) == AF_INET6 && \
((IS_ENABLED(CONFIG_NET_L2_BT) && \
net_pkt_ll_dst(pkt)->type == NET_LINK_BLUETOOTH) || \
(IS_ENABLED(CONFIG_NET_L2_IEEE802154) && \
net_pkt_ll_dst(pkt)->type == NET_LINK_IEEE802154)))
/* The ref should not be done for Bluetooth and IEEE 802.15.4 which use
* IPv6 header compression (6lo). For BT and 802.15.4 we copy the pkt
* chain we are about to send so it is fine if the network driver
* releases it. As we have our own copy of the sent data, we do not
* need to take a reference of it. See also net_tcp_send_pkt().
*
* Note that this is macro so that we get information who called the
* net_pkt_ref() if memory debugging is active.
*/
#define do_ref_if_needed(tcp, pkt) \
do { \
if (!is_6lo_technology(pkt)) { \
NET_DBG("[%p] ref pkt %p new ref %d (%s:%d)", \
tcp, pkt, pkt->ref + 1, __func__, \
__LINE__); \
pkt = net_pkt_ref(pkt); \
} \
} while (0)
static void abort_connection(struct net_tcp *tcp)
{
struct net_context *ctx = tcp->context;
NET_DBG("[%p] segment retransmission exceeds %d, resetting context %p",
tcp, CONFIG_NET_TCP_RETRY_COUNT, ctx);
if (ctx->recv_cb) {
ctx->recv_cb(ctx, NULL, -ECONNRESET, tcp->recv_user_data);
}
net_context_unref(ctx);
}
static void tcp_retry_expired(struct k_timer *timer)
{
struct net_tcp *tcp = CONTAINER_OF(timer, struct net_tcp, retry_timer);
struct net_pkt *pkt;
/* Double the retry period for exponential backoff and resent
* the first (only the first!) unack'd packet.
*/
if (!sys_slist_is_empty(&tcp->sent_list)) {
tcp->retry_timeout_shift++;
if (tcp->retry_timeout_shift > CONFIG_NET_TCP_RETRY_COUNT) {
abort_connection(tcp);
return;
}
k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);
pkt = CONTAINER_OF(sys_slist_peek_head(&tcp->sent_list),
struct net_pkt, sent_list);
if (net_pkt_sent(pkt)) {
do_ref_if_needed(tcp, pkt);
net_pkt_set_sent(pkt, false);
}
net_pkt_set_queued(pkt, true);
if (net_tcp_send_pkt(pkt) < 0 && !is_6lo_technology(pkt)) {
NET_DBG("[%p] pkt %p send failed", tcp, pkt);
net_pkt_unref(pkt);
} else {
NET_DBG("[%p] sent pkt %p", tcp, pkt);
if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
!is_6lo_technology(pkt)) {
net_stats_update_tcp_seg_rexmit();
}
}
} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
if (tcp->fin_sent && tcp->fin_rcvd) {
NET_DBG("[%p] Closing connection (context %p)",
tcp, tcp->context);
net_context_unref(tcp->context);
}
}
}
struct net_tcp *net_tcp_alloc(struct net_context *context)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
tcp_context[i].flags |= NET_TCP_IN_USE;
break;
}
}
irq_unlock(key);
if (i >= NET_MAX_TCP_CONTEXT) {
return NULL;
}
memset(&tcp_context[i], 0, sizeof(struct net_tcp));
tcp_context[i].flags = NET_TCP_IN_USE;
tcp_context[i].state = NET_TCP_CLOSED;
tcp_context[i].context = context;
tcp_context[i].send_seq = tcp_init_isn();
tcp_context[i].recv_max_ack = tcp_context[i].send_seq + 1u;
tcp_context[i].recv_wnd = min(NET_TCP_MAX_WIN, NET_TCP_BUF_MAX_LEN);
tcp_context[i].accept_cb = NULL;
k_timer_init(&tcp_context[i].retry_timer, tcp_retry_expired, NULL);
k_sem_init(&tcp_context[i].connect_wait, 0, UINT_MAX);
return &tcp_context[i];
}
static void ack_timer_cancel(struct net_tcp *tcp)
{
k_delayed_work_cancel(&tcp->ack_timer);
}
static void fin_timer_cancel(struct net_tcp *tcp)
{
k_delayed_work_cancel(&tcp->fin_timer);
}
int net_tcp_release(struct net_tcp *tcp)
{
struct net_pkt *pkt;
struct net_pkt *tmp;
int key;
if (!PART_OF_ARRAY(tcp_context, tcp)) {
return -EINVAL;
}
SYS_SLIST_FOR_EACH_CONTAINER_SAFE(&tcp->sent_list, pkt, tmp,
sent_list) {
sys_slist_remove(&tcp->sent_list, NULL, &pkt->sent_list);
net_pkt_unref(pkt);
}
k_timer_stop(&tcp->retry_timer);
k_sem_reset(&tcp->connect_wait);
ack_timer_cancel(tcp);
fin_timer_cancel(tcp);
net_tcp_change_state(tcp, NET_TCP_CLOSED);
tcp->context = NULL;
key = irq_lock();
tcp->flags &= ~(NET_TCP_IN_USE | NET_TCP_RECV_MSS_SET);
irq_unlock(key);
NET_DBG("[%p] Disposed of TCP connection state", tcp);
return 0;
}
static inline u8_t net_tcp_add_options(struct net_buf *header, size_t len,
void *data)
{
u8_t optlen;
memcpy(net_buf_add(header, len), data, len);
/* Set the length (this value is saved in 4-byte words format) */
if ((len & 0x3u) != 0u) {
optlen = (len & 0xfffCu) + 4u;
} else {
optlen = len;
}
return optlen;
}
static int finalize_segment(struct net_context *context, struct net_pkt *pkt)
{
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
return net_ipv4_finalize(context, pkt);
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
return net_ipv6_finalize(context, pkt);
}
#endif
{
}
return 0;
}
static struct net_pkt *prepare_segment(struct net_tcp *tcp,
struct tcp_segment *segment,
struct net_pkt *pkt)
{
struct net_buf *header, *tail = NULL;
struct net_context *context = tcp->context;
struct net_tcp_hdr *tcp_hdr;
u16_t dst_port, src_port;
bool pkt_allocated;
u8_t optlen = 0;
NET_ASSERT(context);
if (pkt) {
/* TCP transmit data comes in with a pre-allocated
* net_pkt at the head (so that net_context_send can find
* the context), and the data after. Rejigger so we
* can insert a TCP header cleanly
*/
tail = pkt->frags;
pkt->frags = NULL;
pkt_allocated = false;
} else {
pkt = net_pkt_get_tx(context, ALLOC_TIMEOUT);
if (!pkt) {
return NULL;
}
pkt_allocated = true;
}
#if defined(CONFIG_NET_IPV4)
if (net_pkt_family(pkt) == AF_INET) {
net_ipv4_create(context, pkt,
net_sin_ptr(segment->src_addr)->sin_addr,
&(net_sin(segment->dst_addr)->sin_addr));
dst_port = net_sin(segment->dst_addr)->sin_port;
src_port = ((struct sockaddr_in_ptr *)&context->local)->
sin_port;
NET_IPV4_HDR(pkt)->proto = IPPROTO_TCP;
} else
#endif
#if defined(CONFIG_NET_IPV6)
if (net_pkt_family(pkt) == AF_INET6) {
net_ipv6_create(tcp->context, pkt,
net_sin6_ptr(segment->src_addr)->sin6_addr,
&(net_sin6(segment->dst_addr)->sin6_addr));
dst_port = net_sin6(segment->dst_addr)->sin6_port;
src_port = ((struct sockaddr_in6_ptr *)&context->local)->
sin6_port;
NET_IPV6_HDR(pkt)->nexthdr = IPPROTO_TCP;
} else
#endif
{
NET_DBG("[%p] Protocol family %d not supported", tcp,
net_pkt_family(pkt));
if (pkt_allocated) {
net_pkt_unref(pkt);
}
return NULL;
}
header = net_pkt_get_data(context, ALLOC_TIMEOUT);
if (!header) {
if (pkt_allocated) {
net_pkt_unref(pkt);
}
return NULL;
}
net_pkt_frag_add(pkt, header);
tcp_hdr = (struct net_tcp_hdr *)net_buf_add(header, NET_TCPH_LEN);
if (segment->options && segment->optlen) {
optlen = net_tcp_add_options(header, segment->optlen,
segment->options);
}
tcp_hdr->offset = (NET_TCPH_LEN + optlen) << 2;
tcp_hdr->src_port = src_port;
tcp_hdr->dst_port = dst_port;
sys_put_be32(segment->seq, tcp_hdr->seq);
sys_put_be32(segment->ack, tcp_hdr->ack);
tcp_hdr->flags = segment->flags;
sys_put_be16(segment->wnd, tcp_hdr->wnd);
tcp_hdr->urg[0] = 0;
tcp_hdr->urg[1] = 0;
if (tail) {
net_pkt_frag_add(pkt, tail);
}
if (finalize_segment(context, pkt) < 0) {
if (pkt_allocated) {
net_pkt_unref(pkt);
}
return NULL;
}
net_tcp_trace(pkt, tcp);
return pkt;
}
u32_t net_tcp_get_recv_wnd(const struct net_tcp *tcp)
{
return tcp->recv_wnd;
}
int net_tcp_prepare_segment(struct net_tcp *tcp, u8_t flags,
void *options, size_t optlen,
const struct sockaddr_ptr *local,
const struct sockaddr *remote,
struct net_pkt **send_pkt)
{
u32_t seq;
u16_t wnd;
struct tcp_segment segment = { 0 };
if (!local) {
local = &tcp->context->local;
}
seq = tcp->send_seq;
if (flags & NET_TCP_ACK) {
if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_1) {
if (flags & NET_TCP_FIN) {
/* FIN is used here only to determine which
* state to go to next; it's not to be used
* in the sent segment.
*/
flags &= ~NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else {
net_tcp_change_state(tcp, NET_TCP_CLOSING);
}
} else if (net_tcp_get_state(tcp) == NET_TCP_FIN_WAIT_2) {
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
} else if (net_tcp_get_state(tcp) == NET_TCP_CLOSE_WAIT) {
tcp->flags |= NET_TCP_IS_SHUTDOWN;
flags |= NET_TCP_FIN;
net_tcp_change_state(tcp, NET_TCP_LAST_ACK);
}
}
if (flags & NET_TCP_FIN) {
tcp->flags |= NET_TCP_FINAL_SENT;
/* RFC793 says about ACK bit: "Once a connection is
* established this is always sent." as teardown
* happens when connection is established, it must
* have ACK set.
*/
flags |= NET_TCP_ACK;
seq++;
if (net_tcp_get_state(tcp) == NET_TCP_ESTABLISHED ||
net_tcp_get_state(tcp) == NET_TCP_SYN_RCVD) {
net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_1);
}
}
wnd = net_tcp_get_recv_wnd(tcp);
segment.src_addr = (struct sockaddr_ptr *)local;
segment.dst_addr = remote;
segment.seq = tcp->send_seq;
segment.ack = tcp->send_ack;
segment.flags = flags;
segment.wnd = wnd;
segment.options = options;
segment.optlen = optlen;
*send_pkt = prepare_segment(tcp, &segment, *send_pkt);
if (!*send_pkt) {
return -EINVAL;
}
tcp->send_seq = seq;
if (net_tcp_seq_greater(tcp->send_seq, tcp->recv_max_ack)) {
tcp->recv_max_ack = tcp->send_seq;
}
return 0;
}
static inline u32_t get_size(u32_t pos1, u32_t pos2)
{
u32_t size;
if (pos1 <= pos2) {
size = pos2 - pos1;
} else {
size = NET_TCP_MAX_SEQ - pos1 + pos2 + 1;
}
return size;
}
#if defined(CONFIG_NET_IPV4)
#ifndef NET_IP_MAX_PACKET
#define NET_IP_MAX_PACKET (10 * 1024)
#endif
#define NET_IP_MAX_OPTIONS 40 /* Maximum option field length */
static inline size_t ip_max_packet_len(struct in_addr *dest_ip)
{
ARG_UNUSED(dest_ip);
return (NET_IP_MAX_PACKET - (NET_IP_MAX_OPTIONS +
sizeof(struct net_ipv4_hdr))) & (~0x3LU);
}
#else /* CONFIG_NET_IPV4 */
#define ip_max_packet_len(...) 0
#endif /* CONFIG_NET_IPV4 */
u16_t net_tcp_get_recv_mss(const struct net_tcp *tcp)
{
sa_family_t family = net_context_get_family(tcp->context);
if (family == AF_INET) {
#if defined(CONFIG_NET_IPV4)
struct net_if *iface = net_context_get_iface(tcp->context);
if (iface && iface->mtu >= NET_IPV4TCPH_LEN) {
/* Detect MSS based on interface MTU minus "TCP,IP
* header size"
*/
return iface->mtu - NET_IPV4TCPH_LEN;
}
#else
return 0;
#endif /* CONFIG_NET_IPV4 */
}
#if defined(CONFIG_NET_IPV6)
else if (family == AF_INET6) {
struct net_if *iface = net_context_get_iface(tcp->context);
int mss = 0;
if (iface && iface->mtu >= NET_IPV6TCPH_LEN) {
/* Detect MSS based on interface MTU minus "TCP,IP
* header size"
*/
mss = iface->mtu - NET_IPV6TCPH_LEN;
}
if (mss < NET_IPV6_MTU) {
mss = NET_IPV6_MTU;
}
return mss;
}
#endif /* CONFIG_NET_IPV6 */
return 0;
}
static void net_tcp_set_syn_opt(struct net_tcp *tcp, u8_t *options,
u8_t *optionlen)
{
u16_t recv_mss;
*optionlen = 0;
if (!(tcp->flags & NET_TCP_RECV_MSS_SET)) {
recv_mss = net_tcp_get_recv_mss(tcp);
tcp->flags |= NET_TCP_RECV_MSS_SET;
} else {
recv_mss = 0;
}
UNALIGNED_PUT(htonl((u32_t)recv_mss | NET_TCP_MSS_HEADER),
(u32_t *)(options + *optionlen));
*optionlen += NET_TCP_MSS_SIZE;
}
int net_tcp_prepare_ack(struct net_tcp *tcp, const struct sockaddr *remote,
struct net_pkt **pkt)
{
u8_t options[NET_TCP_MAX_OPT_SIZE];
u8_t optionlen;
switch (net_tcp_get_state(tcp)) {
case NET_TCP_SYN_RCVD:
/* In the SYN_RCVD state acknowledgment must be with the
* SYN flag.
*/
net_tcp_set_syn_opt(tcp, options, &optionlen);
return net_tcp_prepare_segment(tcp, NET_TCP_SYN | NET_TCP_ACK,
options, optionlen, NULL, remote,
pkt);
case NET_TCP_FIN_WAIT_1:
case NET_TCP_LAST_ACK:
/* In the FIN_WAIT_1 and LAST_ACK states acknowledgment must
* be with the FIN flag.
*/
return net_tcp_prepare_segment(tcp, NET_TCP_FIN | NET_TCP_ACK,
0, 0, NULL, remote, pkt);
default:
return net_tcp_prepare_segment(tcp, NET_TCP_ACK, 0, 0, NULL,
remote, pkt);
}
return -EINVAL;
}
int net_tcp_prepare_reset(struct net_tcp *tcp,
const struct sockaddr *remote,
struct net_pkt **pkt)
{
struct tcp_segment segment = { 0 };
if ((net_context_get_state(tcp->context) != NET_CONTEXT_UNCONNECTED) &&
(net_tcp_get_state(tcp) != NET_TCP_SYN_SENT) &&
(net_tcp_get_state(tcp) != NET_TCP_TIME_WAIT)) {
/* Send the reset segment always with acknowledgment. */
segment.ack = tcp->send_ack;
segment.flags = NET_TCP_RST | NET_TCP_ACK;
segment.seq = tcp->send_seq;
segment.src_addr = &tcp->context->local;
segment.dst_addr = remote;
segment.wnd = 0;
segment.options = NULL;
segment.optlen = 0;
*pkt = prepare_segment(tcp, &segment, NULL);
}
return 0;
}
const char *net_tcp_state_str(enum net_tcp_state state)
{
#if defined(CONFIG_NET_DEBUG_TCP)
switch (state) {
case NET_TCP_CLOSED:
return "CLOSED";
case NET_TCP_LISTEN:
return "LISTEN";
case NET_TCP_SYN_SENT:
return "SYN_SENT";
case NET_TCP_SYN_RCVD:
return "SYN_RCVD";
case NET_TCP_ESTABLISHED:
return "ESTABLISHED";
case NET_TCP_CLOSE_WAIT:
return "CLOSE_WAIT";
case NET_TCP_LAST_ACK:
return "LAST_ACK";
case NET_TCP_FIN_WAIT_1:
return "FIN_WAIT_1";
case NET_TCP_FIN_WAIT_2:
return "FIN_WAIT_2";
case NET_TCP_TIME_WAIT:
return "TIME_WAIT";
case NET_TCP_CLOSING:
return "CLOSING";
}
#else /* CONFIG_NET_DEBUG_TCP */
ARG_UNUSED(state);
#endif /* CONFIG_NET_DEBUG_TCP */
return "";
}
int net_tcp_queue_data(struct net_context *context, struct net_pkt *pkt)
{
struct net_conn *conn = (struct net_conn *)context->conn_handler;
size_t data_len = net_pkt_get_len(pkt);
int ret;
NET_DBG("[%p] Queue %p len %zd", context->tcp, pkt, data_len);
/* Set PSH on all packets, our window is so small that there's
* no point in the remote side trying to finesse things and
* coalesce packets.
*/
ret = net_tcp_prepare_segment(context->tcp, NET_TCP_PSH | NET_TCP_ACK,
NULL, 0, NULL, &conn->remote_addr, &pkt);
if (ret) {
return ret;
}
context->tcp->send_seq += data_len;
net_stats_update_tcp_sent(data_len);
sys_slist_append(&context->tcp->sent_list, &pkt->sent_list);
/* We need to restart retry_timer if it is stopped. */
if (k_timer_remaining_get(&context->tcp->retry_timer) == 0) {
k_timer_start(&context->tcp->retry_timer,
retry_timeout(context->tcp), 0);
}
do_ref_if_needed(context->tcp, pkt);
return 0;
}
int net_tcp_send_pkt(struct net_pkt *pkt)
{
struct net_context *ctx = net_pkt_context(pkt);
struct net_tcp_hdr hdr, *tcp_hdr;
bool calc_chksum = false;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
NET_ERR("Packet %p does not contain TCP header", pkt);
return -EMSGSIZE;
}
if (sys_get_be32(tcp_hdr->ack) != ctx->tcp->send_ack) {
sys_put_be32(ctx->tcp->send_ack, tcp_hdr->ack);
calc_chksum = true;
}
/* The data stream code always sets this flag, because
* existing stacks (Linux, anyway) seem to ignore data packets
* without a valid-but-already-transmitted ACK. But set it
* anyway if we know we need it just to sanify edge cases.
*/
if (ctx->tcp->sent_ack != ctx->tcp->send_ack &&
(tcp_hdr->flags & NET_TCP_ACK) == 0) {
tcp_hdr->flags |= NET_TCP_ACK;
calc_chksum = true;
}
if (calc_chksum) {
net_tcp_set_chksum(pkt, pkt->frags);
}
if (tcp_hdr->flags & NET_TCP_FIN) {
ctx->tcp->fin_sent = 1;
}
ctx->tcp->sent_ack = ctx->tcp->send_ack;
/* As we modified the header, we need to write it back.
*/
net_tcp_set_hdr(pkt, tcp_hdr);
/* We must have special handling for some network technologies that
* tweak the IP protocol headers during packet sending. This happens
* with Bluetooth and IEEE 802.15.4 which use IPv6 header compression
* (6lo) and alter the sent network packet. So in order to avoid any
* corruption of the original data buffer, we must copy the sent data.
* For Bluetooth, its fragmentation code will even mangle the data
* part of the message so we need to copy those too.
*/
if (is_6lo_technology(pkt)) {
struct net_pkt *new_pkt, *check_pkt;
int ret;
bool pkt_in_slist = false;
/*
* There are users of this function that don't add pkt to TCP
* sent_list. (See send_ack() in net_context.c) In these cases,
* we should avoid the extra 6lowpan specific buffer copy
* below.
*/
SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list,
check_pkt, sent_list) {
if (check_pkt == pkt) {
pkt_in_slist = true;
break;
}
}
if (pkt_in_slist) {
new_pkt = net_pkt_clone(pkt, ALLOC_TIMEOUT);
if (!new_pkt) {
return -ENOMEM;
}
/* This function is called from net_context.c and if we
* return < 0, the caller will unref the original pkt.
* This would leak the new_pkt so remove it here.
*/
ret = net_send_data(new_pkt);
if (ret < 0) {
net_pkt_unref(new_pkt);
} else {
net_stats_update_tcp_seg_rexmit();
}
return ret;
}
}
return net_send_data(pkt);
}
static void restart_timer(struct net_tcp *tcp)
{
if (!sys_slist_is_empty(&tcp->sent_list)) {
tcp->flags |= NET_TCP_RETRYING;
tcp->retry_timeout_shift = 0;
k_timer_start(&tcp->retry_timer, retry_timeout(tcp), 0);
} else if (IS_ENABLED(CONFIG_NET_TCP_TIME_WAIT)) {
if (tcp->fin_sent && tcp->fin_rcvd) {
/* We know sent_list is empty, which means if
* fin_sent is true it must have been ACKd
*/
k_timer_start(&tcp->retry_timer, TIME_WAIT_MS, 0);
net_context_ref(tcp->context);
}
} else {
k_timer_stop(&tcp->retry_timer);
tcp->flags &= ~NET_TCP_RETRYING;
}
}
int net_tcp_send_data(struct net_context *context)
{
struct net_pkt *pkt;
/* For now, just send all queued data synchronously. Need to
* add window handling and retry/ACK logic.
*/
SYS_SLIST_FOR_EACH_CONTAINER(&context->tcp->sent_list, pkt, sent_list) {
/* Do not resend packets that were sent by expire timer */
if (net_pkt_queued(pkt)) {
NET_DBG("[%p] Skipping pkt %p because it was already "
"sent.", context->tcp, pkt);
continue;
}
if (!net_pkt_sent(pkt)) {
int ret;
NET_DBG("[%p] Sending pkt %p (%zd bytes)", context->tcp,
pkt, net_pkt_get_len(pkt));
ret = net_tcp_send_pkt(pkt);
if (ret < 0 && !is_6lo_technology(pkt)) {
NET_DBG("[%p] pkt %p not sent (%d)",
context->tcp, pkt, ret);
net_pkt_unref(pkt);
}
net_pkt_set_queued(pkt, true);
}
}
return 0;
}
void net_tcp_ack_received(struct net_context *ctx, u32_t ack)
{
struct net_tcp *tcp = ctx->tcp;
sys_slist_t *list = &ctx->tcp->sent_list;
sys_snode_t *head;
struct net_pkt *pkt;
u32_t seq;
bool valid_ack = false;
if (IS_ENABLED(CONFIG_NET_STATISTICS_TCP) &&
sys_slist_is_empty(list)) {
net_stats_update_tcp_seg_ackerr();
}
while (!sys_slist_is_empty(list)) {
struct net_tcp_hdr hdr, *tcp_hdr;
head = sys_slist_peek_head(list);
pkt = CONTAINER_OF(head, struct net_pkt, sent_list);
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
/* The pkt does not contain TCP header, this should
* not happen.
*/
NET_ERR("pkt %p has no TCP header", pkt);
sys_slist_remove(list, NULL, head);
net_pkt_unref(pkt);
continue;
}
seq = sys_get_be32(tcp_hdr->seq) + net_pkt_appdatalen(pkt) - 1;
if (!net_tcp_seq_greater(ack, seq)) {
net_stats_update_tcp_seg_ackerr();
break;
}
if (tcp_hdr->flags & NET_TCP_FIN) {
enum net_tcp_state s = net_tcp_get_state(tcp);
if (s == NET_TCP_FIN_WAIT_1) {
net_tcp_change_state(tcp, NET_TCP_FIN_WAIT_2);
} else if (s == NET_TCP_CLOSING) {
net_tcp_change_state(tcp, NET_TCP_TIME_WAIT);
}
}
sys_slist_remove(list, NULL, head);
net_pkt_unref(pkt);
valid_ack = true;
}
/* No need to re-send stuff we are closing down */
if (valid_ack && net_tcp_get_state(tcp) == NET_TCP_ESTABLISHED) {
/* Restart the timer on a valid inbound ACK. This
* isn't quite the same behavior as per-packet retry
* timers, but is close in practice (it starts retries
* one timer period after the connection "got stuck")
* and avoids the need to track per-packet timers or
* sent times.
*/
restart_timer(ctx->tcp);
/* And, if we had been retrying, mark all packets
* untransmitted and then resend them. The stalled
* pipe is uncorked again.
*/
if (ctx->tcp->flags & NET_TCP_RETRYING) {
SYS_SLIST_FOR_EACH_CONTAINER(&ctx->tcp->sent_list, pkt,
sent_list) {
if (net_pkt_sent(pkt)) {
do_ref_if_needed(ctx->tcp, pkt);
net_pkt_set_sent(pkt, false);
}
}
net_tcp_send_data(ctx);
}
}
}
void net_tcp_init(void)
{
}
#if defined(CONFIG_NET_DEBUG_TCP)
static void validate_state_transition(enum net_tcp_state current,
enum net_tcp_state new)
{
static const u16_t valid_transitions[] = {
[NET_TCP_CLOSED] = 1 << NET_TCP_LISTEN |
1 << NET_TCP_SYN_SENT,
[NET_TCP_LISTEN] = 1 << NET_TCP_SYN_RCVD |
1 << NET_TCP_SYN_SENT,
[NET_TCP_SYN_RCVD] = 1 << NET_TCP_FIN_WAIT_1 |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_LISTEN |
1 << NET_TCP_CLOSED,
[NET_TCP_SYN_SENT] = 1 << NET_TCP_CLOSED |
1 << NET_TCP_ESTABLISHED |
1 << NET_TCP_SYN_RCVD |
1 << NET_TCP_CLOSED,
[NET_TCP_ESTABLISHED] = 1 << NET_TCP_CLOSE_WAIT |
1 << NET_TCP_FIN_WAIT_1 |
1 << NET_TCP_CLOSED,
[NET_TCP_CLOSE_WAIT] = 1 << NET_TCP_LAST_ACK |
1 << NET_TCP_CLOSED,
[NET_TCP_LAST_ACK] = 1 << NET_TCP_CLOSED,
[NET_TCP_FIN_WAIT_1] = 1 << NET_TCP_CLOSING |
1 << NET_TCP_FIN_WAIT_2 |
1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_FIN_WAIT_2] = 1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_CLOSING] = 1 << NET_TCP_TIME_WAIT |
1 << NET_TCP_CLOSED,
[NET_TCP_TIME_WAIT] = 1 << NET_TCP_CLOSED
};
if (!(valid_transitions[current] & 1 << new)) {
NET_DBG("Invalid state transition: %s (%d) => %s (%d)",
net_tcp_state_str(current), current,
net_tcp_state_str(new), new);
}
}
#endif /* CONFIG_NET_DEBUG_TCP */
void net_tcp_change_state(struct net_tcp *tcp,
enum net_tcp_state new_state)
{
NET_ASSERT(tcp);
if (net_tcp_get_state(tcp) == new_state) {
return;
}
NET_ASSERT(new_state >= NET_TCP_CLOSED &&
new_state <= NET_TCP_CLOSING);
NET_DBG("[%p] state %s (%d) => %s (%d)",
tcp, net_tcp_state_str(tcp->state), tcp->state,
net_tcp_state_str(new_state), new_state);
#if defined(CONFIG_NET_DEBUG_TCP)
validate_state_transition(tcp->state, new_state);
#endif /* CONFIG_NET_DEBUG_TCP */
tcp->state = new_state;
if (net_tcp_get_state(tcp) != NET_TCP_CLOSED) {
return;
}
if (!tcp->context) {
return;
}
/* Remove any port handlers if we are closing */
if (tcp->context->conn_handler) {
net_tcp_unregister(tcp->context->conn_handler);
tcp->context->conn_handler = NULL;
}
if (tcp->accept_cb) {
tcp->accept_cb(tcp->context,
&tcp->context->remote,
sizeof(struct sockaddr),
-ENETRESET,
tcp->context->user_data);
}
}
void net_tcp_foreach(net_tcp_cb_t cb, void *user_data)
{
int i, key;
key = irq_lock();
for (i = 0; i < NET_MAX_TCP_CONTEXT; i++) {
if (!net_tcp_is_used(&tcp_context[i])) {
continue;
}
irq_unlock(key);
cb(&tcp_context[i], user_data);
key = irq_lock();
}
irq_unlock(key);
}
bool net_tcp_validate_seq(struct net_tcp *tcp, struct net_pkt *pkt)
{
struct net_tcp_hdr hdr, *tcp_hdr;
tcp_hdr = net_tcp_get_hdr(pkt, &hdr);
if (!tcp_hdr) {
return false;
}
return (net_tcp_seq_cmp(sys_get_be32(tcp_hdr->seq),
tcp->send_ack) >= 0) &&
(net_tcp_seq_cmp(sys_get_be32(tcp_hdr->seq),
tcp->send_ack
+ net_tcp_get_recv_wnd(tcp)) < 0);
}
struct net_tcp_hdr *net_tcp_get_hdr(struct net_pkt *pkt,
struct net_tcp_hdr *hdr)
{
struct net_tcp_hdr *tcp_hdr;
struct net_buf *frag;
u16_t pos;
tcp_hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, tcp_hdr)) {
return tcp_hdr;
}
frag = net_frag_read(pkt->frags, net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt),
&pos, sizeof(hdr->src_port),
(u8_t *)&hdr->src_port);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->dst_port),
(u8_t *)&hdr->dst_port);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->seq), hdr->seq);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->ack), hdr->ack);
frag = net_frag_read_u8(frag, pos, &pos, &hdr->offset);
frag = net_frag_read_u8(frag, pos, &pos, &hdr->flags);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->wnd), hdr->wnd);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->chksum),
(u8_t *)&hdr->chksum);
frag = net_frag_read(frag, pos, &pos, sizeof(hdr->urg), hdr->urg);
if (!frag && pos == 0xffff) {
/* If the pkt is compressed, then this is the typical outcome
* so no use printing error in this case.
*/
if (IS_ENABLED(CONFIG_NET_DEBUG_TCP) &&
!is_6lo_technology(pkt)) {
NET_ASSERT(frag);
}
return NULL;
}
return hdr;
}
struct net_tcp_hdr *net_tcp_set_hdr(struct net_pkt *pkt,
struct net_tcp_hdr *hdr)
{
struct net_buf *frag;
u16_t pos;
if (net_tcp_header_fits(pkt, hdr)) {
return hdr;
}
frag = net_pkt_write(pkt, pkt->frags, net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt),
&pos, sizeof(hdr->src_port),
(u8_t *)&hdr->src_port, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->dst_port),
(u8_t *)&hdr->dst_port, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->seq), hdr->seq,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->ack), hdr->ack,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->offset),
&hdr->offset, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->flags),
&hdr->flags, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->wnd), hdr->wnd,
ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->chksum),
(u8_t *)&hdr->chksum, ALLOC_TIMEOUT);
frag = net_pkt_write(pkt, frag, pos, &pos, sizeof(hdr->urg), hdr->urg,
ALLOC_TIMEOUT);
if (!frag) {
NET_ASSERT(frag);
return NULL;
}
return hdr;
}
u16_t net_tcp_get_chksum(struct net_pkt *pkt, struct net_buf *frag)
{
struct net_tcp_hdr *hdr;
u16_t chksum;
u16_t pos;
hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, hdr)) {
return hdr->chksum;
}
frag = net_frag_read(frag,
net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt) +
2 + 2 + 4 + 4 + /* src + dst + seq + ack */
1 + 1 + 2 /* offset + flags + wnd */,
&pos, sizeof(chksum), (u8_t *)&chksum);
NET_ASSERT(frag);
return chksum;
}
struct net_buf *net_tcp_set_chksum(struct net_pkt *pkt, struct net_buf *frag)
{
struct net_tcp_hdr *hdr;
u16_t chksum = 0;
u16_t pos;
hdr = net_pkt_tcp_data(pkt);
if (net_tcp_header_fits(pkt, hdr)) {
hdr->chksum = 0;
hdr->chksum = ~net_calc_chksum_tcp(pkt);
return frag;
}
/* We need to set the checksum to 0 first before the calc */
frag = net_pkt_write(pkt, frag,
net_pkt_ip_hdr_len(pkt) +
net_pkt_ipv6_ext_len(pkt) +
2 + 2 + 4 + 4 + /* src + dst + seq + ack */
1 + 1 + 2 /* offset + flags + wnd */,
&pos, sizeof(chksum), (u8_t *)&chksum,
ALLOC_TIMEOUT);
chksum = ~net_calc_chksum_tcp(pkt);
frag = net_pkt_write(pkt, frag, pos - 2, &pos, sizeof(chksum),
(u8_t *)&chksum, ALLOC_TIMEOUT);
NET_ASSERT(frag);
return frag;
}