| /* |
| * Copyright (c) 2016 Linaro Limited. |
| * Copyright (c) 2020 Teslabs Engineering S.L. |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #define DT_DRV_COMPAT st_stm32_pwm |
| |
| #include <errno.h> |
| |
| #include <soc.h> |
| #include <stm32_ll_rcc.h> |
| #include <stm32_ll_tim.h> |
| #include <zephyr/drivers/pwm.h> |
| #include <zephyr/drivers/pinctrl.h> |
| #include <zephyr/device.h> |
| #include <zephyr/kernel.h> |
| #include <zephyr/init.h> |
| |
| #include <zephyr/drivers/clock_control/stm32_clock_control.h> |
| #include <zephyr/dt-bindings/pwm/stm32_pwm.h> |
| |
| #include <zephyr/logging/log.h> |
| #include <zephyr/irq.h> |
| |
| LOG_MODULE_REGISTER(pwm_stm32, CONFIG_PWM_LOG_LEVEL); |
| |
| /* L0 series MCUs only have 16-bit timers and don't have below macro defined */ |
| #ifndef IS_TIM_32B_COUNTER_INSTANCE |
| #define IS_TIM_32B_COUNTER_INSTANCE(INSTANCE) (0) |
| #endif |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| struct pwm_stm32_capture_data { |
| pwm_capture_callback_handler_t callback; |
| void *user_data; |
| uint32_t period; |
| uint32_t pulse; |
| uint32_t overflows; |
| uint8_t skip_irq; |
| bool capture_period; |
| bool capture_pulse; |
| bool continuous; |
| }; |
| |
| /* first capture is always nonsense, second is nonsense when polarity changed */ |
| #define SKIPPED_PWM_CAPTURES 2u |
| |
| #endif /*CONFIG_PWM_CAPTURE*/ |
| |
| /** PWM data. */ |
| struct pwm_stm32_data { |
| /** Timer clock (Hz). */ |
| uint32_t tim_clk; |
| #ifdef CONFIG_PWM_CAPTURE |
| struct pwm_stm32_capture_data capture; |
| #endif /* CONFIG_PWM_CAPTURE */ |
| }; |
| |
| /** PWM configuration. */ |
| struct pwm_stm32_config { |
| TIM_TypeDef *timer; |
| uint32_t prescaler; |
| uint32_t countermode; |
| struct stm32_pclken pclken; |
| const struct pinctrl_dev_config *pcfg; |
| #ifdef CONFIG_PWM_CAPTURE |
| void (*irq_config_func)(const struct device *dev); |
| #endif /* CONFIG_PWM_CAPTURE */ |
| }; |
| |
| /** Maximum number of timer channels : some stm32 soc have 6 else only 4 */ |
| #if defined(LL_TIM_CHANNEL_CH6) |
| #define TIMER_HAS_6CH 1 |
| #define TIMER_MAX_CH 6u |
| #else |
| #define TIMER_HAS_6CH 0 |
| #define TIMER_MAX_CH 4u |
| #endif |
| |
| /** Channel to LL mapping. */ |
| static const uint32_t ch2ll[TIMER_MAX_CH] = { |
| LL_TIM_CHANNEL_CH1, LL_TIM_CHANNEL_CH2, |
| LL_TIM_CHANNEL_CH3, LL_TIM_CHANNEL_CH4, |
| #if TIMER_HAS_6CH |
| LL_TIM_CHANNEL_CH5, LL_TIM_CHANNEL_CH6 |
| #endif |
| }; |
| |
| /** Some stm32 mcus have complementary channels : 3 or 4 */ |
| static const uint32_t ch2ll_n[] = { |
| #if defined(LL_TIM_CHANNEL_CH1N) |
| LL_TIM_CHANNEL_CH1N, |
| LL_TIM_CHANNEL_CH2N, |
| LL_TIM_CHANNEL_CH3N, |
| #if defined(LL_TIM_CHANNEL_CH4N) |
| /** stm32g4x and stm32u5x have 4 complementary channels */ |
| LL_TIM_CHANNEL_CH4N, |
| #endif /* LL_TIM_CHANNEL_CH4N */ |
| #endif /* LL_TIM_CHANNEL_CH1N */ |
| }; |
| /** Maximum number of complemented timer channels is ARRAY_SIZE(ch2ll_n)*/ |
| |
| /** Channel to compare set function mapping. */ |
| static void (*const set_timer_compare[TIMER_MAX_CH])(TIM_TypeDef *, |
| uint32_t) = { |
| LL_TIM_OC_SetCompareCH1, LL_TIM_OC_SetCompareCH2, |
| LL_TIM_OC_SetCompareCH3, LL_TIM_OC_SetCompareCH4, |
| #if TIMER_HAS_6CH |
| LL_TIM_OC_SetCompareCH5, LL_TIM_OC_SetCompareCH6 |
| #endif |
| }; |
| |
| /** |
| * Obtain LL polarity from PWM flags. |
| * |
| * @param flags PWM flags. |
| * |
| * @return LL polarity. |
| */ |
| static uint32_t get_polarity(pwm_flags_t flags) |
| { |
| if ((flags & PWM_POLARITY_MASK) == PWM_POLARITY_NORMAL) { |
| return LL_TIM_OCPOLARITY_HIGH; |
| } |
| |
| return LL_TIM_OCPOLARITY_LOW; |
| } |
| |
| /** |
| * @brief Check if LL counter mode is center-aligned. |
| * |
| * @param ll_countermode LL counter mode. |
| * |
| * @return `true` when center-aligned, otherwise `false`. |
| */ |
| static inline bool is_center_aligned(const uint32_t ll_countermode) |
| { |
| return ((ll_countermode == LL_TIM_COUNTERMODE_CENTER_DOWN) || |
| (ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP) || |
| (ll_countermode == LL_TIM_COUNTERMODE_CENTER_UP_DOWN)); |
| } |
| |
| /** |
| * Obtain timer clock speed. |
| * |
| * @param pclken Timer clock control subsystem. |
| * @param tim_clk Where computed timer clock will be stored. |
| * |
| * @return 0 on success, error code otherwise. |
| */ |
| static int get_tim_clk(const struct stm32_pclken *pclken, uint32_t *tim_clk) |
| { |
| int r; |
| const struct device *clk; |
| uint32_t bus_clk, apb_psc; |
| |
| clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| |
| r = clock_control_get_rate(clk, (clock_control_subsys_t)pclken, |
| &bus_clk); |
| if (r < 0) { |
| return r; |
| } |
| |
| #if defined(CONFIG_SOC_SERIES_STM32H7X) |
| if (pclken->bus == STM32_CLOCK_BUS_APB1) { |
| apb_psc = STM32_D2PPRE1; |
| } else { |
| apb_psc = STM32_D2PPRE2; |
| } |
| #else |
| if (pclken->bus == STM32_CLOCK_BUS_APB1) { |
| apb_psc = STM32_APB1_PRESCALER; |
| } |
| #if !defined(CONFIG_SOC_SERIES_STM32C0X) && !defined(CONFIG_SOC_SERIES_STM32F0X) && \ |
| !defined(CONFIG_SOC_SERIES_STM32G0X) |
| else { |
| apb_psc = STM32_APB2_PRESCALER; |
| } |
| #endif |
| #endif |
| |
| #if defined(RCC_DCKCFGR_TIMPRE) || defined(RCC_DCKCFGR1_TIMPRE) || \ |
| defined(RCC_CFGR_TIMPRE) |
| /* |
| * There are certain series (some F4, F7 and H7) that have the TIMPRE |
| * bit to control the clock frequency of all the timers connected to |
| * APB1 and APB2 domains. |
| * |
| * Up to a certain threshold value of APB{1,2} prescaler, timer clock |
| * equals to HCLK. This threshold value depends on TIMPRE setting |
| * (2 if TIMPRE=0, 4 if TIMPRE=1). Above threshold, timer clock is set |
| * to a multiple of the APB domain clock PCLK{1,2} (2 if TIMPRE=0, 4 if |
| * TIMPRE=1). |
| */ |
| |
| if (LL_RCC_GetTIMPrescaler() == LL_RCC_TIM_PRESCALER_TWICE) { |
| /* TIMPRE = 0 */ |
| if (apb_psc <= 2u) { |
| LL_RCC_ClocksTypeDef clocks; |
| |
| LL_RCC_GetSystemClocksFreq(&clocks); |
| *tim_clk = clocks.HCLK_Frequency; |
| } else { |
| *tim_clk = bus_clk * 2u; |
| } |
| } else { |
| /* TIMPRE = 1 */ |
| if (apb_psc <= 4u) { |
| LL_RCC_ClocksTypeDef clocks; |
| |
| LL_RCC_GetSystemClocksFreq(&clocks); |
| *tim_clk = clocks.HCLK_Frequency; |
| } else { |
| *tim_clk = bus_clk * 4u; |
| } |
| } |
| #else |
| /* |
| * If the APB prescaler equals 1, the timer clock frequencies |
| * are set to the same frequency as that of the APB domain. |
| * Otherwise, they are set to twice (×2) the frequency of the |
| * APB domain. |
| */ |
| if (apb_psc == 1u) { |
| *tim_clk = bus_clk; |
| } else { |
| *tim_clk = bus_clk * 2u; |
| } |
| #endif |
| |
| return 0; |
| } |
| |
| static int pwm_stm32_set_cycles(const struct device *dev, uint32_t channel, |
| uint32_t period_cycles, uint32_t pulse_cycles, |
| pwm_flags_t flags) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| |
| uint32_t ll_channel; |
| uint32_t current_ll_channel; /* complementary output if used */ |
| uint32_t negative_ll_channel; |
| |
| if (channel < 1u || channel > TIMER_MAX_CH) { |
| LOG_ERR("Invalid channel (%d)", channel); |
| return -EINVAL; |
| } |
| |
| /* |
| * Non 32-bit timers count from 0 up to the value in the ARR register |
| * (16-bit). Thus period_cycles cannot be greater than UINT16_MAX + 1. |
| */ |
| if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer) && |
| (period_cycles > UINT16_MAX + 1)) { |
| return -ENOTSUP; |
| } |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| if ((channel == 1u) || (channel == 2u)) { |
| if (LL_TIM_IsEnabledIT_CC1(cfg->timer) || |
| LL_TIM_IsEnabledIT_CC2(cfg->timer)) { |
| LOG_ERR("Cannot set PWM output, capture in progress"); |
| return -EBUSY; |
| } |
| } |
| #endif /* CONFIG_PWM_CAPTURE */ |
| |
| ll_channel = ch2ll[channel - 1u]; |
| |
| if (channel <= ARRAY_SIZE(ch2ll_n)) { |
| negative_ll_channel = ch2ll_n[channel - 1u]; |
| } else { |
| negative_ll_channel = 0; |
| } |
| |
| /* in LL_TIM_CC_DisableChannel and LL_TIM_CC_IsEnabledChannel, |
| * the channel param could be the complementary one |
| */ |
| if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) { |
| if (!negative_ll_channel) { |
| /* setting a flag on a channel that has not this capability */ |
| LOG_ERR("Channel %d has NO complementary output", channel); |
| return -EINVAL; |
| } |
| current_ll_channel = negative_ll_channel; |
| } else { |
| current_ll_channel = ll_channel; |
| } |
| |
| if (period_cycles == 0u) { |
| LL_TIM_CC_DisableChannel(cfg->timer, current_ll_channel); |
| return 0; |
| } |
| |
| if (cfg->countermode == LL_TIM_COUNTERMODE_UP) { |
| /* remove 1 period cycle, accounts for 1 extra low cycle */ |
| period_cycles -= 1U; |
| } else if (cfg->countermode == LL_TIM_COUNTERMODE_DOWN) { |
| /* remove 1 pulse cycle, accounts for 1 extra high cycle */ |
| pulse_cycles -= 1U; |
| /* remove 1 period cycle, accounts for 1 extra low cycle */ |
| period_cycles -= 1U; |
| } else if (is_center_aligned(cfg->countermode)) { |
| pulse_cycles /= 2U; |
| period_cycles /= 2U; |
| } else { |
| return -ENOTSUP; |
| } |
| |
| if (!LL_TIM_CC_IsEnabledChannel(cfg->timer, current_ll_channel)) { |
| LL_TIM_OC_InitTypeDef oc_init; |
| |
| LL_TIM_OC_StructInit(&oc_init); |
| |
| oc_init.OCMode = LL_TIM_OCMODE_PWM1; |
| |
| #if defined(LL_TIM_CHANNEL_CH1N) |
| /* the flags holds the STM32_PWM_COMPLEMENTARY information */ |
| if ((flags & STM32_PWM_COMPLEMENTARY_MASK) == STM32_PWM_COMPLEMENTARY) { |
| oc_init.OCNState = LL_TIM_OCSTATE_ENABLE; |
| oc_init.OCNPolarity = get_polarity(flags); |
| |
| /* inherit the polarity of the positive output */ |
| oc_init.OCState = LL_TIM_CC_IsEnabledChannel(cfg->timer, ll_channel) |
| ? LL_TIM_OCSTATE_ENABLE |
| : LL_TIM_OCSTATE_DISABLE; |
| oc_init.OCPolarity = LL_TIM_OC_GetPolarity(cfg->timer, ll_channel); |
| } else { |
| oc_init.OCState = LL_TIM_OCSTATE_ENABLE; |
| oc_init.OCPolarity = get_polarity(flags); |
| |
| /* inherit the polarity of the negative output */ |
| if (negative_ll_channel) { |
| oc_init.OCNState = |
| LL_TIM_CC_IsEnabledChannel(cfg->timer, negative_ll_channel) |
| ? LL_TIM_OCSTATE_ENABLE |
| : LL_TIM_OCSTATE_DISABLE; |
| oc_init.OCNPolarity = |
| LL_TIM_OC_GetPolarity(cfg->timer, negative_ll_channel); |
| } |
| } |
| #else /* LL_TIM_CHANNEL_CH1N */ |
| |
| oc_init.OCState = LL_TIM_OCSTATE_ENABLE; |
| oc_init.OCPolarity = get_polarity(flags); |
| #endif /* LL_TIM_CHANNEL_CH1N */ |
| oc_init.CompareValue = pulse_cycles; |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| if (IS_TIM_SLAVE_INSTANCE(cfg->timer)) { |
| LL_TIM_SetSlaveMode(cfg->timer, |
| LL_TIM_SLAVEMODE_DISABLED); |
| LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_ITR0); |
| LL_TIM_DisableMasterSlaveMode(cfg->timer); |
| } |
| #endif /* CONFIG_PWM_CAPTURE */ |
| |
| /* in LL_TIM_OC_Init, the channel is always the non-complementary */ |
| if (LL_TIM_OC_Init(cfg->timer, ll_channel, &oc_init) != SUCCESS) { |
| LOG_ERR("Could not initialize timer channel output"); |
| return -EIO; |
| } |
| |
| LL_TIM_EnableARRPreload(cfg->timer); |
| /* in LL_TIM_OC_EnablePreload, the channel is always the non-complementary */ |
| LL_TIM_OC_EnablePreload(cfg->timer, ll_channel); |
| LL_TIM_SetAutoReload(cfg->timer, period_cycles); |
| LL_TIM_GenerateEvent_UPDATE(cfg->timer); |
| } else { |
| /* in LL_TIM_OC_SetPolarity, the channel could be the complementary one */ |
| LL_TIM_OC_SetPolarity(cfg->timer, current_ll_channel, get_polarity(flags)); |
| set_timer_compare[channel - 1u](cfg->timer, pulse_cycles); |
| LL_TIM_SetAutoReload(cfg->timer, period_cycles); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| static int init_capture_channel(const struct device *dev, uint32_t channel, |
| pwm_flags_t flags, uint32_t ll_channel) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| bool is_inverted = (flags & PWM_POLARITY_MASK) == PWM_POLARITY_INVERTED; |
| LL_TIM_IC_InitTypeDef ic; |
| |
| LL_TIM_IC_StructInit(&ic); |
| ic.ICPrescaler = TIM_ICPSC_DIV1; |
| ic.ICFilter = LL_TIM_IC_FILTER_FDIV1; |
| |
| if (ll_channel == LL_TIM_CHANNEL_CH1) { |
| if (channel == 1u) { |
| ic.ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; |
| ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_FALLING |
| : LL_TIM_IC_POLARITY_RISING; |
| } else { |
| ic.ICActiveInput = LL_TIM_ACTIVEINPUT_INDIRECTTI; |
| ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_RISING |
| : LL_TIM_IC_POLARITY_FALLING; |
| } |
| } else { |
| if (channel == 1u) { |
| ic.ICActiveInput = LL_TIM_ACTIVEINPUT_INDIRECTTI; |
| ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_RISING |
| : LL_TIM_IC_POLARITY_FALLING; |
| } else { |
| ic.ICActiveInput = LL_TIM_ACTIVEINPUT_DIRECTTI; |
| ic.ICPolarity = is_inverted ? LL_TIM_IC_POLARITY_FALLING |
| : LL_TIM_IC_POLARITY_RISING; |
| } |
| } |
| |
| if (LL_TIM_IC_Init(cfg->timer, ll_channel, &ic) != SUCCESS) { |
| LOG_ERR("Could not initialize channel for PWM capture"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int pwm_stm32_configure_capture(const struct device *dev, |
| uint32_t channel, pwm_flags_t flags, |
| pwm_capture_callback_handler_t cb, |
| void *user_data) |
| { |
| |
| /* |
| * Capture is implemented using the slave mode controller. |
| * This allows for high accuracy, but only CH1 and CH2 are supported. |
| * Alternatively all channels could be supported with ISR based resets. |
| * This is currently not implemented! |
| */ |
| |
| const struct pwm_stm32_config *cfg = dev->config; |
| struct pwm_stm32_data *data = dev->data; |
| struct pwm_stm32_capture_data *cpt = &data->capture; |
| int ret; |
| |
| if ((channel != 1u) && (channel != 2u)) { |
| LOG_ERR("PWM capture only supported on first two channels"); |
| return -ENOTSUP; |
| } |
| |
| if (LL_TIM_IsEnabledIT_CC1(cfg->timer) |
| || LL_TIM_IsEnabledIT_CC2(cfg->timer)) { |
| LOG_ERR("PWM Capture already in progress"); |
| return -EBUSY; |
| } |
| |
| if (!(flags & PWM_CAPTURE_TYPE_MASK)) { |
| LOG_ERR("No PWM capture type specified"); |
| return -EINVAL; |
| } |
| |
| if (!IS_TIM_SLAVE_INSTANCE(cfg->timer)) { |
| LOG_ERR("Timer does not support slave mode for PWM capture"); |
| return -ENOTSUP; |
| } |
| |
| cpt->callback = cb; /* even if the cb is reset, this is not an error */ |
| cpt->user_data = user_data; |
| cpt->capture_period = (flags & PWM_CAPTURE_TYPE_PERIOD) ? true : false; |
| cpt->capture_pulse = (flags & PWM_CAPTURE_TYPE_PULSE) ? true : false; |
| cpt->continuous = (flags & PWM_CAPTURE_MODE_CONTINUOUS) ? true : false; |
| |
| /* Prevents faulty behavior while making changes */ |
| LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_DISABLED); |
| |
| ret = init_capture_channel(dev, channel, flags, LL_TIM_CHANNEL_CH1); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = init_capture_channel(dev, channel, flags, LL_TIM_CHANNEL_CH2); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (channel == 1u) { |
| LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI1FP1); |
| } else { |
| LL_TIM_SetTriggerInput(cfg->timer, LL_TIM_TS_TI2FP2); |
| } |
| LL_TIM_SetSlaveMode(cfg->timer, LL_TIM_SLAVEMODE_RESET); |
| |
| LL_TIM_EnableARRPreload(cfg->timer); |
| if (!IS_TIM_32B_COUNTER_INSTANCE(cfg->timer)) { |
| LL_TIM_SetAutoReload(cfg->timer, 0xffffu); |
| } else { |
| LL_TIM_SetAutoReload(cfg->timer, 0xffffffffu); |
| } |
| LL_TIM_EnableUpdateEvent(cfg->timer); |
| |
| return 0; |
| } |
| |
| static int pwm_stm32_enable_capture(const struct device *dev, uint32_t channel) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| struct pwm_stm32_data *data = dev->data; |
| |
| if ((channel != 1u) && (channel != 2u)) { |
| LOG_ERR("PWM capture only supported on first two channels"); |
| return -EINVAL; |
| } |
| |
| if (LL_TIM_IsEnabledIT_CC1(cfg->timer) |
| || LL_TIM_IsEnabledIT_CC2(cfg->timer)) { |
| LOG_ERR("PWM capture already active"); |
| return -EBUSY; |
| } |
| |
| if (!data->capture.callback) { |
| LOG_ERR("PWM capture not configured"); |
| return -EINVAL; |
| } |
| |
| data->capture.skip_irq = SKIPPED_PWM_CAPTURES; |
| data->capture.overflows = 0u; |
| LL_TIM_ClearFlag_CC1(cfg->timer); |
| LL_TIM_ClearFlag_CC2(cfg->timer); |
| LL_TIM_ClearFlag_UPDATE(cfg->timer); |
| |
| LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_COUNTER); |
| if (channel == 1u) { |
| LL_TIM_EnableIT_CC1(cfg->timer); |
| } else { |
| LL_TIM_EnableIT_CC2(cfg->timer); |
| } |
| LL_TIM_EnableIT_UPDATE(cfg->timer); |
| LL_TIM_CC_EnableChannel(cfg->timer, LL_TIM_CHANNEL_CH1); |
| LL_TIM_CC_EnableChannel(cfg->timer, LL_TIM_CHANNEL_CH2); |
| |
| return 0; |
| } |
| |
| static int pwm_stm32_disable_capture(const struct device *dev, uint32_t channel) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| |
| if ((channel != 1u) && (channel != 2u)) { |
| LOG_ERR("PWM capture only supported on first two channels"); |
| return -EINVAL; |
| } |
| |
| LL_TIM_SetUpdateSource(cfg->timer, LL_TIM_UPDATESOURCE_REGULAR); |
| if (channel == 1u) { |
| LL_TIM_DisableIT_CC1(cfg->timer); |
| } else { |
| LL_TIM_DisableIT_CC2(cfg->timer); |
| } |
| LL_TIM_DisableIT_UPDATE(cfg->timer); |
| LL_TIM_CC_DisableChannel(cfg->timer, LL_TIM_CHANNEL_CH1); |
| LL_TIM_CC_DisableChannel(cfg->timer, LL_TIM_CHANNEL_CH2); |
| |
| return 0; |
| } |
| |
| static void get_pwm_capture(const struct device *dev, uint32_t channel) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| struct pwm_stm32_data *data = dev->data; |
| struct pwm_stm32_capture_data *cpt = &data->capture; |
| |
| if (channel == 1u) { |
| cpt->period = LL_TIM_IC_GetCaptureCH1(cfg->timer); |
| cpt->pulse = LL_TIM_IC_GetCaptureCH2(cfg->timer); |
| } else { |
| cpt->period = LL_TIM_IC_GetCaptureCH2(cfg->timer); |
| cpt->pulse = LL_TIM_IC_GetCaptureCH1(cfg->timer); |
| } |
| } |
| |
| static void pwm_stm32_isr(const struct device *dev) |
| { |
| const struct pwm_stm32_config *cfg = dev->config; |
| struct pwm_stm32_data *data = dev->data; |
| struct pwm_stm32_capture_data *cpt = &data->capture; |
| int status = 0; |
| uint32_t in_ch = LL_TIM_IsEnabledIT_CC1(cfg->timer) ? 1u : 2u; |
| |
| if (cpt->skip_irq == 0u) { |
| if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) { |
| LL_TIM_ClearFlag_UPDATE(cfg->timer); |
| cpt->overflows++; |
| } |
| |
| if (LL_TIM_IsActiveFlag_CC1(cfg->timer) |
| || LL_TIM_IsActiveFlag_CC2(cfg->timer)) { |
| LL_TIM_ClearFlag_CC1(cfg->timer); |
| LL_TIM_ClearFlag_CC2(cfg->timer); |
| |
| get_pwm_capture(dev, in_ch); |
| |
| if (cpt->overflows) { |
| LOG_ERR("counter overflow during PWM capture"); |
| status = -ERANGE; |
| } |
| |
| if (!cpt->continuous) { |
| pwm_stm32_disable_capture(dev, in_ch); |
| } else { |
| cpt->overflows = 0u; |
| } |
| |
| if (cpt->callback != NULL) { |
| cpt->callback(dev, in_ch, |
| cpt->capture_period ? cpt->period : 0u, |
| cpt->capture_pulse ? cpt->pulse : 0u, |
| status, cpt->user_data); |
| } |
| } |
| } else { |
| if (LL_TIM_IsActiveFlag_UPDATE(cfg->timer)) { |
| LL_TIM_ClearFlag_UPDATE(cfg->timer); |
| } |
| |
| if (LL_TIM_IsActiveFlag_CC1(cfg->timer) |
| || LL_TIM_IsActiveFlag_CC2(cfg->timer)) { |
| LL_TIM_ClearFlag_CC1(cfg->timer); |
| LL_TIM_ClearFlag_CC2(cfg->timer); |
| cpt->skip_irq--; |
| } |
| } |
| } |
| #endif /* CONFIG_PWM_CAPTURE */ |
| |
| static int pwm_stm32_get_cycles_per_sec(const struct device *dev, |
| uint32_t channel, uint64_t *cycles) |
| { |
| struct pwm_stm32_data *data = dev->data; |
| const struct pwm_stm32_config *cfg = dev->config; |
| |
| *cycles = (uint64_t)(data->tim_clk / (cfg->prescaler + 1)); |
| |
| return 0; |
| } |
| |
| static const struct pwm_driver_api pwm_stm32_driver_api = { |
| .set_cycles = pwm_stm32_set_cycles, |
| .get_cycles_per_sec = pwm_stm32_get_cycles_per_sec, |
| #ifdef CONFIG_PWM_CAPTURE |
| .configure_capture = pwm_stm32_configure_capture, |
| .enable_capture = pwm_stm32_enable_capture, |
| .disable_capture = pwm_stm32_disable_capture, |
| #endif /* CONFIG_PWM_CAPTURE */ |
| }; |
| |
| static int pwm_stm32_init(const struct device *dev) |
| { |
| struct pwm_stm32_data *data = dev->data; |
| const struct pwm_stm32_config *cfg = dev->config; |
| |
| int r; |
| const struct device *clk; |
| LL_TIM_InitTypeDef init; |
| |
| /* enable clock and store its speed */ |
| clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); |
| |
| if (!device_is_ready(clk)) { |
| LOG_ERR("clock control device not ready"); |
| return -ENODEV; |
| } |
| |
| r = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken); |
| if (r < 0) { |
| LOG_ERR("Could not initialize clock (%d)", r); |
| return r; |
| } |
| |
| r = get_tim_clk(&cfg->pclken, &data->tim_clk); |
| if (r < 0) { |
| LOG_ERR("Could not obtain timer clock (%d)", r); |
| return r; |
| } |
| |
| /* configure pinmux */ |
| r = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); |
| if (r < 0) { |
| LOG_ERR("PWM pinctrl setup failed (%d)", r); |
| return r; |
| } |
| |
| /* initialize timer */ |
| LL_TIM_StructInit(&init); |
| |
| init.Prescaler = cfg->prescaler; |
| init.CounterMode = cfg->countermode; |
| init.Autoreload = 0u; |
| init.ClockDivision = LL_TIM_CLOCKDIVISION_DIV1; |
| |
| if (LL_TIM_Init(cfg->timer, &init) != SUCCESS) { |
| LOG_ERR("Could not initialize timer"); |
| return -EIO; |
| } |
| |
| #if !defined(CONFIG_SOC_SERIES_STM32L0X) && !defined(CONFIG_SOC_SERIES_STM32L1X) |
| /* enable outputs and counter */ |
| if (IS_TIM_BREAK_INSTANCE(cfg->timer)) { |
| LL_TIM_EnableAllOutputs(cfg->timer); |
| } |
| #endif |
| |
| LL_TIM_EnableCounter(cfg->timer); |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| cfg->irq_config_func(dev); |
| #endif /* CONFIG_PWM_CAPTURE */ |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_PWM_CAPTURE |
| #define IRQ_CONNECT_AND_ENABLE_BY_NAME(index, name) \ |
| { \ |
| IRQ_CONNECT(DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, irq), \ |
| DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, priority), \ |
| pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0); \ |
| irq_enable(DT_IRQ_BY_NAME(DT_INST_PARENT(index), name, irq)); \ |
| } |
| |
| #define IRQ_CONNECT_AND_ENABLE_DEFAULT(index) \ |
| { \ |
| IRQ_CONNECT(DT_IRQN(DT_INST_PARENT(index)), \ |
| DT_IRQ(DT_INST_PARENT(index), priority), \ |
| pwm_stm32_isr, DEVICE_DT_INST_GET(index), 0); \ |
| irq_enable(DT_IRQN(DT_INST_PARENT(index))); \ |
| } |
| |
| #define IRQ_CONFIG_FUNC(index) \ |
| static void pwm_stm32_irq_config_func_##index(const struct device *dev) \ |
| { \ |
| COND_CODE_1(DT_IRQ_HAS_NAME(DT_INST_PARENT(index), cc), \ |
| (IRQ_CONNECT_AND_ENABLE_BY_NAME(index, cc)), \ |
| (IRQ_CONNECT_AND_ENABLE_DEFAULT(index)) \ |
| ); \ |
| } |
| #define CAPTURE_INIT(index) \ |
| .irq_config_func = pwm_stm32_irq_config_func_##index |
| #else |
| #define IRQ_CONFIG_FUNC(index) |
| #define CAPTURE_INIT(index) |
| #endif /* CONFIG_PWM_CAPTURE */ |
| |
| #define DT_INST_CLK(index, inst) \ |
| { \ |
| .bus = DT_CLOCKS_CELL(DT_INST_PARENT(index), bus), \ |
| .enr = DT_CLOCKS_CELL(DT_INST_PARENT(index), bits) \ |
| } |
| |
| #define PWM_DEVICE_INIT(index) \ |
| static struct pwm_stm32_data pwm_stm32_data_##index; \ |
| IRQ_CONFIG_FUNC(index) \ |
| \ |
| PINCTRL_DT_INST_DEFINE(index); \ |
| \ |
| static const struct pwm_stm32_config pwm_stm32_config_##index = { \ |
| .timer = (TIM_TypeDef *)DT_REG_ADDR(DT_INST_PARENT(index)), \ |
| .prescaler = DT_PROP(DT_INST_PARENT(index), st_prescaler), \ |
| .countermode = DT_PROP(DT_INST_PARENT(index), st_countermode), \ |
| .pclken = DT_INST_CLK(index, timer), \ |
| .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ |
| CAPTURE_INIT(index) \ |
| }; \ |
| \ |
| DEVICE_DT_INST_DEFINE(index, &pwm_stm32_init, NULL, \ |
| &pwm_stm32_data_##index, \ |
| &pwm_stm32_config_##index, POST_KERNEL, \ |
| CONFIG_PWM_INIT_PRIORITY, \ |
| &pwm_stm32_driver_api); |
| |
| DT_INST_FOREACH_STATUS_OKAY(PWM_DEVICE_INIT) |