blob: dcf795b134f53a868ffbacd4ed7c5cd23e7c35aa [file] [log] [blame]
/**
* @file smp.c
* Security Manager Protocol implementation
*/
/*
* Copyright (c) 2015 Intel Corporation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nanokernel.h>
#include <arch/cpu.h>
#include <stddef.h>
#include <errno.h>
#include <string.h>
#include <misc/util.h>
#include <bluetooth/hci.h>
#include <bluetooth/bluetooth.h>
#include "hci_core.h"
#include "keys.h"
#include "conn.h"
#include "l2cap.h"
#include "smp.h"
/* SMP channel specific context */
struct bt_smp {
/* The connection this context is associated with */
struct bt_conn *conn;
/* Pairing Request PDU */
uint8_t preq[7];
/* Pairing Response PDU */
uint8_t prsp[7];
/* Pairing Confirm PDU */
uint8_t pcnf[16];
/* Local random number */
uint8_t prnd[16];
/* Remote random number */
uint8_t rrnd[16];
/* Temporary key */
uint8_t tk[16];
/* Local key distribution */
uint8_t local_dist;
};
static struct bt_smp bt_smp_pool[CONFIG_BLUETOOTH_MAX_CONN];
#if defined(CONFIG_BLUETOOTH_DEBUG_SMP)
/* Helper for printk parameters to convert from binary to hex.
* We declare multiple buffers so the helper can be used multiple times
* in a single printk call.
*/
static const char *h(const void *buf, size_t len)
{
static const char hex[] = "0123456789abcdef";
static char hexbufs[4][129];
static uint8_t curbuf;
const uint8_t *b = buf;
char *str;
int i;
str = hexbufs[curbuf++];
curbuf %= ARRAY_SIZE(hexbufs);
len = min(len, (sizeof(hexbufs[0]) - 1) / 2);
for (i = 0; i < len; i++) {
str[i * 2] = hex[b[i] >> 4];
str[i * 2 + 1] = hex[b[i] & 0xf];
}
str[i * 2] = '\0';
return str;
}
#else
#undef BT_DBG
#define BT_DBG(fmt, ...)
#endif
typedef struct {
uint64_t a;
uint64_t b;
} uint128_t;
static void xor_128(const uint128_t *p, const uint128_t *q, uint128_t *r)
{
r->a = p->a ^ q->a;
r->b = p->b ^ q->b;
}
static int le_encrypt(const uint8_t key[16], const uint8_t plaintext[16],
uint8_t enc_data[16])
{
struct bt_hci_cp_le_encrypt *cp;
struct bt_hci_rp_le_encrypt *rp;
struct bt_buf *buf, *rsp;
int err;
BT_DBG("key %s plaintext %s\n", h(key, 16), h(plaintext, 16));
buf = bt_hci_cmd_create(BT_HCI_OP_LE_ENCRYPT, sizeof(*cp));
if (!buf) {
return -ENOBUFS;
}
cp = bt_buf_add(buf, sizeof(*cp));
memcpy(cp->key, key, sizeof(cp->key));
memcpy(cp->plaintext, plaintext, sizeof(cp->plaintext));
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_ENCRYPT, buf, &rsp);
if (err) {
return err;
}
rp = (void *)rsp->data;
memcpy(enc_data, rp->enc_data, sizeof(rp->enc_data));
bt_buf_put(rsp);
BT_DBG("enc_data %s\n", h(enc_data, 16));
return 0;
}
static int le_rand(void *buf, size_t len)
{
uint8_t *ptr = buf;
while (len > 0) {
struct bt_hci_rp_le_rand *rp;
struct bt_buf *rsp;
size_t copy;
int err;
err = bt_hci_cmd_send_sync(BT_HCI_OP_LE_RAND, NULL, &rsp);
if (err) {
BT_ERR("HCI_LE_Random failed (%d)\n", err);
return err;
}
rp = (void *)rsp->data;
copy = min(len, sizeof(rp->rand));
memcpy(ptr, rp->rand, copy);
bt_buf_put(rsp);
len -= copy;
ptr += copy;
}
return 0;
}
static int smp_c1(const uint8_t k[16], const uint8_t r[16],
const uint8_t preq[7], const uint8_t pres[7],
const bt_addr_le_t *ia, const bt_addr_le_t *ra,
uint8_t enc_data[16])
{
uint8_t p1[16], p2[16];
int err;
BT_DBG("k %s r %s\n", h(k, 16), h(r, 16));
BT_DBG("ia %s ra %s\n", bt_addr_le_str(ia), bt_addr_le_str(ra));
BT_DBG("preq %s pres %s\n", h(preq, 7), h(pres, 7));
/* pres, preq, rat and iat are concatenated to generate p1 */
p1[0] = ia->type;
p1[1] = ra->type;
memcpy(p1 + 2, preq, 7);
memcpy(p1 + 9, pres, 7);
BT_DBG("p1 %s\n", h(p1, 16));
/* c1 = e(k, e(k, r XOR p1) XOR p2) */
/* Using enc_data as temporary output buffer */
xor_128((uint128_t *)r, (uint128_t *)p1, (uint128_t *)enc_data);
err = le_encrypt(k, enc_data, enc_data);
if (err) {
return err;
}
/* ra is concatenated with ia and padding to generate p2 */
memcpy(p2, ra->val, 6);
memcpy(p2 + 6, ia->val, 6);
memset(p2 + 12, 0, 4);
BT_DBG("p2 %s\n", h(p2, 16));
xor_128((uint128_t *)enc_data, (uint128_t *)p2, (uint128_t *)enc_data);
return le_encrypt(k, enc_data, enc_data);
}
static int smp_s1(const uint8_t k[16], const uint8_t r1[16],
const uint8_t r2[16], uint8_t out[16])
{
/* The most significant 64-bits of r1 are discarded to generate
* r1' and the most significant 64-bits of r2 are discarded to
* generate r2'.
* r1' is concatenated with r2' to generate r' which is used as
* the 128-bit input parameter plaintextData to security function e:
*
* r' = r1' || r2'
*/
memcpy(out, r2, 8);
memcpy(out + 8, r1, 8);
/* s1(k, r1 , r2) = e(k, r') */
return le_encrypt(k, out, out);
}
struct bt_buf *bt_smp_create_pdu(struct bt_conn *conn, uint8_t op, size_t len)
{
struct bt_smp_hdr *hdr;
struct bt_buf *buf;
buf = bt_l2cap_create_pdu(conn);
if (!buf) {
return NULL;
}
hdr = bt_buf_add(buf, sizeof(*hdr));
hdr->code = op;
return buf;
}
static void send_err_rsp(struct bt_conn *conn, uint8_t reason)
{
struct bt_smp_pairing_fail *rsp;
struct bt_buf *buf;
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_FAIL, sizeof(*rsp));
if (!buf) {
return;
}
rsp = bt_buf_add(buf, sizeof(*rsp));
rsp->reason = reason;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
static int smp_init(struct bt_smp *smp)
{
/* Initialize SMP context */
memset(smp, 0, sizeof(*smp));
/* Generate local random number */
if (le_rand(smp->prnd, 16)) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("prnd %s\n", h(smp->prnd, 16));
return 0;
}
static int smp_pairing_req(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing *req = (void *)buf->data;
struct bt_smp_pairing *rsp;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
uint8_t auth;
int ret;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
if ((req->max_key_size > BT_SMP_MAX_ENC_KEY_SIZE) ||
(req->max_key_size < BT_SMP_MIN_ENC_KEY_SIZE)) {
return BT_SMP_ERR_ENC_KEY_SIZE;
}
ret = smp_init(smp);
if (ret) {
return ret;
}
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RSP, sizeof(*rsp));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
/* For JustWorks pairing simplify rsp parameters.
* TODO: needs to be reworked later on
*/
auth = (req->auth_req & BT_SMP_AUTH_MASK);
auth &= ~(BT_SMP_AUTH_MITM | BT_SMP_AUTH_SC | BT_SMP_AUTH_KEYPRESS);
rsp->auth_req = auth;
rsp->io_capability = BT_SMP_IO_NO_INPUT_OUTPUT;
rsp->oob_flag = BT_SMP_OOB_NOT_PRESENT;
rsp->max_key_size = req->max_key_size;
rsp->init_key_dist = 0;
rsp->resp_key_dist = (req->resp_key_dist & BT_SMP_DIST_ENC_KEY);
smp->local_dist = rsp->resp_key_dist;
memset(smp->tk, 0, sizeof(smp->tk));
/* Store req/rsp for later use */
smp->preq[0] = BT_SMP_CMD_PAIRING_REQ;
memcpy(smp->preq + 1, req, sizeof(*req));
smp->prsp[0] = BT_SMP_CMD_PAIRING_RSP;
memcpy(smp->prsp + 1, rsp, sizeof(*rsp));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static int smp_pairing_confirm(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_confirm *req = (void *)buf->data;
struct bt_smp_pairing_confirm *rsp;
struct bt_smp *smp = conn->smp;
struct bt_buf *rsp_buf;
int err;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
memcpy(smp->pcnf, req->val, sizeof(smp->pcnf));
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_CONFIRM,
sizeof(*rsp));
if (!rsp_buf) {
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
/* FIXME: Right now we assume peripheral role for ia & ra */
err = smp_c1(smp->tk, smp->prnd, smp->preq, smp->prsp, &conn->dst,
&conn->src, rsp->val);
if (err) {
bt_buf_put(rsp_buf);
return BT_SMP_ERR_UNSPECIFIED;
}
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static int smp_pairing_random(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_pairing_random *req = (void *)buf->data;
struct bt_smp_pairing_random *rsp;
struct bt_buf *rsp_buf;
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
uint8_t cfm[16];
int err;
BT_DBG("\n");
if (buf->len != sizeof(*req)) {
return BT_SMP_ERR_INVALID_PARAMS;
}
memcpy(smp->rrnd, req->val, sizeof(smp->rrnd));
/* FIXME: Right now we assume peripheral role for ia & ra */
err = smp_c1(smp->tk, smp->rrnd, smp->preq, smp->prsp, &conn->dst,
&conn->src, cfm);
if (err) {
return BT_SMP_ERR_UNSPECIFIED;
}
BT_DBG("pcnf %s cfm %s\n", h(smp->pcnf, 16), h(cfm, 16));
if (memcmp(smp->pcnf, cfm, sizeof(smp->pcnf))) {
return BT_SMP_ERR_CONFIRM_FAILED;
}
keys = bt_keys_create(&conn->dst);
if (!keys) {
BT_ERR("Unable to create new keys\n");
return BT_SMP_ERR_UNSPECIFIED;
}
err = smp_s1(smp->tk, smp->prnd, smp->rrnd, keys->slave_ltk.val);
if (err) {
bt_keys_clear(keys);
return BT_SMP_ERR_UNSPECIFIED;
}
/* Rand and EDiv are 0 for the STK */
keys->slave_ltk.rand = 0;
keys->slave_ltk.ediv = 0;
BT_DBG("generated STK %s\n", h(keys->slave_ltk.val, 16));
rsp_buf = bt_smp_create_pdu(conn, BT_SMP_CMD_PAIRING_RANDOM,
sizeof(*rsp));
if (!rsp_buf) {
bt_keys_clear(keys);
return BT_SMP_ERR_UNSPECIFIED;
}
rsp = bt_buf_add(rsp_buf, sizeof(*rsp));
memcpy(rsp->val, smp->prnd, sizeof(rsp->val));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, rsp_buf);
return 0;
}
static void bt_smp_recv(struct bt_conn *conn, struct bt_buf *buf)
{
struct bt_smp_hdr *hdr = (void *)buf->data;
int err;
if (buf->len < sizeof(*hdr)) {
BT_ERR("Too small SMP PDU received\n");
goto done;
}
BT_DBG("Received SMP code 0x%02x len %u\n", hdr->code, buf->len);
bt_buf_pull(buf, sizeof(*hdr));
switch (hdr->code) {
case BT_SMP_CMD_PAIRING_REQ:
err = smp_pairing_req(conn, buf);
break;
case BT_SMP_CMD_PAIRING_CONFIRM:
err = smp_pairing_confirm(conn, buf);
break;
case BT_SMP_CMD_PAIRING_RANDOM:
err = smp_pairing_random(conn, buf);
break;
default:
BT_WARN("Unhandled SMP code 0x%02x\n", hdr->code);
err = BT_SMP_ERR_CMD_NOTSUPP;
break;
}
if (err) {
send_err_rsp(conn, err);
}
done:
bt_buf_put(buf);
}
static void bt_smp_connected(struct bt_conn *conn)
{
int i;
BT_DBG("conn %p handle %u\n", conn, conn->handle);
for (i = 0; i < ARRAY_SIZE(bt_smp_pool); i++) {
struct bt_smp *smp = &bt_smp_pool[i];
if (!smp->conn) {
smp->conn = conn;
conn->smp = smp;
return;
}
}
BT_ERR("No available SMP context for conn %p\n", conn);
}
static void bt_smp_disconnected(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
if (!smp) {
return;
}
BT_DBG("conn %p handle %u\n", conn, conn->handle);
conn->smp = NULL;
memset(smp, 0, sizeof(*smp));
}
static void bt_smp_encrypt_change(struct bt_conn *conn)
{
struct bt_smp *smp = conn->smp;
struct bt_keys *keys;
struct bt_buf *buf;
BT_DBG("conn %p handle %u encrypt 0x%02x\n", conn, conn->handle,
conn->encrypt);
if (!smp || !conn->encrypt) {
return;
}
keys = bt_keys_find(&conn->dst);
if (!keys) {
BT_ERR("Unable to look up keys for conn %p\n", conn);
return;
}
if (!smp->local_dist) {
return;
}
if (smp->local_dist & BT_SMP_DIST_ENC_KEY) {
struct bt_smp_encrypt_info *info;
struct bt_smp_master_ident *ident;
le_rand(keys->slave_ltk.val, sizeof(keys->slave_ltk.val));
le_rand(&keys->slave_ltk.rand, sizeof(keys->slave_ltk.rand));
le_rand(&keys->slave_ltk.ediv, sizeof(keys->slave_ltk.ediv));
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_ENCRYPT_INFO,
sizeof(*info));
if (!buf) {
BT_ERR("Unable to allocate Encrypt Info buffer\n");
return;
}
info = bt_buf_add(buf, sizeof(*info));
memcpy(info->ltk, keys->slave_ltk.val, sizeof(info->ltk));
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
buf = bt_smp_create_pdu(conn, BT_SMP_CMD_MASTER_IDENT,
sizeof(*ident));
if (!buf) {
BT_ERR("Unable to allocate Master Ident buffer\n");
return;
}
ident = bt_buf_add(buf, sizeof(*ident));
ident->rand = keys->slave_ltk.rand;
ident->ediv = keys->slave_ltk.ediv;
bt_l2cap_send(conn, BT_L2CAP_CID_SMP, buf);
}
}
void bt_smp_init(void)
{
static struct bt_l2cap_chan chan = {
.cid = BT_L2CAP_CID_SMP,
.recv = bt_smp_recv,
.connected = bt_smp_connected,
.disconnected = bt_smp_disconnected,
.encrypt_change = bt_smp_encrypt_change,
};
bt_l2cap_chan_register(&chan);
}