| /* |
| * Copyright (c) 2020 Intel Corporation |
| * |
| * SPDX-License-Identifier: Apache-2.0 |
| */ |
| |
| #include <drivers/timer/system_timer.h> |
| #include <sys_clock.h> |
| #include <spinlock.h> |
| #include <arch/xtensa/xtensa_rtos.h> |
| |
| /** |
| * @file |
| * @brief CAVS DSP Wall Clock Timer driver |
| * |
| * The CAVS DSP on Intel SoC has a timer with one counter and two compare |
| * registers that is external to the CPUs. This timer is accessible from |
| * all available CPU cores and provides a synchronized timer under SMP. |
| */ |
| |
| #define TIMER 0 |
| #define TIMER_IRQ DSP_WCT_IRQ(TIMER) |
| #define CYC_PER_TICK (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC \ |
| / CONFIG_SYS_CLOCK_TICKS_PER_SEC) |
| #define MAX_CYC 0xFFFFFFFFUL |
| #define MAX_TICKS ((MAX_CYC - CYC_PER_TICK) / CYC_PER_TICK) |
| #define MIN_DELAY (CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / 100000) |
| |
| BUILD_ASSERT(MIN_DELAY < CYC_PER_TICK); |
| |
| static struct k_spinlock lock; |
| static uint64_t last_count; |
| |
| static volatile struct soc_dsp_shim_regs *shim_regs = |
| (volatile struct soc_dsp_shim_regs *)SOC_DSP_SHIM_REG_BASE; |
| |
| static void set_compare(uint64_t time) |
| { |
| /* Disarm the comparator to prevent spurious triggers */ |
| shim_regs->dspwctcs &= ~DSP_WCT_CS_TA(TIMER); |
| |
| #if (TIMER == 0) |
| /* Set compare register */ |
| shim_regs->dspwct0c = time; |
| #elif (TIMER == 1) |
| /* Set compare register */ |
| shim_regs->dspwct1c = time; |
| #else |
| #error "TIMER has to be 0 or 1!" |
| #endif |
| |
| /* Arm the timer */ |
| shim_regs->dspwctcs |= DSP_WCT_CS_TA(TIMER); |
| } |
| |
| static uint64_t count(void) |
| { |
| /* The count register is 64 bits, but we're a 32 bit CPU that |
| * can only read four bytes at a time, so a bit of care is |
| * needed to prevent racing against a wraparound of the low |
| * word. Wrap the low read between two reads of the high word |
| * and make sure it didn't change. |
| */ |
| volatile uint32_t *wc = (void *)&shim_regs->walclk; |
| uint32_t hi0, hi1, lo; |
| |
| do { |
| hi0 = wc[1]; |
| lo = wc[0]; |
| hi1 = wc[1]; |
| } while (hi0 != hi1); |
| |
| return (((uint64_t)hi0) << 32) | lo; |
| } |
| |
| static uint32_t count32(void) |
| { |
| return shim_regs->walclk32_lo; |
| } |
| |
| static void compare_isr(const void *arg) |
| { |
| ARG_UNUSED(arg); |
| uint64_t curr; |
| uint32_t dticks; |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| |
| curr = count(); |
| |
| #ifdef CONFIG_SMP |
| /* If it has been too long since last_count, |
| * this interrupt is likely the same interrupt |
| * event but being processed by another CPU. |
| * Since it has already been processed and |
| * ticks announced, skip it. |
| */ |
| if ((count32() - (uint32_t)last_count) < MIN_DELAY) { |
| k_spin_unlock(&lock, key); |
| return; |
| } |
| #endif |
| |
| dticks = (uint32_t)((curr - last_count) / CYC_PER_TICK); |
| |
| /* Clear the triggered bit */ |
| shim_regs->dspwctcs |= DSP_WCT_CS_TT(TIMER); |
| |
| last_count += dticks * CYC_PER_TICK; |
| |
| #ifndef CONFIG_TICKLESS_KERNEL |
| uint64_t next = last_count + CYC_PER_TICK; |
| |
| if ((int64_t)(next - curr) < MIN_DELAY) { |
| next += CYC_PER_TICK; |
| } |
| set_compare(next); |
| #endif |
| |
| k_spin_unlock(&lock, key); |
| |
| z_clock_announce(dticks); |
| } |
| |
| int z_clock_driver_init(const struct device *device) |
| { |
| uint64_t curr = count(); |
| |
| IRQ_CONNECT(TIMER_IRQ, 0, compare_isr, 0, 0); |
| set_compare(curr + CYC_PER_TICK); |
| last_count = curr; |
| irq_enable(TIMER_IRQ); |
| return 0; |
| } |
| |
| void z_clock_set_timeout(int32_t ticks, bool idle) |
| { |
| ARG_UNUSED(idle); |
| |
| #ifdef CONFIG_TICKLESS_KERNEL |
| ticks = ticks == K_TICKS_FOREVER ? MAX_TICKS : ticks; |
| ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS); |
| |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint64_t curr = count(); |
| uint64_t next; |
| uint32_t adj, cyc = ticks * CYC_PER_TICK; |
| |
| /* Round up to next tick boundary */ |
| adj = (uint32_t)(curr - last_count) + (CYC_PER_TICK - 1); |
| if (cyc <= MAX_CYC - adj) { |
| cyc += adj; |
| } else { |
| cyc = MAX_CYC; |
| } |
| cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; |
| next = last_count + cyc; |
| |
| if (((uint32_t)next - (uint32_t)curr) < MIN_DELAY) { |
| next += CYC_PER_TICK; |
| } |
| |
| set_compare(next); |
| k_spin_unlock(&lock, key); |
| #endif |
| } |
| |
| uint32_t z_clock_elapsed(void) |
| { |
| if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { |
| return 0; |
| } |
| k_spinlock_key_t key = k_spin_lock(&lock); |
| uint32_t ret = (count32() - (uint32_t)last_count) / CYC_PER_TICK; |
| |
| k_spin_unlock(&lock, key); |
| return ret; |
| } |
| |
| uint32_t z_timer_cycle_get_32(void) |
| { |
| return count32(); |
| } |
| |
| #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 |
| void smp_timer_init(void) |
| { |
| /* This enables the Timer 0 (or 1) interrupt for CPU n. |
| * |
| * FIXME: Done in this way because we don't have an API |
| * to enable interrupts per CPU. |
| */ |
| sys_set_bit(DT_REG_ADDR(DT_NODELABEL(cavs0)) |
| + CAVS_ICTL_INT_CPU_OFFSET(arch_curr_cpu()->id) |
| + 0x04, |
| 22 + TIMER); |
| irq_enable(XTENSA_IRQ_NUMBER(TIMER_IRQ)); |
| } |
| #endif |