blob: bac005be7d12f53df3c856abe2cf3449cd5947c7 [file] [log] [blame]
/* Copyright (c) 2022 Google, LLC.
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/kernel.h>
#include <string.h>
#include <zephyr/irq.h>
#include <zephyr/toolchain.h>
#include <irq_ctrl.h>
#if defined(CONFIG_BOARD_NATIVE_SIM)
#include <nsi_cpu_if.h>
#include <nsi_main_semipublic.h>
#else
#error "Platform not supported"
#endif
/* Fuzz testing is coverage-based, so we want to hide a failure case
* (a write through a null pointer in this case) down inside a call
* tree in such a way that it would be very unlikely to be found by
* randomly-selected input. But the fuzzer can still find it in
* linear(-ish) time by discovering each new function along the way
* and then probing that new space. The 1 in 2^56 case here would
* require months-to-years of work for a large datacenter, but the
* fuzzer gets it in 20 seconds or so. This requires that the code for
* each case be distinguishable/instrumentable though, which is why we
* generate the recursive handler functions this way and disable
* inlining to prevent optimization.
*/
int *global_null_ptr;
static const uint8_t key[] = { 0x9e, 0x21, 0x0c, 0x18, 0x9d, 0xd1, 0x7d };
bool found[ARRAY_SIZE(key)];
#define LASTKEY (ARRAY_SIZE(key) - 1)
#define GEN_CHECK(cur, nxt) \
void check##nxt(const uint8_t *data, size_t sz); \
void __noinline check##cur(const uint8_t *data, size_t sz) \
{ \
if (cur < sz && data[cur] == key[cur]) { \
if (!found[cur]) { \
printk("#\n# Found key %d\n#\n", cur); \
found[cur] = true; \
} \
if (cur == LASTKEY) { \
*global_null_ptr = 0; /* boom! */ \
} else { \
check##nxt(data, sz); \
} \
} \
}
GEN_CHECK(0, 1)
GEN_CHECK(1, 2)
GEN_CHECK(2, 3)
GEN_CHECK(3, 4)
GEN_CHECK(4, 5)
GEN_CHECK(5, 6)
GEN_CHECK(6, 0)
/* Fuzz input received from LLVM via "interrupt" */
static const uint8_t *fuzz_buf;
static size_t fuzz_sz;
K_SEM_DEFINE(fuzz_sem, 0, K_SEM_MAX_LIMIT);
static void fuzz_isr(const void *arg)
{
/* We could call check0() to execute the fuzz case here, but
* pass it through to the main thread instead to get more OS
* coverage.
*/
k_sem_give(&fuzz_sem);
}
int main(void)
{
printk("Hello World! %s\n", CONFIG_BOARD);
IRQ_CONNECT(CONFIG_ARCH_POSIX_FUZZ_IRQ, 0, fuzz_isr, NULL, 0);
irq_enable(CONFIG_ARCH_POSIX_FUZZ_IRQ);
while (true) {
k_sem_take(&fuzz_sem, K_FOREVER);
/* Execute the fuzz case we got from LLVM and passed
* through an interrupt to this thread.
*/
check0(fuzz_buf, fuzz_sz);
}
return 0;
}
/**
* Entry point for fuzzing. Works by placing the data
* into two known symbols, triggering an app-visible interrupt, and
* then letting the simulator run for a fixed amount of time (intended to be
* "long enough" to handle the event and reach a quiescent state
* again)
*/
#if defined(CONFIG_BOARD_NATIVE_SIM)
NATIVE_SIMULATOR_IF /* We expose this function to the final runner link stage*/
#endif
int LLVMFuzzerTestOneInput(const uint8_t *data, size_t sz)
{
static bool runner_initialized;
if (!runner_initialized) {
nsi_init(0, NULL);
runner_initialized = true;
}
/* Provide the fuzz data to the embedded OS as an interrupt, with
* "DMA-like" data placed into native_fuzz_buf/sz
*/
fuzz_buf = (void *)data;
fuzz_sz = sz;
hw_irq_ctrl_set_irq(CONFIG_ARCH_POSIX_FUZZ_IRQ);
/* Give the OS time to process whatever happened in that
* interrupt and reach an idle state.
*/
nsi_exec_for(k_ticks_to_us_ceil64(CONFIG_ARCH_POSIX_FUZZ_TICKS));
return 0;
}