blob: a61d55ca7057ee3c96fe146c1184176a507bd302 [file] [log] [blame]
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief New thread creation for ARM Cortex-M
*
* Core thread related primitives for the ARM Cortex-M processor architecture.
*/
#include <kernel.h>
#include <toolchain.h>
#include <kernel_structs.h>
#include <wait_q.h>
#ifdef CONFIG_USERSPACE
extern u8_t *z_priv_stack_find(void *obj);
#endif
/**
*
* @brief Initialize a new thread from its stack space
*
* The control structure (thread) is put at the lower address of the stack. An
* initial context, to be "restored" by __pendsv(), is put at the other end of
* the stack, and thus reusable by the stack when not needed anymore.
*
* The initial context is an exception stack frame (ESF) since exiting the
* PendSV exception will want to pop an ESF. Interestingly, even if the lsb of
* an instruction address to jump to must always be set since the CPU always
* runs in thumb mode, the ESF expects the real address of the instruction,
* with the lsb *not* set (instructions are always aligned on 16 bit halfwords).
* Since the compiler automatically sets the lsb of function addresses, we have
* to unset it manually before storing it in the 'pc' field of the ESF.
*
* <options> is currently unused.
*
* @param stack pointer to the aligned stack memory
* @param stackSize size of the available stack memory in bytes
* @param pEntry the entry point
* @param parameter1 entry point to the first param
* @param parameter2 entry point to the second param
* @param parameter3 entry point to the third param
* @param priority thread priority
* @param options thread options: K_ESSENTIAL, K_FP_REGS
*
* @return N/A
*/
void z_new_thread(struct k_thread *thread, k_thread_stack_t *stack,
size_t stackSize, k_thread_entry_t pEntry,
void *parameter1, void *parameter2, void *parameter3,
int priority, unsigned int options)
{
char *pStackMem = Z_THREAD_STACK_BUFFER(stack);
char *stackEnd;
/* Offset between the top of stack and the high end of stack area. */
u32_t top_of_stack_offset = 0U;
Z_ASSERT_VALID_PRIO(priority, pEntry);
#if defined(CONFIG_USERSPACE)
/* Truncate the stack size to align with the MPU region granularity.
* This is done proactively to account for the case when the thread
* switches to user mode (thus, its stack area will need to be MPU-
* programmed to be assigned unprivileged RW access permission).
*/
stackSize &= ~(CONFIG_ARM_MPU_REGION_MIN_ALIGN_AND_SIZE - 1);
#ifdef CONFIG_THREAD_USERSPACE_LOCAL_DATA
/* Reserve space on top of stack for local data. */
u32_t p_local_data = STACK_ROUND_DOWN(pStackMem + stackSize
- sizeof(*thread->userspace_local_data));
thread->userspace_local_data =
(struct _thread_userspace_local_data *)(p_local_data);
/* Top of actual stack must be moved below the user local data. */
top_of_stack_offset = (u32_t)
(pStackMem + stackSize - ((char *)p_local_data));
#endif /* CONFIG_THREAD_USERSPACE_LOCAL_DATA */
#endif /* CONFIG_USERSPACE */
#if CONFIG_MPU_REQUIRES_POWER_OF_TWO_ALIGNMENT && CONFIG_USERSPACE
/* This is required to work-around the case where the thread
* is created without using K_THREAD_STACK_SIZEOF() macro in
* k_thread_create(). If K_THREAD_STACK_SIZEOF() is used, the
* Guard size has already been take out of stackSize.
*/
stackSize -= MPU_GUARD_ALIGN_AND_SIZE;
#endif
stackEnd = pStackMem + stackSize;
struct __esf *pInitCtx;
z_new_thread_init(thread, pStackMem, stackSize, priority,
options);
/* carve the thread entry struct from the "base" of the stack */
pInitCtx = (struct __esf *)(STACK_ROUND_DOWN(stackEnd -
(char *)top_of_stack_offset - sizeof(struct __esf)));
#if CONFIG_USERSPACE
if ((options & K_USER) != 0) {
pInitCtx->pc = (u32_t)z_arch_user_mode_enter;
} else {
pInitCtx->pc = (u32_t)z_thread_entry;
}
#else
pInitCtx->pc = (u32_t)z_thread_entry;
#endif
/* force ARM mode by clearing LSB of address */
pInitCtx->pc &= 0xfffffffe;
pInitCtx->a1 = (u32_t)pEntry;
pInitCtx->a2 = (u32_t)parameter1;
pInitCtx->a3 = (u32_t)parameter2;
pInitCtx->a4 = (u32_t)parameter3;
pInitCtx->xpsr =
0x01000000UL; /* clear all, thumb bit is 1, even if RO */
#ifdef CONFIG_FLOAT
pInitCtx->fpscr = (u32_t)0; /* clears FPU status/control register*/
#endif
thread->callee_saved.psp = (u32_t)pInitCtx;
thread->arch.basepri = 0;
#if CONFIG_USERSPACE
thread->arch.mode = 0;
thread->arch.priv_stack_start = 0;
#endif
/* swap_return_value can contain garbage */
/*
* initial values in all other registers/thread entries are
* irrelevant.
*/
}
#ifdef CONFIG_USERSPACE
FUNC_NORETURN void z_arch_user_mode_enter(k_thread_entry_t user_entry,
void *p1, void *p2, void *p3)
{
/* Set up privileged stack before entering user mode */
_current->arch.priv_stack_start =
(u32_t)z_priv_stack_find(_current->stack_obj);
z_arm_userspace_enter(user_entry, p1, p2, p3,
(u32_t)_current->stack_info.start,
_current->stack_info.size);
CODE_UNREACHABLE;
}
#endif
#if defined(CONFIG_BUILTIN_STACK_GUARD)
/*
* @brief Configure ARM built-in stack guard
*
* This function configures per thread stack guards by reprogramming
* the built-in Process Stack Pointer Limit Register (PSPLIM).
* The functionality is meant to be used during context switch.
*
* @param thread thread info data structure.
*/
void configure_builtin_stack_guard(struct k_thread *thread)
{
#if defined(CONFIG_USERSPACE)
if ((thread->arch.mode & CONTROL_nPRIV_Msk) != 0) {
/* Only configure stack limit for threads in privileged mode
* (i.e supervisor threads or user threads doing system call).
* User threads executing in user mode do not require a stack
* limit protection.
*/
return;
}
u32_t guard_start = thread->arch.priv_stack_start ?
(u32_t)thread->arch.priv_stack_start :
(u32_t)thread->stack_obj;
__ASSERT(thread->stack_info.start == ((u32_t)thread->stack_obj),
"stack_info.start does not point to the start of the"
"thread allocated area.");
#else
u32_t guard_start = thread->stack_info.start;
#endif
#if defined(CONFIG_CPU_CORTEX_M_HAS_SPLIM)
__set_PSPLIM(guard_start);
#else
#error "Built-in PSP limit checks not supported by HW"
#endif
}
#endif /* CONFIG_BUILTIN_STACK_GUARD */
#if defined(CONFIG_MPU_STACK_GUARD) || defined(CONFIG_USERSPACE)
#define IS_MPU_GUARD_VIOLATION(guard_start, fault_addr, stack_ptr) \
(fault_addr == -EINVAL) ? \
((fault_addr >= guard_start) && \
(fault_addr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE)) && \
(stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE))) \
: \
(stack_ptr < (guard_start + MPU_GUARD_ALIGN_AND_SIZE))
/**
* @brief Assess occurrence of current thread's stack corruption
*
* This function performs an assessment whether a memory fault (on a
* given memory address) is the result of stack memory corruption of
* the current thread.
*
* Thread stack corruption for supervisor threads or user threads in
* privilege mode (when User Space is supported) is reported upon an
* attempt to access the stack guard area (if MPU Stack Guard feature
* is supported). Additionally the current PSP (process stack pointer)
* must be pointing inside or below the guard area.
*
* Thread stack corruption for user threads in user mode is reported,
* if the current PSP is pointing below the start of the current
* thread's stack.
*
* Notes:
* - we assume a fully descending stack,
* - we assume a stacking error has occurred,
* - the function shall be called when handling MemManage and Bus fault,
* and only if a Stacking error has been reported.
*
* If stack corruption is detected, the function returns the lowest
* allowed address where the Stack Pointer can safely point to, to
* prevent from errors when un-stacking the corrupted stack frame
* upon exception return.
*
* @param fault_addr memory address on which memory access violation
* has been reported. It can be invalid (-EINVAL),
* if only Stacking error has been reported.
* @param psp current address the PSP points to
*
* @return The lowest allowed stack frame pointer, if error is a
* thread stack corruption, otherwise return 0.
*/
u32_t z_check_thread_stack_fail(const u32_t fault_addr, const u32_t psp)
{
const struct k_thread *thread = _current;
if (!thread) {
return 0;
}
#if defined(CONFIG_USERSPACE)
if (thread->arch.priv_stack_start) {
/* User thread */
if ((__get_CONTROL() & CONTROL_nPRIV_Msk) == 0) {
/* User thread in privilege mode */
if (IS_MPU_GUARD_VIOLATION(
thread->arch.priv_stack_start,
fault_addr, psp)) {
/* Thread's privilege stack corruption */
return thread->arch.priv_stack_start +
MPU_GUARD_ALIGN_AND_SIZE;
}
} else {
if (psp < (u32_t)thread->stack_obj) {
/* Thread's user stack corruption */
return (u32_t)thread->stack_obj;
}
}
} else {
/* Supervisor thread */
if (IS_MPU_GUARD_VIOLATION((u32_t)thread->stack_obj,
fault_addr, psp)) {
/* Supervisor thread stack corruption */
return (u32_t)thread->stack_obj +
MPU_GUARD_ALIGN_AND_SIZE;
}
}
#else /* CONFIG_USERSPACE */
if (IS_MPU_GUARD_VIOLATION(thread->stack_info.start,
fault_addr, psp)) {
/* Thread stack corruption */
return thread->stack_info.start +
MPU_GUARD_ALIGN_AND_SIZE;
}
#endif /* CONFIG_USERSPACE */
return 0;
}
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */